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A method is proposed for determining the ground state of the Hamiltonian

B=Pe~N~ —~V;&~&a,.a&a~a&
c gkl

when the residual interaction is such that

(a,. a&aka&) (¹&Nj(1 Nk)(1 Nt)) (NkNt(1 Nr) (1 N~))

is a good approximation. The method is applied to pairing interactions involving one type of
nucleon as well as to the generalized pairing problem containing neutron-neutron, neutron-
proton, and proton-proton interactions.

I. INTRODUCTION

In this work, we study the ground state of the
Hamiltonian

H = Qe~N~ —Q V, g»ag a,. aaa,
j jkl

(a~a,. a~a, ) =(N,N&(1 —N~)(1 —N, ))"'
x (N~Ng(1 —N;)(1 )N)'i . 2-(2)

when the following approximation is valid for the
ground-state wave function:

and use this approach to construct ground-state
solutions of the simple pairing model. These solu-
tions are compared with exact solutions of the
pairing Hamiltonian. The same approach is ap-
plied to the generalized pairing problem which in-
cludes proton-proton, proton-neutron, and neu-
tron-neutron pairing interactions. The correla-
tions in the ground-state wave function of this
problem are analyzed in detail. Our hope is to ap-
ply this approach to other two-body interactions in
future publications.

II. GENERAL CONSIDERATIONS

The symbol a,. (a, ) denotes a fermion creation (an-
nihilation) operator; N, denotes a number opera-
tor; and the angular brackets enclose ground-
state expectation values. In Sec. II, we discuss
the conditions under which Eq. (2) is a reasonable
approximation and consider the implications of
Eq. (2) with respect to particle correlations. In
Sec. III, we make a detailed study of particle cor-
relations in the case of the pairing-force model,

The ground-state (or any other state) wave func-
tion is of the form:

(4')= Q C,»,. a~atata~ (0),
t&g&k &l~ ~ ~

where
~ 0) denotes the true vacuum state, and

C,»,... denotes the amplitudes of the various con-
figurations in the ground-state wave function. In
terms of the coefficients C,.», ..., the approxima-
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tion of Eq. (2} is just

(4)

This relation can readily be seen to be exact when-
ever the amplitudes Cjj»... are separable; i.e.,

k =neutrons k =protons

—Q V;,~, &N, N, (1 —N~)(1 N, ))'~'. -
i jkl

&& &N~N, (1 —N,.)(1 —N. ))'»

and the problem is to be solved by solving the set
of algebraic equations

s&H)
s&N. )

while adjusting A„and A~ appropriately, in com-
plete analogy with the quasiparticle method. With-
out the multipliers A.„and A.~, the minimum energy
usually corresponds to a system with zero or few-
er particles. Before we can carry out the differ-
entiations in Eq. (7), we must first decompose the
expressions involving products of number opera-
tors in terms of the fundamental variables (N, )
In the quasiparticle method, one ignores correla-
tions other than those between Nk and X k and sets

(N; N, N~) = (N;) (N, ) &N~),

and this is our point of departure from the quasi-
particle method. We plan to take the other corre-

where D, is a numerical factor. We have found'
in the case of the pairing interaction, where Eq.
(5) is not a particularly good approximation, that
the approximation of Eq. (2) is nevertheless ex-
tremely good. In general, we expect that Eq. (2)
is a reasonable approximation when the interac-
tion matrix elements are in proper phase with one
another. When the matrix elements are in phase,
the sum on the right-hand side of Eq. (4) is coher-
ent. If this sum is incoherent, clearly the approxi-
mation is bad; but in this instance, the correla-
tions would be unimportant.

Our approach to the solution of this problem is
based on the quasiparticle method, ' and we shall
use Lagrangian multipliers to insure that the de-
sired number of particles are present in the
ground-state solution. The working equation for
the ground-state wave function is

H = Q (c, —X„)&N,)+ P (~, —Z, )&N, )

First, we consider the question of constraints
on the anticorrelation. These constraints follow
directly from exact sum-rule considerations, i.e.,

P (N, N, N, )=(N, N, )Q (N. ,) —2n(i, j) (10)
S&jrj SWsyJ

and the complementary sum rule

Q (N; N, N, ) = (N, ) Q (N, N,.) —2(P- .1)P (s),
jWS

jA AS

where P denotes the number of particles in the
system.

