
NUCLEAR y RAYS FOLLOWING K CAPTURE

This l.ast is possible, as noted, for example in the
case of '~Pb. Thus a spectral assay of the nu-
clear y-ray spectrum ought to be a sensitive test
of single-nucleon K capture as described above.
We ignore capture on two nucleons, which may
contribute 20% to the K reaction cross section,
as it will not, in general, lead to the same nuclear
y rays. It therefore will not seriously affect the
argument. While theory does generally predict
the orbit at which capture occurs, the nuclear y

spectrum would be a new kind of datum in that,
for example, it is particularly sensitive to the rel-
ative rate of capture on neutrons and on protons.
Such information is lacking presently except for
the limited emulsion data reviewed recently by
Burhop. ' It is in fact precisely this kind of de-
tailed knowledge which one must have before K
capture can truly become a useful tool for the
study of nuclear structure.
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Atomic Energy Commission.
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A relativistic self-consistent theory is used in conjunction with meson field potentials hav-
ing the form of the generalized one-boson-exchange potentials (GOBEP) to construct a rela-
tivistic self-consistent meson field theory of nuclear structure. A simple GOBEP model with
qualitative features of successful N-N models, e.g. , approximate cancellation of static terms
arising from generalized (or regularized) scalar- and vector-meson fields, is used to calcu-
late ground-state properties of the doubly-magic spherical nuclei 60, 40Ca, +Zr, and 0 Pb,
and one superheavy nucleus I 114. Good agreement is obtained between theoretical and ex-
perimental total binding energies and radial charge distributions. The isotopic shift in
charge distributions between the isotopes +Ca and Ca and the single-particle eigenvalues
agree quite well with the experimental numbers. The absence of explicit correlation correc-
tions, the relationship of this model to earlier meson-theoretic descriptions, and physical
interpretation in terms of nucleon form factors and relativistic interactions are discussed.

I. INTRODUCTION

The importance of velocity-dependent potentials
in nuclear physics and the close relationship of ve-
locity-dependent and nonlocal potentials have been
discussed extensively in the literature' both in
relation to the nucleon-nucleon (N Nj interaction-
and nucleon-nuclear (N-st ) interactions. In certain

forms of N-N interactions based upon meson theo-
ry, velocity-dependent terms arising as relativis-
tic effects assume major physical importance be-
cause of the approximate cancellation of the attrac-
tive and repulsive static terms arising from cou-
plings via scalar- and vector-meson fields."
Recent calculations ' ' using such one-boson-ex-
change potentials (OBEP} in conjunction with reg-
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ularized Yukawa functions' provide a quantitative
description of N-N scattering data and the proper-
ties of the deuteron. The fact that S waves can be
fitted precisely without introducing a hard core is a
particularly important consequence of the velocity-
dependent terms.

A model of the N-X interaction, proposed in 1955
by Johnson and Teller, ' contains several similar
physical features to such OBEP. In their original
classical field theory of the nucleus, a large veloc-
ity-dependent N-X interaction arose through the
inclusion of derivative couplings in the interaction
Lagrangian density. Duerr, "however, showed
that similar velocity-dependent effects could be
obtained from a relativistic field theory based up-
on direct coupling to both scalar and vector meson
fields. He used a Foldy-Wouthuysen (FW)" trans-
formation to arrive explicitly at the equivalent
Schrodinger interaction. Rozsnyai" used the FW-
transformed Duerr formalism for numerical cal-
culations of the spherical nuclei "O, ' Ca, ' Zr,
"'Ce, and "'Pb, and found very reasonable single-
particle energy levels.

Since velocity-dependent interactions arising as
relativistic effects are very important in such N-
N and N-X models, it is desirable to use relativis-
tic wave equations. For the N-N problem this has
been done via a Bethe-Salpeter equation" and the
results substantiate to a certain degree the pre-
vious calculations which went to the nonrelativis-
tic limit via a Breit-type reduction. "

The relativistic treatment of finite nuclei can be
accomplished by use of the relativistic Hartree-
Fock (RHF) theory. An N-particle Dirac Hamil-
tonian may be constructed in analogy to the two-
particle Dirac Hamiltonian. The same position-
space potentials represent the two-body interac-
tions in the N-body Hamiltonian. The N-body equa-
tion is then replaced approximately by N single-
particle Dirac equations via Hartree-Fock theory.
In this way the velocity-dependent effects are in-
cluded to all orders (within the Hartree-Fock ap-
proximation).

Some time ago Rozsnyai" used such a RHF theo-
ry and obtained good nuclear-saturation properties.
The work was not published, because it was prior
to the discovery of vector and scalar mesons and
recent developments of OBEP and, hence, the
physical significance of the formalism was still
obscure.

In the present work we reexamine such an ap-
proach to the nuclear many-body problem in the
light of recent discoveries of multipion resonances
or mesons. Thus we consider in detail a relativis-
tic self-consistent model of complex nuclei in
which each nucleon is a Dirac particle which is a
source of generalized (or regularized) vector and

scalar fields and which is also acted upon by these
fields. Because of the approximate cancellation of
the static-interaction terms, relativistic terms of
the nature of those investigated extensively by
Breit" play major roles.

