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The use of the first-order unitary model to calculate nucleon polarizations in elastic nucle-
on-deuteron scattering at energies up to 40 MeV is investigated. One shortcoming of extant
unitary-model calcu1ations, that of inadequate two-nucleon input, is partially remedied by
introducing a variety of more realistic models for the two-nucleon interaction. It is found
that even with the latter interactions the unitary model fails to represent the nucleon polari-
zation, and, as is to be expected from the work of Sloan et al. , to a lesser degree, the elastic
differential cross section. The nucleon polarization is found to be extremely sensitive even
at fairly low energies to the presence of the P-wave components of the two-nucleon ampli-
tudes when the three-particle scattering is computed via the unitary and other approximations.
This indicates that any method (exact or otherwise) for computing polarizations in'-d scat-
tering must include these components.

I. INTRODUCTION

Recently calculations of the differential cross
section and nucleon polarization in elastic nucleon-
deuteron scattering were carried out over an ener-
gy range from 11 to 40 MeV using an approximate
K-matrix formalism. ' ' The results obtained were
quite remarkable considering the crude two-nucle-
on input used and the approximations made to the
three-particle dynamics. It now appears that the
calculations of KK"' are incorrect.

The latter circumstance was first pointed out by
Aarons and Sloan. ' Their primary (and correct)
objection against the computational procedure in
KK concerns a premature truncation in the total
angular momentum J. However, even granting
such a truncation (Z & 2) the results of KK appear
to be unreproducible with the prescribed two-nu-
cleon input. ~' The computations to be described

in the present work substantiate the conclusions
of Aarons and Sloan on both of these issues.

When sufficient partial-wave states are included
to ensure convergence with respect to 4, the N-d
polarization predicted with the N-N interaction of
KK is, as is shown in Ref. 5 and the present paper,
essentially zero. In order to determine the cause
of this complete disagreement with the experimen-
tal results, we have computed N-d polarizations
and cross sections in the unitary model using a
variety of more realistic N-N input. We conclude
that even with a fairly complete representation of
the N Namplitudes (S, P-, and D waves) the Sloan
approximation fails to give qualitatively correct
results for the N-d polarization. Although the
structure of the elastic differential cross section
is reasonably reproduced, the magnitude of the
forward peak is, as is to be expected from the
work of Sloan, ' poorly estimated.
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Furthermore, the strong dependence of our re-
sults on the inclusion of P-wave N-N potentials
indicates that any attempt to calculate the N-d po-
larizations even at low energies should include a
representation of these amplitudes. This result
is perhaps not surprising in view of the fact that
the Yamaguchi' tensor potentials used in Ref. 5
and KK predict polarizations in N-N scattering
which are identically zero.

In Sec. II we present the particular angular mo-
mentum analysis of the K-matrix equations asso-
ciated with the Sloan approximation used in the
present work. Section III contains a detailed de-
scription of the various N-N potentials utilized
and the results obtained with these interactions in

the Sloan approximation to elastic N-d scattering.
The final section is devoted to a summary of the
conclusions of this work.

II. SLOAN APPROXIMATION

In this section we give the angular momentum
decomposition used in connection with the present
computations. This analysis is considerably more
sophisticated than that used in KK and results in a
marked reduction of computer time. Our results
are similar to, but not exactly the same as, those
obtained by Sloan' in his reduction of the Faddeev-
Lovela, ce equations' ' for the Yamaguchi' poten-
tials. To get the equation analogous to (2.24), one
has to iterate the equations in Ref. 8 once. ' The

TABLE I. Potential sets used in the calculations. The units are such that 5 =1 fm= 1 MeV=1. In these units m
= 0.024 129 MeV f fm

Set 'S,
Designation of potentials used for each channel

3S 3Si-3Di ip 3p 3p 3P 'D2'Df'D2'D3

K
A
B
C
D

1SK
lSA
1SA
1SA
1SA

3SC
3SC

3ST
3ST
3ST

Pl
P2
P2
P2 Dl

Designation
0, 0

(Me V/fm)

S0 potentials

{fm) (fm)

1SK
1SA

—98.469
-72.600

1.2623
1.1438

20.34
19.95

2.50
2.78

Designation
g O, i

i
(Me V/fm)

Sf, Sf —D i potentials

r (MeV) % D state (fm) (fm)