The constraints on the correlation do not follow
quite so directly or exactly. If the residual inter-
action does not correlate levels i and j, we have
the relation

(N, N, ) = (N,.) (N,.), (12)

whereas if the two levels are totally correlated by
the interaction, we have

(N; N, ) = (N;) = (N;),
which may be rewritten as

(N,.N,.) =(N,.) &N,.)+P(i). (14)

The two-body interaction correlates two levels
at a time and both i and j may correlate with other
levels, so the correlation enhancement must be
shared We conv.ert Eq. (14}to a sum-rule con-
straint by setting

P '&N; N, ) = (N;) Q '(N, ) +P (i),

where the prime in Eq. (15) indicates that the sum
is just over the levels j with which i is correlated.

Next, we consider a typical ground-state expec-
tation value in Eq. (6), (N, ,N, ,(1 —N»)(l N, )). -
In order that the energy of the system be mini-
mized, the pair of operators (N«N, . ) should be

lations into account.
The basic point in our approach is that in the

ground-state wave function all possible correla-
tions and anticorrelations are such as to minimize
the energy. We can, therefore, get a good approx-
imation to the ground-state wave function by ap-
portioning correlations and anticorrelations in a
reasonable way. Before apportioning correlations
and anticorrelations, we must first consider con-
straints on the total amounts of correlation and
anticorrelation available. For this purpose, it is
convenient to make the following definitions:

n(i, j}—= (N, N))[1 —. ~((N,.) + (N,.)}],
and

(9)
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correlated, the two triples &N, oNioNoo& and

(N, oN.,oN.«) should be anticorrelated, and the
quadruple &N«N»NooN«& should be correlated.
Similar conclusions result from an inspection of
the expression (N„N„(1-N„)(1—N„}& M.aking
use of Eq. (15), we set

&N; N, o&=&N;o) &N o&+f(iO, jO)P(iO)P(iO),

(16)

in deformed nuclei), we have

(H&= g(2e —X —G)(N )
k)0

2G Q&NoN o(1 Ni)(1 N i))
k&O
l&k

x (N, N, (1 -N„)(1 -N )o&' 'i.

(21}

where f(i0, j0) contains any additional correlation
enhancements and obeys the sum rules

P'f(iO, j)P(j)=1,

g'f(i, jO)P(i)=I.
(17)

From Eqs. (10) and (11), we infer the anticorrela-
tion relation

(N; o Nio Noo& = (N;o N, o) &Noo&

-g(i0, jO: kO)u(i0, j0)P(k0),

(18)

Because each level has a single correlation part-
ner, we have the additional simplification

&NoN „)=(No&=(N «&

&N, N, ) = (Ni) = (N, ),
(22)

and there are no problems of determining correla-
tion enhancements. The problem that remains to
be solved for this pairing Hamiltonian is the deter-
mination of the anticorrelation function g(k, -k: l)
Making use of Eq. (22) we set

&No N o(1 N, )(1 -N, )) =-&No(1 —N, )&,

and we may simply set

where the term g(i0, jO: k0) includes special anti-
correlation enhancements and obeys the sum-rule
condition

&N, N, ) =(N, & &N, & -g(k, l) P(k) P(l),

where we have used the fact that

(24)

gg(iO, j0:k)P(k) =2. (19)
o. (k, -k) =P (k) (25)

The constraint of Eq. (11)will not usually cause
any problems and we shall ignore it. Finally,
(N, ,N,,N„N«) should be as large as possible, con-
sistent with the previously discussed correlations
and anticorrelations. A reasonable expression for
this term is

(Nio Nio Noo Ni o)

&NooNio& &Noo Nio&
(Nio Nio Noo& (N )

+ (Ni o NioN«&
ko lo

iO jO

(20)

Equations (16), (18), and (20) contain all the ef-
fects of correlations in a formal sense. The ob-
jective is to see how these relations apply and to
determine factors f(i, j) and g(i, j:k).