By analogy with atomic usage we will refer to a
relativistic self-consistent meson field theory
(RSC-MFT) of the nuclear many-body problem as
RHF (for relativistic Hartree Fock) when exchange
terms are included, or simply as RH (for relativ-
istic Hartree) when the exchange terms are ne-
glected.

II. THEORY

The relativistic forms of the position-space
OBEP as given in the review article by Green and
Sawada' are

V. =-rir2~. (Ir -r.I) ~

V. =r', r2r,"r,'&.(I r, —r. l),

~~ = rirzrlrz~a(l ri r2I) . —

(1)

(3)

(3)

The subscripts s, v, and P refer to scalar, vector,
and pseudoscalar mesons, respectively. The y's
are Dirac matrices which will be written in the
Dirac representation in terms of the Pauli spin
matrices

(4)

(6)

e"" eJ(r) =g'gc r
-hr A2 2

(1+ r)r (7)

The g' is the meson-nucleon coupling constant and
p, is associated with the meson mass (g =mc/8).
The parameter A is related to the structure of the
form factor as follows:

A2 2

F(q)=g q~+A2 ' (8)

The interactions of Eqs. (1)-(3) should be multi-
plied by the operator r, ~ r2 (isospin operators) for

The J's in Eqs. (1)-(3) are generalized Yukawa
functions which may be obtained by assuming ei-
ther higher-derivative field theories for the boson
field, "or form factors for the meson-nucleon
vertex. ' " The so-called dipole regularization
form is used in this work and is appropriate to the
form-factor interpretation. The associated gener-
alized Yukawa function is
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the case of isovector mesons. The subscripts 1
and 2 in Eqs. (1)-(3) refer to nucleons 1 and 2

which are interacting via meson exchange. The
metric of four space is chosen so that the four-
vector product y,"y," obeys the following relation:

V= V, + V„+V» . (10)

With these forms of the relativistic N-N interac-
tions, one can proceed to the development of the
appropriate RHF equations. Let V be the total
relativistic two-body interaction

Then the Hamiltonian operator for an A-body sys-
tem with only two-body interactions is

A A

If=+ (ca; ~ p;+P;Mc')+~+ V()r, —r~~). (11)

The variational approach may be used to obtain the
RHF equations. This involves taking the expecta-
tion value of H for a Slater determinant of appro-
priate single-particle wave functions and mini-
mizing (P (H ) y) with respect to the single-particle
states. The resulting equations are the RHF equa-
tions

A

(co ~ p+ PM c') P, (r,) +g P, (r,) V( ~ r, —r, ~ }Q&(r, )d 'r, P, (r, )
j =1

(12)

Equation (12) is recognized as the single-particle Dirac equation with the relativistic single-particle di-
rect potential

A

U(r, ) = g J) p~(r, }V(~r, —r, ~)P,(r,)d'r, , (13}

and the exchange potential with the nonlocal kernel

K(r„r,}= —Q p~ (r,) V(( r, —r, ( ) P&(r, ) . (14)

Remembering the various components of V, Eq. (13) may be expressed as

U(r, ) = y, U,(r,) + y, y,"U„"(r,) + y,y,'U~(r, ), (15)

where the single-particle relativistic potentials are defined as follows:

A

U,(r,) = —g ) p, (r,)yrl, ((r, —r, [)p,(r,)d'r„
j=I

(16)

A

U„"(r,) =g P~ (r,)y2y,"J„(~ r, —r, ( ) Q, (r,)d'r, ,
j=x

and

A

U~(r, ) =g p, (r,)y,y2J~(~r, —r, j)Q&(r,)d'r, .
j=x

(18)

The exchange term in Eq. (12) may be cast in local (though state-dependent) form by multiplying and di-
viding by P, (r,) P, (r,) and deleting the factor P, (r,) to obtain the following state-dependent potential:

(19)

This form is inappropriate for numerical calculation because of a possibility of nodes in the denominator
P, (r,)P,(r,). The nodes can be removed by a method similar to the Slater" approximation for the nonrela-
tivistic system.
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Perhaps the most interesting aspect of the relativistic exchange potential is the observation that the fac-
tor {Q,(r,)Q; (r,)) is a Dirac matrix. This matrix may be expanded to obtain:

(P&(r,) f~t(r, )] = —,'P Trace [P,(r,)Q, (r,)y„]y

= 4+ [y("(r,)y„y;(r,)]y", (20)

where the y" are the 16 linearly independent matrices formed from products of Dirac matrices.
One sees from Eq. (19) that even if the two-body interaction V is of restricted tensorial character (sca-

lar for example), the single-particle exchange potential will have components transforming like all possi-
ble forms of Dirac tensors: scalar, vector, pseudoscalar, pseudovector, and tensor. Thus the general
RHF equation will have all possible forms of single-particle potentials, i.e.,

(cu ~ p+ p[Mc'+ U,(r}+y" U„"(r) + y'y" U„"(r) +y&y" Ur" (r)]j p, (r) =E,'Q,.(r),

where only the six independent elements of the tensor y&y" participate in the summation.