3SC
3ST

—205.38
-73.8 14

1.4224
1.2390 1.9520

0
—4.5400

—2.226
—2.226

0
7.02

0 -5.40 1.74
0.2825 -5.40 1.72

P -wave potentials

Channel
f,j

(Me V/fm)

I,S
7 f,j
(fm ')

~I,S
i,j

(Me V/fm)

I,S
7f,j

(fm f)

fp
3p

0

Pi
3P

3021.4
-27.369
177,01

—313.23

2.7082
0.903 59
1.3068
1.8759

925.97
—29.324

36.569
-196.19

2.3910
0.91922
0.972 45
1 ~ 7024

Channel

iD

3D

D

D3

D -wave potential
Dl

gIiS
2p

(Me V/fm)

-8.8032
67.491

—62.676
-22.591

I,S
7 2 J

(fm )

0.854 43
0.935 94
0.931 12
1.2551
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computational difficulties in the two formulisms
are essentially the same.

In the following equations we assume three iden-
tical nucleons whose wave function is totally anti-
symmetric in spin-isospin-coordinate spac e. The
reader is referred to KK for a general description
of the Sloan approximation4 and the steps leading
to equations (2.1}and (2.3).

The partial-wave form of the K matrix for elas-
tic N-d scattering is

U (1', S'11,S)=U (I', S'1l, s}—i —
3 q

x g U/(li st(le se)US(11s sirll s)

(2.1)
Here U~(l', S'1l, S}and U~(l', S'[1, S) are, respective-
ly, the partial-wave decompositions of the elastic
N-d transition matrix and reduced K matrix as de-
fined in KK:

(S', m'( U(q'1 q))s, m )

xY, (q')Y, (q)U~(l', S'1l, s).
(2.2)

The Clebsch-Gordan coefficients are in the nota-
tion of Sharp and von Baeyer" and are related to
those of Blatt and Weisskopf" by

=Cf~p2 J,M;m„m,

U'(1', s'11, s) =2(l', s', z; 21(w-a, )~l, s, ~; 1)

+2(l', S',J; lii2il, S, Z; 1)

+2(l', S', J;31i2[l, S, 8; 1), (2.3}

where ~l, S,J;i) denotes a state consisting of par-
ticle i incident with orbital angular momentum t

upon the bound state (deuteron) of particles j and

k (i, j, k cyclic). t, is the .two-nucleon transition
operator for particles j and k with the Dirac-5-
function part of the bound-state pole subtracted
out; it is evaluated at the customary Faddeev' par-
ametric energy E =W —3q, '/4m. The kinetic ener-
gy operator is denoted by H, .

A. Separable N-N Potentials

In this paper we will represent the N-N poten-
tials by rank-one separable potentials acting in
each two-nucleon angular momentum state. For

The momenta q and q' are the incoming and out-
going momenta of the nucleon measured in the
three-body c.m. system and m is the nucleon mass.
As discussed in KK, with the introduction of parity
conservation, Eq. (2.1) corresponds to a set of two

linear equations for the J= ~ states and to three
linear equations for the J ~-,' states.

The Sloan approximation consists of using the
exchange and impulse graphs for the reduced K
matrix elements:
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the j = 1 isosinglet force we will use a tensor form:

(S=1,ms;I=O;p'lVrr=, ' ='lS=1, ms;I=O;p)

= )P, 'Q v', . „'(ms,p') v', „'(ms, p),
N

(2.6) and (2.7) are

(ms p'lt', ,'.(E)lms p&

r, s
)

Zv1 ';.2i(ms p ) 1', ;2r(ms p)

where

v", „(m„p)= 5„,Yoo(p)u'o;', ( p)

M)» ..(i&)"l;lInl
msm, M

ml

(2.4)

(2.5)

(2.8)

[u', (p)]'
0

For the j = 1 isosinglet states the transition matrix
is of the form (2.8) with gor '(E) given by

The form factors u will be specified in Sec. III.
For all other angular momentum and isospin
states we will use central potentials

(S,m';I, I„p'lV,', l S,m;I, I„p)
= r 11 sZ vii ,rs„( ms, p')v", ,. „(ms,p),

hf

[u '
( h)] + I'u (h)]go 1(E) 1 mgo 1 p2dp[ 01 p L 21
mE-P +i@

(2.10)

The deuteron bound-state wave function for the po-
tential (2.4), (2.5) is

with

(2.6) v', :„'(m„p)
4's(ms p)=N

ED -p ('m
(2.11)

( „o)=g M)». , (i&I l;Il).
msm, M

ml

where

2 ["o' (p)P+[u ' (p)]
(E, —P'/m)2

(2.12)

As is well known, the N-N transition matrices for and ED& 0 is the deuteron bound-state energy.