III. CORRELATION EFFECTS IN THE
PAIRING HAMILTONIAN

Our motivation for starting with the pairing Ham-
iltonian is the fact that we have extremely accu-
rate' wave functions available to guide us in the
analysis. A pairing interaction, for one type of
nucleon leads to a simplified version of Eq. (6).
In a j, representation (or Nilsson representation

in this pairing problem. The sum-rule condition
is

Qg(k, l)P(l) =1,
t)O

(26)

s(k, l}= &No& &1 -N, )+ (N, ) (1 No&-(28)

or s(k, l) raised to some power. We interpret this
enhancement in the anticorrelation as a reflection
of the dominant role of the zeroth-order configura-
tion in the total wave function. The zeroth-order
configuration is the one in which all levels up to
the Fermi level have an occupation probability of
1. Because this is the most important configura-
tion, the residual interaction populates particle

and if there were no special anticorrelation en-
hancements we would have

&No N, ) = &No& (N, &- P(k)P(l)
(27)

r

We have compared this estimate with values of
&NoN, &

—(N„) (N, ) obtained from our' wave func-
tions. We find that Eq. (27) over corrects when
levels k and l are on the same side of the Fermi
level and underestimates the anticorrelation when
the levels are on opposite sides of the Fermi lev-
el. Because of the particle-hole symmetry in the
pairing-force problem, we should include this en-
hancement with a, factor s(k, l},
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states by removing pairs of particles from hole
states rather than from other particle states.
This accounts for the enhancement expressed by
s(k, I) raised to some power. Note also that as
the occupation probabilities get smeared out, the
weighting role of s(k, l) is reduced in importance.
We find that the simplest dependence,

k&0 0 &0
l&k

(32}

with

Putting everything together, we obtain

(H) = Q(2&, —& —G)(N, )-2G g[P(k)P(l)T, ,J"',

T~, = 1 + q S' (k, l )[1 + qP (k) P (I)]; (33)
(N~N, ) = (N~) (N, ) —qp(k) I3(l)s(k, l), (29)

does give a good approximation. The value of g is
determined by the sum rule of Eq. (26), and we
set

q =[NQP(r)(1 N„)+-(1 N)Q-P(r)(N, )] ',

(31)

TABLE I. Comparison of AE as a function of G and P.

QE/g~ QE/E' ~/e
Pairs G /e Exact Quasiparticle Present work

4
4
4
4
4
8
8
8
8
8

12
12
12
12
12
16
16
16
16
16

0.7
0.8
0.9
1.0
1.1
0.42
0.48
0.54
0.60
0.66
0.38
0.42
0.46
0.50
0.54
0.345
0.375
0.405
0.435
0.465

5.309
6.610
8.018
9.513

11.081
5.468
6.954
8.704

10.710
12.954
7.487
9.083

10.95O
13.096
15.518
8.829

10.402
12.231
14.337
16.726

3.939
5.028
6.229
7.520
8.885
3.978
5.167
6.636
8.374

10.357
5.532
6.819
8.390

10.251
12.398
6.572
7.826
9.346

11.152
13.249

5.221
6.502
7.886
9.357

10.897
5.433
6.938
8.705

10.718
12.961
7.465
9.099

11.004
13.180
15.622
8.793

10.415
12.296
14.448
16.878

' Taken from Ref. 4.

(30}

where N is the average occupation probability of
levels in the system being studied. This choice of
q satisfies all the sum rules of the form of Eq.
(26) in an average way. It is also possible to sat-
isfy the sum rules somewhat more precisely by
introducing a set of quantities q, „- but we have
not pursued this point. It should also be noted that
we are satisfying the sum rules only to the order
[P2(k)/PP(r)] with this choice of q; a given level
k is not anticorrelated with itself. In the case N
=0.5, commonly used in pairing calculations, Eq.
(30) reduces to the simple form

TABLE II. Comparison of occupation probabilities.