(21)

(22}

This restriction can be shown to induce the follow-
ing simplifications in the single-particle potentials:

U.(r) = U.(r),
U„'(r}= U„'(r},

U„(r) = M„U„"(r},

U (r) =0,

U"„(x)=0 (p =0, 1, 2, 3, 4),

(23)

U" (r) =0 (i, j = I, 2, 3),
U "(r)=[U,(r)], ,

U, (r) = u„U;(r),

where U„ is a unit vector in the radial direction.
For a spherically symmetric field the single-

particle wave functions in Eq. (21) are functions of
good total angular momentum and can be written
as follows":

( )
1 F(r) Yf (8, &)
r iG(r) Yf, (8, Q)

(24)

The functions F(r) and G(r) in Eq. (24) are the
large and small components, respectively, of the

It should be remembered that those parts of the
single-particle potentials which are due to the ex-
change potential are state-dependent.

Equation (21) is the most complicated Dirac equa-
tion possible. It needs to be simplified consider-
ably in order to be useful for practical calcula-
tions. Such simplification occurs for nuclei with
doubly closed shells, for then the single-particle
interaction terms are required to commute with
the total nucleon angular momentum operator J:

radical Dirac wave function for positive-energy
states. The F, are spin angular functions formed
by coupling spin and orbital angular momentum
functions in the usual way. Note that the orbital
angular momentum quantum numbers differ be-
tween the large and small components. Their re-
lation is expressed by the following:

J=l ——,'co=i'+ 2v, (25}

where cu is defined by 8 =+1 for states of parity
( I)Ski/2

Equation (21), with the restrictions imposed by
Eq. (23), may be reduced to radial form by stan-
dard methods":

dE
dr

i(U„' —U,") (J + -', )
kc r

2Mc'+ U, —U',+E
Sc

dG U, +U. —E i(U„"+U,") (J+-,')
Cr kc Ac r

In Eq. (26) the eigenvalue E is defined by
(26)

E'= E+Mc', (27)

so that E is appropriate for comparison to the non-
relativistic single-particle eigenvalue. This form
of the Dirac equation (Eq. 26) is used for gener-
ating numerical solutions. The i's occurring in
Eq. (26) are no problem because the functions U„"

and U," are pure imaginary.
By using Eq. (24), the direct single-particle po-

tentials, Eqs. (16)-(18), may be reduced to simple
radial integrals. It is convenient to define the cur-
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rent densities of various tensor character as fol-
lows:

(26)

(29)

(30}

For a closed-shell system, the only nonzero ele-
ments of Eqs. (28)-(30) are p, and p„', which are
given by

J shells

p2(T)= g 2 (F +G ) ~

2J+1

J shells

(32)

With these angle-independent current densities,
the integrals in Eqs. (16) and (17) may be simpli-
fied by the following relation:

never occur at the same point.
The approximate exchange potential then be-

comes

0, (r, )V( ~ r, —r, ~)@;(r2)d2r2

[(2J + 1)/(4', ')](F,.'+G,.2)

x((j),(r, )y; (r,)}. (35)

This form [Eq. (35)] may be simplified greatly for
the various elements of V by use of Eq. (20) and an

angular expansion of the Yukawa function. In the
present work the contribution of Eq. (35) is neglect-
ed; thus we pursue a RH theory. Preliminary cal-
culations indicate that the exchange energy in our
model is relatively small. Furthermore, exchange
effects are approximately allowed for by our pa-
rameter adjustments.

The effect of isospin upon the relativistic single-
particle potentials is the final topic of discussion
in this section. It has already been pointed out that
the two-body interactions, Eqs. (1)-(3), include
the isospin operator 7, ~ 72 for the case of isovec-
tor-meson exchange. The effect upon the single-
particle potentials may be seen from Eq. (13). The
single-particle states ~I} carry the isospinors,

where the function J is the Yukawa function

(33) and (36)

(34}

Equation (33) may be used to simplify Eqs. (16)
and (17) even when the J's are generalized (or reg-
ularized) Yukawa functions, because all such func-
tions [even Eq. (7)] are expressible as weighted
sums of Yukawa functions.

One sees that for spherical nuclei the most im-
portant single-particle potentials are U, and U„'.

The other possible potentials (U„" and U,") receive
contributions only from the exchange potential.