B. Partial-Wave Analysis

With this preparation we can now evaluate the matrix elements in (2.3). We will sketch the analysis for
the contribution of a central N Ninteracti-on (2.6)-(2.9) to the term (l', S', J; 1l t, l l, S, j; 1) and then state
the results for the other cases. Completely written out this matrix element is

2

(l', S',J; lltv"', . "(W — '; p,', p, )lt, S,J; 1)

1 1 uo, '
( p,')

n n n Jn y
n (qi) ('I ql) V2' ( r)N 21 V (pi)ul„,S„(pr)

S3 Sl Sn Sn n j n
p12 py E p /m

~In, Sn
~n ~ &n

)& 52(q' q ) r s 2
(same [ ], dropping the single primes)' g"'. (W —3r12' 4m)

r„r,', 0 &,', I„=--,' r.
„

I„I„=--,' I.n r., I„O (2.13)

where p; is the relative momentum of particles j and k. In this equation we have made use of the fact that
particle 2 is a spectator to an interaction in channel 2 so that ms2=m~, and I,', =I„.The sum is over all
azimuthal components of angular momentum, spin, and isospin except, of course, M. In addition /» and
lp', are each summed over the values 0 and 2 to give the central and tensor parts of the deuteron.
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The isospin sum is trivial and gives —,'(2f„+1).Following Ahamdzadeh and Tjon13 we expand 63(q2' -q, ) in

terms of spherical harmonics and the integrals become

~ ~ ~

00 1
d3 '- d3

Ln' &n

x (same [ ], dropping single primes), (2.14)

where

L" J +1
In ~ S n, Ln ~ &n

( ) npl pl 1 n 1 d cos8 Y1 „(8,0)
n n ~ n 0 N qlq2 pl pl q2pl

Pl l 1 P2 1 -1
14

npl, np2 n)

u2' 1 ( p }2412 ' 3tl ( p )apl 1 1 Ln1jn 2

ED —P'1 pm
(2.15}

and the angles and p„p2are given by

2/2+ ff} cosgq qq2q2

cosgq p

cosg

P2

q2+ zqcosgq q1 2

sing = —sing
q2P2 * qlq2 '

~2

slngq p
= slIl8q q21 2P

(2.16)

2 1 2p, —4q +q2 +qq2cosgq q p2 =g + 4/2 +g g2cosg (2.1&)

We now introduce into (2.13) and (2.14) the following sums over complete sets of states:

i [(-,', —,')S'» -', ]S'», Zi; 8& ([(-,', —,')S,'„2]S'», J,';J i) (same {f, dropping primes)
S23, $231

S tt

(2.16)

(The angular momentum coupling notation is similar to that used by Edmonds. ") The resulting set of 32
Clebsch-Gordan coefficients is then recognized as a product of four 12-j recouplings:

S'
231 231

([(2, 2)S23=1, 2]S231 (L3~ L )J ill{1[(~ ~2)S231=S„iL ]j„,2}S",L";J&

x (same two recoup), ings, dropping single primes) . (2.19)

Using standard techniques the second 12-j recoupling may be reduced to a product of three 6-j symbols":

({[(j3j1)j» t4]i314 f2b3142 j dl[(j2 j3)123 jl] f231 (j.j3)j43 &&

= (-)t1+t2+13+13+ 31 1314+ [(2j23+1)(2j31+1)(2j43+ 1)(2j231+1)(2j314+1)(2j3142+ 1)]

j4 j31 j314 j231 j4
j, j,31 j23 j2 j314Q j23l j, J j45 (2.20)
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Similarly, the first 12-j recoupling is a product of only two 6-j symbols, since the (S„S3)S»coupling is
the same in both sides. Thus (2.19) becomes

C.G. = 9(2S„+1)(2j„+1)(2J,'+ l)(2 4+ 1)[(2S'+ 1)(2S+ 1)]'~

Xg(2SI' 1) g (2Si 1) 3 3 il 331 31 3 333 331 31 331 n

s" s'
'

—,
' S,'„1z 1 S„-,' j„ /' J J', 2" J J,'231

x (same [ ], dropping single primes) . (2.21)

The first 6-j symbol in (2.21) may be explicitly written out. Doing this and collecting all the pieces, we
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FIG 5, Pp phase shifts. The curves are as in Fig. 4.