P G/e Level No. Exact Quasiparticle Present work

4 0.8 +3
+2
+1

4 10 +3
+2
+1

8 0.4S +3
+2
+1
+3
+2
+1
+3
+2
+1

12 0.46 b

+2
+1

16 0.375 +3
+2
+1

16 0.435 +3
+2
+1

8 0.60

0.122
0.197
0.347
0.175
0.258
0.397
0.093
0.157
0.306
0.160
0.243
0.387
0.106
0.175
0.326
0.138
0.216
0.367
0.105
0.174
0.325
0.166
0.249
0.392

0.117
0.203
0.377
0.173
0.265
0.411
0.090
0.169
0.355
0.165
0.259
0.409
0.108
0.194
0.373
0.143
0.237
0.398
0.109
0.196
0.374
0.176
0.271
0.415

0.120
0.190
0.344
0.170
0.251
0.394
0.094
0.155
0.307
0.157
0.237
0.387
0.107
0.173
0.329
0.137
0.213
0.369
0.108
0.173
0.328
0.164
0.245
0.393

Taken from Ref. 4.
Our approximation indicates that some numbers

were transposed and the exact occupation probabilities
listed for G/e =0.50 in Ref. 4 are actually for G/e =0.46.
We have recomputed the quasiparticle occupation proba-
bilities for this case.

and the problem is now solved by setting S(H)/S(N, )
=0 and solving the resulting equations for different
choices of A.. We have found that it is straightfor-
ward to construct a program for solving this set
of equations iteratively and have carried out a few
calculations. The results of these calculations are
spectacularly good —and in Tables I and II, we
have compared these results with some exact solu-
tions' of the pairing problem. We have also in-
cluded quasiparticle estimates of the tabulated
quantities. In Table I, we compare energy shifts;
the energy shift is the change in ground-state en-
ergy due to the pairing interaction. From Table I,
we see that the errors in the energy shift using
the quasiparticle method are -2lg&. By taking cor-
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relations into account properly, the errors are re-
duced to -1.5/p for the systems containing four
pairs of particles and to &ik for the larger sys-
tems. In Table II, we list occupation probabilities
(N„) for the first three levels just above the Fermi
level. Because of the symmetry of the systems
considered here, the occupation probabilities of
the levels just below the Fermi level are just
(1 N, )-, where k is the equivalent level above the
Fermi level. Again our results are in extremely
good agreement with the exact results. The occu-
pation probabilities given by the quasiparticle
method are also quite good once we get away from
the Fermi level.

Let us next consider the somewhat more compli-
cated pairing interaction with G replaced by G„,
in Eq. (21). Consider two levels l, and l, having
the same single-particle energies and the same
occupation probabilities ((N, ,) = (N, ,)), and the
matrix element Gk, &G, , In this instance, the
residual interaction scatters pairs into Li prefer-
entially, as compared to L„ from level k; hence
the anticorrelation between k and ly is enhanced.
We can incorporate this feature into our formalism

by setting

(N«N, ) = (N«) (N, ) —qG«, P (k) P (l)S(k, 1.), (34a)

where q is fixed by the sum-rule constraints and

G«, r =G«r(O«O, ) (34b)

with the quantities 0, defined by the relations

O«Z O& gG«. &
~

Luk
(35)

The solution is then essentially the same as in the
case of the constant G interaction.

We next consider the generalized pairing prob-
lem' including proton-proton, proton-neutron, and
neutron-neutron pairing interactions. Again, we
are working in a. j, (or Nilsson) representation,
and allow the matrix elements to vary. For con-
venience we assume the relation

(N P iViN8P 8)=(N P„i ViNSP 8&,

(36)

although this assumption is riot necessary. In Eq.
(36), N denotes a neutron state and P denotes
a proton state.