The exchange potential [Eq. (19)] can also be
greatly simplified for the case of closed-shell sys-
tems. The first problem is the removal of possi-
ble nodes in the denominator P; (r,)P;(r,). This is
accomplished in nonrelativistic theory by applying
the Slater approximation which yields an averaged
exchange potential by summing both the numerator
and denominator of Eq. (19) over the occupied
states. In RHF theory the same can be accom-
plished by summing only over the magnetic sub-
states of the J shell of which f& is a member.
This is possible because the radial density of a
J shell is proportional to F + G . Nodes in the ra, —

dial functions F and G are no problem as they

depending upon whether the state represents a pro-
ton or neutron, respectively. If one expands the
isospin operator in terms of raising and lowering
operator s,

lz
T2 ' T2 —T22T22+ 2(T2~ T2 + Tg T2~) t (37)

one sees from Eq. (13) that only the T„T„ term
contributes to the direct potential. The operator
7„operates upon the states which are summed to
yield the self-consistent potential, while the ~„
operates upon the wave function being calculated.
Both stateg are eigenstates of the appropriate 7,
operator. The factor 7y 72, is +1 if the states have
the same isospin and -1 if they have opposite iso-
spin. The resulting potential will be approximately
proportional to N -Z and will have the properties
of a symmetry potential. The possible relation be-
tween the symmetry potential and isospin has long
been recognized. "

The only important ingredient of the OBEP mod-
els which the present form of RH theory does not
accommodate is the derivative coupling which
seems to play an important role for the p meson.
This neglect should not have much effect upon the
properties of finite nuclei, for the p is an isovec-
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tor meson and, hence, is important only for the
symmetry potential which is itself a fairly small
effect. Inclusion of the derivative-coupling terms
would yield a RH equation with momentum-depen-
dent single -particle potentials.

III. SUMMARY OF NUMERICAL TECHNIQUES

The calculations reported in this work were per-
formed on the IBM 360 Model 65 computer at the
University of Florida. All calculations were done
in single precision. The Runge-Kutta (RK} integra-
tion method was used to solve the coupled Dirac
equations (26) in position-spa, ce. The RK method
requires the potentials halfway between the grid
points and these were obtained by parabolic inter-
polation. The numerical solutions were matched
in the tail regions to exact solutions to the Dirac
equation.

The self -consistent potentials were calculated by
use of the radial integrals in Eq. (33). These inte-
grals were evaluated from a parabolic-fitting meth-
od which yields the following integration rule:

y(x)dx = n, [ey(1) + ~ y(2)+24 y(3)+ y(4) ~. . . y(n —3)
a

+,—,y(N —2}+ y(N —1)+—',y(N)j.

(38)

This rule embodies the simplicity of the trapezoi-
dal rule and the accuracy of Simpson's rule. The
calculations were done using 250 equally spaced
mesh points.

The calculations were started using Woods-
Saxon potentials and the equations were iterated
until the total binding energy was stable to within
0.2%. The convergence was usually oscillatory so
that numerical errors due to truncation of the cal-
culations were minimized. Good convergence was
usually achieved in 15 iterations or less.

IV. DISCUSSION OF THE EFFECTIVE
INTERACTION

The calculations presented here were made with
the model shown in Table I. Four parameters (de-
noted by superscript a) were adjusted in this in-
vestigation. The equality of the parameters for &
and e serves here to accomplish the strong cancel-
lation between vector and scalar static potentials
which is present in all successful OBEP models.
In addition, a residual attraction is incorporated
by including a light scalar meson 0 with twice the
pion mass. The isovector p meson is included to
provide a symmetry potential although the deriva-
tive-coupling terms along with the pion have been
neglected on the basis that they would be small

TABLE I. Meson parameters of RHF model (MG).

Meson Mass g 2

p 1
p p+

p p+

1 1

782.8
782.8
277.4
763.

25
25.
P.675
2.5'

(17)b

(17)b
(p.649) '
(1 74) b

' Adjusted parameter.
The coupling constant in parentheses (g' ) is related

to the other constant (g ) by the relation g' =[(A —p~)/
A ] g . The convention corresponding to g'2 is more
commonly used in particle physics.

contributions for spherical nuclei. Dipole form
factors are used as in the OBEP calculations of
Ueda and Green. ' The form-factor parameter (A)
was chosen to be twice the nucleon mass, a value
which yielded good saturation properties.

These model parameters are qualitatively simi-
lar to OBEP models which yield realistic &-&
properties, but which gave underbinding in the RH
formalism. The differences between the present
effective interaction and realistic OBEP models
are partially attributable to a difference in formal-
ism, since the OBEP parameters were obtained
by approximate calculations with the Schrodinger
equation. The remaining differences are inter-
preted as phenomenological corrections for the
neglect of correlation effects. The correlation ef-
fects are known to be quite strong for nonrelativ-
istic local N-N models which are forced to include
hard repulsive cores in order to fit phase shifts.
It is suggested later that the absence of hard cores
in the relativistic OBEP models simplifies the cor-
relation effects to the point that they may be ap-
proximated by the simple numerical adjustments
used here.