TWO-NUCLEON INTERACTIONS, THE UNITARY MODEL, . . . 313

have our final expression for (2.13}:

(I', S', Ji 1
~
t ™'~~(2)

~
I, S,J; 1)

Ln ~ &n

[(2S'+ 1)(2S+1)]' t dq,

S' 1' S'
~ P(2I e + 1)g (2Sn + 1) g ( )s'g3g-1/2(2SI + 1)2 &3& P&

L II Sn Sl gt231' 1' 1 —, 1

Pl

S Ln S231

Sn 2 2n

S' l' S' S' L S"&&»»' "' " S'~ ~~„~'"(same [ ], dropping single primes},J J' L" J J' 1 ~ ' 'pl
(2.22)

where the integral S is defined in (2.15) and N is the deuteron normalization (2.12).
The sums on lp, and l» are over the values 0 and 2 corresponding to the central and tensor parts of the

deuteron. The remaining sums are limited by the triangular rules in the 6-j symbols and the integral 8.
For the singlet forces (S„=O),(2.22) simplifies somewhat:

(I', S', Z;Iit"';=; (2)~I, S, Z;I)Ln ~ &n-Ln
OO 2

=(-)~'~ "6v'NX/" 0 (2I„+1) dq,
Ln,Ln

)( p ( ) ~obey+ j/, y)
S' —' l S2 pl 2 pl (21,"+ I) s/n 0 I n ~ &n s/n 0 /'n ~ ~n

lpl' pl' 2J+1 l' J J l J J1 1 L /I Jl, L", l', l pl J'1, L", l, lpl

1 (2.23)
In actual computations it is advantageous to write out (2.22) and (2.23) as a sum of four terms corre-

sponding to l» and l» being 0 or 2. Then in all cases, except lpl lpl 2 further simplification will be
achieved due to a zero in a 6-j symbol. It should be noted that since (2.22} and (2.23) are not written for
the force in the In =0, Sn = jn = 1 channel, the two-nucleon T matrix does not h6ve a bound-state pole, and
hence the bar on t is redundant.

We will now write down the expression analogous to (2.22) for the force binding the deuteron. In this
case there will be 16 terms corresponding to having a central or tensor term in the bra or ket and in
either "side" of the separable T matrix. The methods for evaluating the angular integrals and the spin
sums are the same as used above:

( I', S', d; 1
~
t ',":,' '" ='(2)

~
I, S, d; 1)

2
= &w N[(2S+I}(2S'+I)]'/'X~0 ' g (2L" +1)(2S"+1)P dq,

L tt S lt

S' 1' S'
)( P ( )~231 ~/3(2S' y 1)2

lpl, fp2, 1 —' 12

~1 S231

x (same [ ], dropping single primes).

231 P2 231 Pl 231 P2 0 1 l' 1

1 —,
' 1 l J Jl L J Jl ~1, L l lpl

(2.24)

Here the integral on dq, is, as noted, a principal-value integral; if the full single-scattering term from
the Faddeev equations9 were desired, one would simply add the iv5(q, —q-) term corresponding to using
a +is prescription at the zero of g, '.

Since the Hamiltonian operator can be expressed in the same coordinates as the ket vector, the
(2~(W —Ho) ~

1) term of (2.3) is easily evaluated:

(I', S', J; 2
~

(W Ho)
~
I, S,j;1) = (I', —S', d; 2

~ V,":,'~" '(1)
~
I, S, d; 1)

= 37/
/ N[(2I'+1}(2S' 1)(2+S+1)'

lp2, lpl t

~1,S231

S231 lp2 S S231 lpl S S231 lp2 S
1 2 1 1 2 1 l' J Jl

( )s231-1/2(2S + I)2

S l231 Pl y0, 1, lp2, 1

l J Jl &1 ~
l'. l, lpl

(2.25)
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U'(1', s'~ t, s) =U'(l, sl 1', s'), (2.27)

which reduces the number of terms we have to
evaluate.