For this full-blown pairing problem, we have the
lengthy equation:

(H) P(2e«A«)&N«&+ Q(2e«A«)(P«& Q(G (N«N «)+G«««(P«P «&+2G ««&N«P «))
k&0 k&0 k&0

—2 QG~„'(N«N «(1 N, )(1 —N,-)&'~'(N, N, (1 -N«)(1 —N )&'«»'
k&0
l&k

—2 gG", (P,P ,(1 —P, )(1 P ,))'"(P,P-,(1 —P,)(1 P „))'"—
k&0
$&k

—8 QG„«'(N«P «(1 N, )(1 P, )&-'~«(N-, P g(1 —N«)(1 —P «))' '
k&0
l&k

—2 QG~p(N«P «(1 -N «)(1 -P«)&'~«(N «P«(1 —N«)(1 P«))' «, -
k&0

with the letter N used to denote a neutron number
operator and the letter I' used to denote a proton
number operator.

In this problem the following identities hold:

(N«) = &N «&, (P«& = (P-«&, -

««P «&
= &P«N «& &N-«P«& = « -«P «&. --(38)

As we have seen, correlation effects are quite
important in solving the problem of like-particle
pairing. In the case of the generalized pairing
problems the correlations are crucial. A solution
that consists of just occupation probabilities is
meaningless. In order to gain some insight into
the ground-state correlations of the generalized
pairing problem, we have solved the problem ex-
actly for some rather small systems and examined (N, N, ) =(N ), (P,P,) =(P„&. (39)

the ground-state wave functions in detail. Our ex-
amination indicates three types of ground-state
correlation pattern (although there may be more).
The type-one correlation pattern is that of like-
particle pairing. The type-two correlation pattern
is that of unlike-particle pairing. The type-three
correlation pattern corresponds to a mixture of
like- and unlike-particle pairing. If we keep the
like-particle pairing strengths fixed and increase
the unlike-particle pairing strengths, the ground-
state correlations go from type one to type three
and finally to type two. We shall consider these
three solutions in detail.

In the type-one solution, the correlations are
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Neutrons and protons are uncorrelated, and we

have two independent pairing problems of the type
that we have already considered.

The type-two solution is determined by the ma. -
trix elements Gk~'. For this solution, the correla-
tion relations are

seen in the ground-state solution when

4~np = Gnn+~ pp. (43)

(N N )+(NP „)=(N)(N „)+(N)(P )

For this class of solutions, we have from Eq. (15)
the correlation relation

&N.P,) =&N,&=&P,),
(4o) + (N«) (1 —N«). (44)

and the anticorrelation constraints come from the
sum-rule relations

(N«P «Ng) (N«P «) Q(Nq) (1 (N«))(N«P «)
g&k l~k

(41)

Q(N P P, )=(N P ) Q(P, )-(1 —(P ))(N P ),
(N«) = &N. N «&+ &N«-P «&

—&N«-N «P «&--(45)

The numerical examples that we have examined in-
dicate that this relation is good to 1(P%%d or better.
The total correlation enhancement is a bit less
than (N, ) (1 -N, ). In the case of generalized pair-
ing interactions, we also have the exact relation

awk

which by virtue of Eq. (40) can be written as

Q(N«N, &
= (N«& Q(N, &

—(N«) (1 —N«)
irk

or

g&P-«Nl&=(P-«& p&Nl& —(1 —&P-«&)&P-,)

(42}

(41')

and combining Eqs. (44) and (45) we get the useful
relation

(46)

which we use in determining the sum-rule con-
straints on the anticorrelation. Similar relations
hold for the proton operators

(P«P «)+(P«N «) =(P«) (P «)+(P«)(N «)

(41") + (P,) (1 -P,); (4 I)

This solution gives anticorrelations between all
pairs of number operators (other than (N, P,) or
(N «P, )), be they proton or neutron number opera-
tors. It should be noted that N, and N, are anti-
correlated in this solution. The anticorrelation
equation is again of the form of Eq. (34a). In the
Hamiltonian there occur products of number oper-
ators that are not fixed by the relations already
considered, in the terms of the form

(N«N «(1 —N, )(1 N()&. -

and note also

&N«N «P «&
= &«-«-N -«& = &«-P «-N«-&-

(N, N, P-,) = (N, N, P-,P,) .
(46)