The philosophy of this work is then similar to
that taken in the works of Kohler" and of Negele. "
In the absence of an N-Ã model which yields a re-
action matrix that properly saturates infinite nu-
clear matter, the process of deriving an effective
interaction for finite nuclei is bypassed. Instead,
a qualitatively realistic effective interaction is
postulated which contains parameters that are ad-
justed to obtain fits to the properties of infinite nu-
clear matter or finite nuclei. The effective inter-
action of Kohler is obtained from very general
properties of reaction matrices (velocity depen-
dence, density dependence, state dependence, etc.),
whereas that of Negele is obtained from minor vari-
ations of a reaction matrix derived from Reid's"
potential in the local-density approximation. In
both cases the effective interactions are very com-
plicated in their dependence upon relative two-
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body states and upon the local density.
The major advantage of the present work over

the previous methods '" is simplicity. By re-
stricting these calculations to a relativistic formal-
ism with relativistic OBEP N-N interactions, two

major simplifications in the effective interactions
a,re obtained. First, the complicated dependence
upon relative two-body states is eliminated be-
cause the state dependence of the relativistic
OBEP models is carried in the Dirac y matrices
which identify the type of meson producing the var-
ious interaction components. Second, the relativis-
tic effects of OBEP models enable the hard cores to
be eliminated. These hard cores were responsible
for a sizable part of the correlation effects of non-
relativistic models. The correlation effects are
thus simplified and can be approximated without
the assumption of a complicated dependence upon
the local density. Another advantage of the rela-
tivistic formalism is that spin-orbit forces are
implicit and do not require further adjustable con-
stants. This advantage is important in studies of
superheavy nuclei.

The reduced importance of correlation effects
for the OBEP models has been observed in infinite-
nuclear -matter calculations of Haf tel, Tabakin,
and Richards" and of Wong and Sawada. " Using
the OBEP model of Bryan and Scott, ' Haftel, Tab-
akin, and Richards studied the variations due to
neglect of the various components of the N-N
force. Their result was that all components are
necessary to yield a saturation curve in reason-
able agreement with the full result. Thus neglect
of the pion (as we have done) cannot yield realistic
results (without further parameter variations) un-
less there is a fortuitous cancellation of the higher-
order effects between the pion and other mesons.
The more important aspect of their paper for the
present work is the decrease in the value of the
two-body wound integral (~) over nonrelativistic
models. This is especially well documented in
the work of Wong and Sawada, where studies for
the Hamada-Johnston, Reid soft-core, Bressel-
Kerman-Rouben, Bryan-Scott, Ueda-Green I, and
Ueda-Green III interactions are presented. For
example, at nuclear-matter density the values of
a are 0.20V, 0.13V, 0.120, 0.08V, 0.091, and
0.069 for the above interactions, respectively.

The wound integral a is the expansion parameter
in the compact cluster formalism" so that one ex-
pects significantly faster convergence of the cor-
relation series for the OBEP models. Simpler ap-
proximation should thus be required to represent
the higher -order effects.

It is quite possible that even these small values
of ~ are too large for the relativistic OBEP mod-
els because the nonrelativistic approximations

used in usual nuclear matter calculations tend to
break down and yield singularities at zero inter-
nucleon separation, a region to which K is most
sensitive. This is true, for example, for the spin-
orbit and tensor interaction terms before the form-
factor renormalizations are applied.

V. PRESENTATION AND DISCUSSION
OF RESULTS

The present calculations (MG) of total binding
energies and rms charge radii of doubly magic nu-
clei are presented in Table II and compared with
experiment as well as theoretical calculations of
Davies and McCarthy (DM), '6 of Kohler (K),'o of
Negele (N),"and of Nemeth and Vautherin (NV)."
The experimental total binding energies are taken
from the mass tables of Mattauch, Thiele, and
Wapstra. " The experimental charge radii are tak-
en from publications and preprints of the Stanford
high-energy physics lab' "except for the rms
radius of "Zr which is taken from an unreferenced
quotation in Kohler's work. "

The effective interactions of Negele and Kohler
have been discussed earlier in this work. It is
sufficient to mention that the work of Nemeth and
Vautherin is only a minor modification of the work
of Negele. The calculations of Davies and McCar-
thy are important for comparison with the other
calculations because they represent the present
status of fundamental nuclear -structure calcula-
tions. Their reaction matrix is derived from the
Reid potential and is not altered to improve the
agreement with experiment. There are, however,
parameters in the Davies-McCarthy calculations
which relate to many-body approximations that are
not rigorously determined by the theory. Unfortu-
nately, the results in Table II are strongly depen-
dent upon variations in these parameters. These
variations are not shown in Table II; however,
the variations always improve either the binding
energy or the rms radius at the expense of the
other. The numbers in Table II thus give an ade-
quate view of the present status of fundamental nu-
clear-structure theories, clearly unsatisfactory.

Of the phenomenological calculations in Table II,
the best rms radii are given by the present calcu-
lations (MG), whereas the calculations of Kohler
give the best values for total binding energy. De-
spite these minor variations, the phenomenologi-
cal calculations all achieve quite realistic satura-
tion properties which are far superior to those of
the fundamental reaction-matrix calculation.

The binding energies of the present work are
corrected for center-of-mass motion by the equa-
tion
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TABLE II. Calculations of total binding energy and rms charge radii of doubly major nuclei.

Element DM K

—B.E./A
N NV MG Exp. N DM

rms (charge) radii
K NV MG Exp.