We complete our evaluation of the matrix ele-
ments in (2.3) with the observation' that for sep-
arable potentials

(1', S',J; 3
[ f, I l, S,J; 1) = (l', S', Zi 11 t

I l, S, Z, 1) .
(2.26)

Also time-reversal invariance tells us that'

Equations (2.22)-(2.27) with (2.16) reduce the
computation of the U~(l', S'

~
l, S) amplitudes to a

sum of two-dimensional integrals which are done
numerically. In doing these integrals it is impor-
tant to take note of the singularities of the inte-
grand. The integral over q, is broken into two re-
gions such that the parametric energy is positive
in one (0 ~ q2' ~ —',mW) and negative in the other
(~mW ~ q,'). In the former, g(W ——,'mq, ') is com-
plex and its imaginary piece has a square-root
singularity (in terms of q2) at the upper point of
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FIG. 7. I'2 phase shifts. The curves are as in Fig. 4.
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this region. [g is the only complex quantity enter-
ing the U amplitudes; if it is the last quantity to
be multiplied into (2.22}-(2.24}, all the rest of
the calculation is real arithmetic. ] Similarly, the
real part of g has a square-root singularity at the
beginning of the second region. Transformations
of variables should be used in each region to re-
move these singularities. The q, integral from

qo =(-,'mW) '" to infinity is done by the transforma-
tion

2qa +1+&
q2= ]; -& - ~- &, qQ- q2-")

where the points on (-1, 1) have already been
transformed to remove the square-root singu-

larity noted above. In this way we avoid having
to introduce a cutoff in q, .

The principal value is handled by noting that

dqP, , = 0, qo' =
o m(W —Eo),

o q —qa

so that

q dq I
"

q — q~
~o 4 —0s ~o 6 —0s

dq

and the last integrand has no singularity at q = qs.
The above analysis has been somewhat lengthy

and implementing equations (2.22)-(2.25) on a
computer involves a fair amount of work, espe-
cially if one works out all the special cases for
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FIG. 9. D& phase shifts. The dotted line is potential Sets A, B, and K; the dashed line is Set D. For Set C this phase
shift is zero. From 0. to 17. MeV the dashed curve (A, B, K) is negative with a minimum of —0.044 at 10 MeV.
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lay ling, etc. , equal to 0 or 2. However, the re-
sulting savings in computer time completely jus-
tify this effort; we estimate that such a program
will run at least 1000 times faster than one in

which the five-dimensional integral and all the
sums in (2.13) are done numerically. ' Calcula-
tions for S- and P-wave interactions using a max-
imum J of —", and a grid of 20' 32 Gaussian points
take about 50 sec of Univac 1108 time.

(2.7). For the central potentials we use

"(P)=P'[P'+(y"}'j '" '. (3.1)

For this form factor the integral in g', , is straight-
forwardly evaluated in a recursive manner. The
deuteron form factors were the same as used by
Yamaguchi:

1
so', l(p) =

p20+r,
III. TWO-NUCLEON INPUT AND RESULTS

A. N-N Form Factors and Phase Shifts

p, i &P'
u2, 1(p) I 2 2t2

% +'Yg )

(3.2)

We choose simple generalizations of the Yama-
guchi' potentials for the form factors in (2.5) and

where r is a parameter that determines the per-
cent D state of the deuteron. For this form, (2.10)
is

3 4 3 mmXg2'' w — = —[q' —74m(w —En)j4m 16

K+K2+2y, r y, +4y, (K+K2)+ y, (K +16KK2+K2 ) +5
&K&

K +4y2KK&&(K +8KK2+K2 )/(K+K2)

&y (y + K) (y + K&&) (K+ Kp} 8 y2(y2 + K) (y2+ Kp)

(3.3)

where

K, = (-mz, }"', E,& 0,
K = (-mz)"' = (-'q' —mw)"' =2p.

Equation (3.3) explicitly displays the deuteron pole
for the principal-value integral in (2.24). Formu-
las for the properties of the deuteron bound state
for the potential (3.2} may be found in Ref. 7."