(N«N «N, )=(N«N «) Q (Ng)
g wk«-k 1 &k«-k

—2(N«N „)(1 —(N«)), (49}

For this solution, the sum-rule constraints on the
anticorrelations are given by the equations

As Nk and N, are anticorrelated, such terms are
quite small relative to the neutron-proton interac-
tion terms. We can ignore the anticorrelations in
the products (N«N «N, ), but the energy of the sys-
tem is computed somewhat more accurately by an-
ticorrelating N, with N, N „again using the sum-
rule constraint of Eq. (10}; where now the product
N, N, is itself anticorrelated. If there is a neu-
tron (or proton) excess in the system being con-
sidered, the levels occupied by neutrons and not
by protons in the zeroth-order configuration are
blocked in solutions of type two. The correlations
and anticorrelations we have discussed apply to
the other levels.

The type-three correlation is a cooperative ef-
fect with both like-particle and unlike-particle
correlations. This correlation pattern can be

(N«P «N, )=(N«P «) Q (N, )
l &k«-k l &k«-k

- (1 —2(N.))&N, P,&- &N,&(P,&,

(50)

Z &N«P -«P i& = &N«P-«& P (P i&
l wk«-k l wk, -k

—(1 —2(P ))(N P- ) —(N ) &P- ),
(51)

gwk, k
(P«P «P, )=(P«P «) Q (P, )

—2&P,P «&(I —&P«)), (52)

and we construct the individual anticorrelations in
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the usual way. We generalize s(k, l) slightly here
and replace it by s'(k, -k; l) with

s'(k, -k; l) = ,'((N-«+P, &)(1 —N, )

is fixed by the condition

s(H&
BQ

(58)

+ (N(&(I —«&N«+P-«&), (53)

(N«P «N, ) = (N«P „)(N, ) —@Gas'(k, -k;f)P(l)

for the relations based on Eqs. (50) and (51). A

typical relation is of the form

We note that for 5=1, the solution is just the type-
one solution. However, 6 =0 does not quite corres-
pond to the type-two solution. For 5 =0, N~ and
N ~ are uncorrelated; whereas, in the type-two
solution they are anticorrelated. If the type-three
solution yields

Q&0,
x[(N«& (P «)+ (1 —2(N«))(N«P «&].

(54)
or

(1 —b)(N«& (1 —N„) ) (P«& (1 P«)- (60)

(N«N «) = (N«) (N «) + 5(N«) (I. N«), - (55)

which gives, using Eq. (44),

(N«P «) =(N«) (P «)+ (1 —5)(N«) (1 N«), —

which in turn gives, using Eq. (47),

&P«P-«& = &P«& &P-«&+ &P«& &1-P«&

—(1 —5)(N«& (1 N, ) . —

(56)

(5'I }

The same 5 is used for all levels k, and its value

For terms involving (N, N, P,) or the like, we
use Eqs. (46} and (48}.

The real difficulty in the type-three solution is
in the evaluation of (N, N, ) and (N, P „). It is not
clear, a Priori, how to allocate the correlation
enhancement associated with (N«) between these
two expressions. Our approach is to introduce a
single variational parameter, 5, as a measure of
the relative strengths of like-particle and unlike-
particle correlations. We introduce 5 in the fol-
lowing way:

for any k, a correlation sum rule is being violated
and the solution should be discarded.

The ground-state solution of the generalized
pairing problem is finally determined by compar-
ing the values of (H) obtained for the type-two and
type-three solutions. The lower value of (H), of
course, determines the ground-state correlations.

IV. SUMMARY

The method of correlated quasiparticles leads
to extremely accurate solutions of the pairing
Hamiltonian. Perhaps more important, it leads
to an understanding of the ground-state wave func-
tion by making the various correlations and anti-
correlations transparent. Var iational calcula-
tions based on this method appear to be quite prac-
ticable in terms of such things as programming
effort and computer usage time. At this point, the
method looks sufficiently straightforward so that
we feel it can be profitably applied to yet more
realistic interactions.

It is a pleasure to acknowledge the advice and
most constructive criticism of D. Kurath on many
aspects of this work.
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