16p
'oCa
«Ca
"Zr

~o8Pb

6.76
4.99
4.00

2.49

8.10
8.53
8.70
8.59
7.90

6.75 7.73 7.35 7.98 2.71 2.59
7.49 8.32 8.25 8.55 3 41 3.19
7.48 7.87 8.55 8.67 3.45 3.25
7.85 8.07 8.87 8.71 4.18
7.53 7.31 8.05 7.87 5.37 4.87

2.84
3.67
3.75
4.58
5.94

2.76
3.45
3.52
4.23
5.44

2.70 2.73
3.49 3.49
3.49 3.48
4.30 4.30
5.54 5.50—5.54

where 8+ obeys the equation

h4) = 1.85 +35.5A (40)

TABLE III. Eigenvalues and separation energies of
states in "Q.

Proton Proton Neutron Neutron
State eigenvalue separation eigenvalue separation

The same correction has been used by Negele.
The single-particle eigenvalues for these nuclei

are listed in Tables III-VII. For the nuclei "0
and ~OCa (Tables III and IV) the proton eigenvalues
are compared with experimental proton separation
energies obtained from (p, 2p) and (e, e'p) experi-
ments. " The numbers quoted here are actually
those tabulated by Becker." As may be seen from
Tables III and IV, the eigenvalues from the RHF
calculation are in moderate agreement with experi-
mental separation energies even for the deep inner-
particle states in ' 0 and ' Ca. This again is an
advantage for the relativistic model, for large re-
arrangement energies are predicted on the basis
of nonrelativistic calculations. "

The proton densities resulting from the RH cal-
culations have been smeared by the Hofstadter-
Wilson" proton form factor to obtain nuclear-
charge distributions. These distributions are pre-
sented in Fig. 1, where they are compared with
the analytic charge distributions obtained from
elastic electron scattering experiments. ' " The
agreement is seen to be quite good except for the
interior where there are moderate shell oscilla-
tions in the theory. The analytic curves are im-
proved by the additions of similar oscillations,
but of smaller magnitude. '9 The experimental dis-
tributions are less well known in the interior in
any case, and the effect of nonrelativistic center-
of-mass corrections which have not been applied
here might improve the agreement.

Even better determined by the scattering experi-

ments than the total charge distribution is the iso-
topic shift in the charge densities between the cal-
cium isotopes Ca and Ca." This curve should
provide a more stringent test for the RH theory of
nuclear structure. The theoretical isotopic shift
(difference) 4''n, p(~OCa-4'Ca) is compared with
the experimental curve in Fig. 2. While the theo-
retical curve is shifted to the right somewhat, it
is apparent that the qualitative features of the two
curves are the same. There are indications that
a proper treatment of the Hartree-Fock exchange
potential could improve the agreement between
theory and experiment for the isotopic shift. The
exchange potential of the pion has the right quali-
tative properties to remove such a, discrepancy.

Recently, phenomenological saturating reaction
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FIG. 1. Comparison of theoretical nuclear charge
distributions with experimenta1 (analytic) curves.
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matrices have been applied to nuclei in the super-
heavy region. ' ~0'" So far, only exploratory cal-
culations have been made in this region with the
RH model. The parameters of Table I are again
used, although it seems likely that the HF exchange
potential should be used in this region because of
the importance of single-particle levels. Such in-
clusions would necessitate a slightly different mod-
el. It also seems likely that improved numerical
techniques will be required to do extensive studies
in this region.

So far the calculations have centered upon the
properties of the ' '114 system. The RH model
yields a binding energy (B.E./A) of 'l. 48 MeV, and

an rms charge radius of 6.26 F. The single-par-
ticle eigenvalues of the top proton and neutron lev-
els are -6.58 and -4.58 MeV, respectively. The
splittings between occupied and unoccupied shells
are 3.5 and 1.9 MeV for protons and neutrons, re-
spectively. These results are comparable to
those obtained in Refs. 20 and 38.

The RH theory is especially applicable to such
superheavy nucleus calculations because the im-
portant spin-orbit interaction is inherent in the
theory. The fact that the effective two-body inter-
action is independent of density also inspires con-
fidence in extensions to untested regions.

VI. DISCUSSION AND CONCLUSIONS

A RH theory of nuclear structure has been pre-
sented which is based upon generalized OBEP-
type N-N interactions. A simple model was inves-
tigated which produces the observed energy and
density saturation properties of finite nuclei and
also yields eigenvalues close to single-particle
separation energies. The success of this simple
effective interaction is probably related to the
small magnitude of two-body correlation effects
associated with OBEP interactions. This property
is primarily due to the absence of unphysical hard
cores which in this model are replaced by relativ-
istic interactions implicit in the use of the Dirac
equation. " These interaction terms are softened

TABLE V. Eigenvalues of states in 48Ca.

State
Proton

eigenvalue
Neutron

eigenvalue

1s g/2

1P 3/2

1P 1/2

1d5/2
1dg/2
2S g/2

f7/2

last-particle
separation

55.25
42.28
37.77
27.48
18.70
14.24

15.26

56.64
42.13
37.98
26.73
18.34
16.28
11.51

TABLE VI. Eigenvalues of states in ~~Zr.