Five sets of potentials were used in the calcula-
tions. The N-N partial-wave content of these sets
and the actual parameters used are given in Ta-
ble I. The two-nucleon scattering phase shifts of
these potentials for laboratory energies less than
100 MeV are given in Figs. 1-11,""while differ-
ential cross sections and polarizations at 40 MeV
are given in Figs. 12 and 13." The YaleM and
Livermore" phase shifts are also shown. In gen-
eral the rank-one separable potentials give an ade-
quate representation of the low-energy data. The
obvious exception is the E'y and 5» curves for the

1
2$, -2D, tensor force (designation 3ST). The reason
for this failure is clear: A rank-one S,-'D, sep-
arable potential requires tp'p'

„
t,'p'

„
I;p 2 y and

t,',', (the notation is t', :2, ,) to all have the same
phase. Since this is experimentally not the case,
higher-rank potentials will be needed to represent
these coupled channels. It was because of this
failure of the tensor force that we included poten-
tial Sets C and D which contain an S-wave deuter-
on (D-state probability =0}. Note that in Set D,
since no mixing force is provided, the 'D, channel
is independent of the 'S, channel. The potential

Set K is the same as the potentials used in KX. It
should also be noted that since all the S=1 ampli-
tudes have the same phase for the Yamaguchi ten-
sor potentials, the two-nucleon (n-p and n-n) po-
larizations for Set K are identically zero."

B. N-d Cross Sections and Polarizations

Table II shows a few of the unitarized elastic
N-d amplitudes for Set K at 22.7 MeV. These
were computed with 32 Gaussian points in the q,
integral and 20 points in the cosg, , integrals and
are stable to five places. Cross sections and
polarizations generated from the Table II ampli-
tudes are in agreement with recent results of
Aarons and Sloan. ' In Table III we show the con-
vergence of do/dQ and the polarization at 22.7

MeV as more angular momentum states are add-
ed. It is clear from these results that a large
number of partial-wave amplitudes must be used
to achieve reliable results, especially in the back-
wards direction. ' In the results that follow we
truncated the sum on j at 2~2, for which do/dQ and
polarizations (with the exception of polarizations
for Set K) have converged to better than lpga (i.e.,
two significant figures}. Aarons and Sloan have
noted that truncation on l' and l instead of J will
produce more rapid convergence of the polariza-
tion. '

Figures 14-19" ' show the elastic N-d cross
sections and polarizations at 14.1-, 22.7-, and
40.0-MeV laboratory energy. In the do/dQ graphs
we have not drawn all five potential sets, since
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FIG. 12. Two-nucleon differential cross sections at 40-MeV laboratory energy. The upper set of curves is n-p scat-
tering, the lower set is n-n scattering. The Livermore VII, IX values are given by the solid line, and the Yale Y-IV
values are given by the dash-dot line. In the upper set, the short-dashed line is A and B; the long-dashed line is C;
K is not shown. In the lower set the short dash line is A, B, C; the long dash is K. In both sets the dotted line is D.

TABLE II. Values of the N-d partial-wave amplitudes at 22.7 MeV for potential Set K. The amplitudes are normalized
so that cr (,l', S'(l, S) =4&

If (l ~ S ll S) l ~q .

Jp l' S' f'ii', S
I 1, S)

l, S=0,
2

0 y 0.19551+0.772 38 i

2 ~) -0.021 448 —0.028 840 i

l, S=1,
2
1

0.077 229+0.227 87i

1
~

-0.039 397 —0.052 822 i

i, S=0, $
0 $ -0.11335+0.438 85i

-0.28003x 10 '+0.15198x10 'i
2 & +0.657 78x 1p- —p.609 65x 10-'i

l, S=2, ~2

-0.021 448 —0.028 840 i
—0.10199 +0.055 052 i

l, S=1, ~2

—0.039 397 —0.052 822 i

0.224 30 +0.158 02 i

l, S=2, ~2

-0.28003x 10 '+0.15198x 10 'i
0.108 65+0.636 73 x 10 ' i

L, S=2, ~

0.65778x1Q —p.6p965x1p ~i

—0.388 28 x 1Q- -0.860 Q6 x 1p i

—0.388 28x 10 —0.86006x 10 i 0.10996+0.4244px 10

l, S=l, ~~

0.7S8 97 x 10 +0.231 20 i

L, S=1,$
0.152 35x 10 +0.209 82x 10 i

l, S=3, ~~

0.388 53x 10 ' —0.270 14x 10 i

1

3

0,152 35x 10 +0.20982 x 10 i 0.317 14+0.270 15i

0.388 53x 10 —0.270 14x 10 ~i —p.12306x 1p —0.137 40x 10 'i
—0.12306x10 ' —0.13740x10 'i

0.46925x 10 ~+0.12702x 10 ~i
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FIG. 16. N- d differential cross sections at 40.0 MeV.
The dotted line is Set K; the dashed line is Set B and the
solid line is Set D. Set A lies close to B, while Set C
lies close to D. The data are from Williams and Brussel
(Ref. 24); the triangle is Holdeman and Thaler's (Ref. 25)
extrapolation of this data to the forward direction.