State
Proton

eigenvalue
Neutron

eigenvalue

in their influence by our use of generalized (or
regularized) fields, which is equivalent to using
form factors. Earlier, Moszkowski" showed that
short-range correlations are reduced when one re-
places hard cores by phenomenological velocity-
dependent N-N interactions.

The model is applied to the calculation of isoto-
pic shifts in the calcium isotopes ("Ca and "Ca)
where qualitative agreement is obtained. The mod-
el is also applied to a nucleus in the superheavy re-
gion, where reasonable results are also obtained,
although numerical approximations in the calcu-
lation are at present too crude to make definitive
studies in this region. Improved approximations
and numerical techniques may soon change this.

One might raise the question as to whether there
are enough adjustable parameters in the present
model to account for the good fit to binding ener-
gies and radii. As long ago as 15 years, Green and
his collaborators" "showed that one could get
good radii and last-particle binding energies with
a realistic nonrelativistic shell model with a dif-
fuse independent-particle-model (IPM) potential.
The models used in those early studies had about
six parameters: (l) the radius parameter (ro) in
R =r, A'i'; (2) a well depth V,; (3) a spin-orbit

TABLE IV. Eigenvalues and separation energies of
states in 4 Ca.

1s&/2 48.05
lp 3/2 33.48
1p i/2 27 +90
1d 5/2 18.24

ds/, 8.99
2s &/2 7.71

48.5+ 5
36 +3
31.5 + 3.5
16+23

8 5+() 2
12 +1

56.09
41.23
35.68
25.68
16.37
14.95 15.62 (last

particle)

Proton Proton Neutron Neutron
State eigenvalue separation eigenvalue separation

~ i/2

1PS/2
1p 1/2
1d 5/2

1ds/2

2si/2
1f»2
1f5/2

2p 3/2

1g 9/2

2p
last-particle

separation

54.00
44.58
41.93
33.56
28.05
2 .84
21.40
12.86
8.52

6.05

8.38

62.75
51.84
49.45
39.83
34.66
31.98
27.15
18.91
18.58
14.40
13.99
12.00
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parameter; (4) a symmetry-potential parameter
V,"; (5) a surface thickness; and (6}a nonlocality
distance. ""This number of parameters is not
greatly different from the number (four) used here.
It must be emphasized, however, that these phe-
nomenological IPM models which were adjusted to
achieve reasonable last-particle binding energies
suggested little as to the nature of the N-N inter-
action. Furthermore, they did not yield good total
energies nor were they stable or self-consistent
(although there were attempts to make them so~6).

It is rather interesting to note that the latest
Brueckner -Hartree-Fock calculations by Becker
and Patterson, ~' using occupation probability re-
normalization, indicate that single-particle eigen-
values should be close to last-particle separation
energies (i.e. , Koopman's theorem holds approxi-
mately). The fact that our RSC-MFT model has
this property, and the fact that the shell structures
(e.g. , spin-orbit splittings and level sequences)
are also in reasonable accord with observations,
are gratifying.

In final conclusion, we must emphasize that we
do not claim to have proceeded from a quantitative
description of N-N interaction to a quantitative de-
scription of the nuclear many-body problem with-
out introducing additional phenomenology. Never-
theless, we believe the qualitative resemblance of
our N-N inputs to those in successful N-N models
lends credence to the meaningfulness of the RSC-
MFT model as a heuristic guide towards what may
eventually be the final physical model of nuclear
structure. The present interim model essentially
is an updated synthesis of two old lines of thought,
i.e. , the vector-scalar generalized meson field
theory of Green' as applied to the N-N interaction,
and the vector-scalar classical meson field model

TABLE VII. Eigenvalues of states in 2+Pb.

State
Proton

eigenvalue
Neutron

eigenvalue

1Sg/2

lp 3/2

1p
1d5/2
1d3/2

53.07
47.76
46.82
40.75
38.53

62.71
56.57
55.81
49.00
47.04

of Johnson and Teller, ' Duerr, "and Rozsnyai" as
applied to the nuclear many-body problem. If one
might be permitted to speculate as to the essential
physical features of the future final model, one
might suggest that the finite extension of nucleons
(e.g. , form factors) and relativistic effects surviv-
ing the cancellation of the static components of
scalar and vector fields will play major roles just
as they do in all current quantitative OBEP models
of the N-N system.

An unfortunate feature of such a physical model
is that many complex relativistic or magnetic-like
effects' may enter at the same order as the terms
surviving the ~-c cancellation. For example, the
very broad width of the e probably contributes in a
way which cannot strictly be "mocked up" by the a
meson used here. Effects associated with uncor-
related multipion exchange, effects associated with
tidal-like polarization of the soft nucleons, effects
associated with differences between charge states
of pions, and many other perturbation effects prob-
ably enter. Finally, the exchange effects which we
have discarded here partly on the basis of our mag-
nitude estimates and partly on the basis of our phe-
nomenological adjustment of parameters undoubt-
edly contribute. More detailed studies of these lat-
ter effects are underway by one of us (LDM}. In

0.2—

u 0

Cl

-0.2—

-0 4
0

r (F)

FIG. 2. Comparison of theoretical isotopic shift for
calcium isotopes ( Ca and 4 Ca) with experiment.

2S g/2

1f7/2

1f5/

2p 3/2

2p 1/2

1g 9/2

+7/2

2d5/2

2d3, 2

38'/2
~9/2
li, s/2

2f7/2

2~5/2

3p 3/2

3p 1/2
last-particle

separation

33.38
32.52
28.51
22.16
20.77

23.46
17.27
13.85
10.81
8.56

6.84

8.03

43.34
40.38
36.66
31.63
30.24

31.05
25.14
21.30
19.98
17.68

16.59
13.03
11.39
9.11
6.51

6.06
5.31
7.38
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the meantime, the authors would like to express
the view that because of the simplicity of the pres-
ent model and economy of adjusted parameters in
relationship to the many experimental properties
that the model describes, that this RSC-MFT ap-
proach can contribute to an increased understand-
ing of the structure of the nucleus and to a bridg-

ing of the gap between N-N studies and studies of
the nuclear many-body problem. In this last con-
nection we might note that by adding coupling to
pions and by giving the p meson derivative coupling
to nucleons, steps which would not influence spher-
ical nucleus calculations, we can obtain an OBEP
model which gives reasonable N-N phase shifts.
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The level structure of Hf has been studied via y singles, y-y coincidences in the 2048
x 4096 channel mode, and y-y directional-correlation measurements with Ge(Li) detectors
from the decay of Ta. These data yielded 7 new transitions and the addition of 13 transi-
tions to the decay scheme, which includes 5 new levels. The following levels were observed
(energies in keV followed by the spin and parity): 93.13, 2'; 306.52, 4', 1174.64, 2',
1199.24, 0+; 1276.54, 2+; 1309.91, 1, 2+; 1362.36, 2 ; 1433.97, 0+; 1443.86, 0; 1496.02,
2', 1513.64, 1', 2', 1561.27, 2+; 1566.45, 1~, 2', and 1771.95, 0+. y-y directional correla-
tions were measured with the 2+ 0', 93.13-keV transition and eight transitions that feed the
first excited state. From the y-y(8) data, spins of 2 and 0 are established for the 1362,36-
and 1771.95-keV levels and M1 admixtures of 85.6+& 7 and 65.2 +3.2% for the 1183.40- and
1402.87-keV transitions. With these multipole admixtures, the branching ratios for the K I
= 0+2, 1276.54-keV level cannot be brought into agreement with theory for a single Z& band-
mixing parameter; while for the K'I =0+2, 1496.02-keV level they can be.

I. INTRODUCTION

The Bohr-Mottelson model, ' even with perturba-
tional corrections for admixing of the P, y, and
ground-state bands, ' appears to be unable at pres-
ent to explain the branching ratios' ' from the P-
vibrational states in "Sm, '~Qd, and '~Gd. The
earlier proposal~' that M1 admixtures in the AI =0
transitions between the P and ground bands may
prove the way to bring theory and experiment into
agreement has not been found true" for '~Sm and
'"Gd. These two nuclei are often referred to as
transitional nuclei, since they are just at the be-
ginning of the region where permanent deforma-
tion is observed and are not highly deformed.
When the effects of band mixing are included, the
Bohr-Mottelson model has adequately described'
the transitions from y bands in highly deformed
nuclei and is in near, though not exact, agreement
with experiments' on the branching ratios from
the y bands in '"Sm and '"Gd. It seems most im-
portant that in strongly deformed nuclei we check
very carefully the properties of P vibrations, as
well as of all near-lying excited states which may
present any perturbations to them. The nucleus

"'Hf is an excellent candidate for a detailed study
of this problem.

The energy levels of '"Hf populated by the decay
of '"Ta have been studied by Nielsen et a/. ' who
observed nine excited states. Of particular in-
terest in our present work is a study of the pro-
perties of the 0' and 2' levels of '"Hf at 1199 and
1276 keV, respectively. The strong EO component
observed' in the 2' -2', 1183-keV transition from
the 1276-keV level to the 93-keV first excited
state indicates a K=O assignment for the 1276-keV
level. Guided by this and the energy spacings,
Nielsen et a/. proposed that the 1199-and 1276-
keV levels are the 0' and 2' members of the P-
vibrational band. The E =0 character of these lev-
els also has been established by comparison of the
experimental branching ratio of the P feed to these
levels with the ratio predicted by the intensity
rules of Alaga et a/. ' To add further support to
their argument, Nielsen et a/. ' pointed out that
the moment of inertia calculated from these two
levels differed by only 20Vo from that calculated
for the ground-state rotational band —in keeping
with the observed trends. " A 4 member of this
proposed P band has been reported in (n, e) work. "