40 MeV is approximately the same as that obtained
using an on-shell form of the impulse approxima-
tion with the exchange term included. "

Similarly the Sloan approximation does not seem
capable of yielding the magnitude of the forward
diffraction peak."' At 14.1 MeV, curve D is
almost 50 mb beneath the extrapolated experi-
mental forward cross section, while the difference

between curves K and D is only 16 mb. It seems
doubtful that the addition of higher partial waves
in the nucleon-nucleon channel will make up the
remaining 50 mb. Although the discrepancy at 40
MeV is not so great it appears to be due to the
Sloan approximation as opposed to the potentials
used. We have made several calculations using
the single scattering form of the fixed-scatterer
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FIG. 17. N-d polarization at 14.1 MeV. The dotted line is Set K; the long dash is Set A; the short dash is Set B; the
dash-dot is Set C; and the solid line is Set D. The data are from Faivre etal. (Ref. 26) (14.5 MeV).
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approximation" employing the potentials K, A-D,
as well as the complete set of Livermore phase
shifts. The values of the forward der/dQ at 40
MeV range from slightly too low (63. mb/sr) for
Set K, to good agreement (77. mb/sr) for Set B,
to a slightly too large value (83.7 mb/sr) for the
Livermore phases. Thus, the potentials used
here with the possible exception of Set K should
be adequate to predict the approximate value of
the forward cross sections.

The other conclusion is that any attempt to ex-
plain the polarization in N-d scattering, either
via "exact" or approximate three-body calcula-
tion, must include P-wave two-nucleon amplitudes.
Despite our poor results, comparison of curves
K and A or B indicates that the P-wave forces
make a very large contribution to the 1V-d polari-
zation. We have also made fixed-scatterer" and
nonunitarized Faddeev-type impulse calculations
[the latter consists of leaving the 6-function part
of the deuteron pole in {2.3) and directly equating
the three-body T matrix with the U amplitudes]
for the various potential sets. The results are
similar to the unitary-model results: For Set K
the X-d polarizations are always very small;
while for Sets A-D they have magnitudes com-
parable to experiment and structure similar to
curves A-D in Figs. 17-19. Thus, including just
the tensor component in the deuteron is not ade-
quate to explain A'-d polarization; indeed, curves
B and C suggest that it is not necessary and rep-
resents only a small correction. This conclusion
is substantiated by the results of Kottler and
Kowalski, "who found small effects from the D-
wave part of the deuteron at 40 MeV in an on-shell
impulse calculation. However, at 150 MeV the
tensor component was important to giving a good
fit to the data.

A final comment is called for concerning the
appropriateness of the potentials employed here.
Although our rank-one separable potentials have
fairly good phase shifts, it could perhaps be ob-
jected that their off-shell behavior may be patho-
logical. This could be important, since in the
impulse matrix elements the integral on q, runs

over all negative two-body energies. Since we

have not devised a potential with on-shell behavior
similar to ours but radically different off-shell
behavior, the only argument that we can offer
against such an objection is that our results for
the polarization are similar to those obtained
from fixed-scatterer calculations that only use
on-shell matrix elements. Thus it is doubtful
that the off-shell behavior of our potentials is
grossly distorting our results. "

IV. CONCLUSIONS

It appears that the Sloan approximation is not
capable of predicting the rich polarization struc-
ture present in moderately-low-energy elastic
Ã-d scattering. To a lesser extent the magnitude
of the forward diffraction peak is not reproduced.
By using increasingly sophisticated representa-
tions of the two-nucleon interaction it appears
that the source of this failure lies in the approxi-
mation itself and is not the inadequacy of the A'-N

input.
The strong dependence of the N-d polarization

on the presence of the P-wave channels of the
A-A forces using the Sloan and other approxima-
tions indicates the necessity of including these
potentials in future calculations (exact or other-
wise) that attempt to predict the N-d polarization
even at relatively low energies. In this regard
the P-wave forces appear to be substantially
more important than the tensor component of the
S = J = 1 two-nucleon interaction. This result is
somewhat discouraging, since the incorporation
of the four P-wave channels will greatly compli-
cate an "exact" calculation even when this is at-
tempted using separable potentials. "'"
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