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FIGe 1. Geometry of the exPer' t.experiment.
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to allow free passage of the gases. These cylin-
ders wex'e placed in high-pressure, nonmagnetic,
steel cylinders with windows 0.084 in. thick for
the beam passage. Provision was made for vac-
uum and gas fill. Because of tritium gas hazards,
the cylinders were placed in a large aluminum
tank with ~-in. beam windows. The beam width
exiting the empty chamber was 2.45 min of arc
FWHM, and the beam was attenuated by 40%.

The powders were better than 99.9% pure. The
mean size of the silicon particles was about 5 mils
and that of the diamond, about 2.5 mils. A typical
T, analysis was 96.7% T„2.2% D„and 0.1% H„
with about 0.4% per month buildup of 'He. The D,
purity was 99.5%. Gas densities were measured
by transducers calibrated against a Reise test
gauge which ln turn wRS CRllbx'Rted against R px'l-
mary standard. The absolute accuracy of the trans-
ducers was about 0.5%.
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Figure 2 shows +0, v~, and &oz for typical neu-
tron beam profiles. Figure 3 shows the beam
width &ul vs p, the gas density in amagat units, for
silicon powder in 0, and T, gases.

The neutron background varied from 2 to 5% of
the peak intensity. Fast-neutron backgrounds
were measured by insex'ting a cadmium absorber
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FIG. 3. Beam vridth ~& vs p amagat for silcon
powder 111 Q and T2.
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in front of the neutron beam. Thermal-neutron
backgrounds were interpolated from measure-
ments taken three FWHM's above and below the
reflected beam.

Equation (1) can be written as

lt is evident from Eq. (2} that high pressure and
therefore large N& gives more sensitivity to the
experiment. Figures 4 and 5 show

(d —(d
1 — ~, ', vs p (amagat units)

(dp —4tPO

for silicon and diamond powders, respectively.
Accurate determinations of Ã& depend on knowl-

edge of the virial coefficients for the fluids over
the range of densities used in the experiment,
They depend also on knowledge of the constancy
of the internal volume of the. gas cell. Qf these
two requirements, the second is probably the
least attainable; that is, thin cell windows are
required for low beam attenuation, while internal
volume constancy demands very thick windows.
In addition, the virial coefficients for tritium are
not known at present, while those for deuterium
are not usable beyond 50 amagat units.

The measurement of aT relative to aD, using the
same powder, eliminates the need to know either
N~ or a~. The need for detailed knowledge of N&

for each gas is eliminated by taking the ratio of

0.20

the derivatives of ao and a 7 with respect to p:
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The data in. Figs. 4 and 5 were fitted with poly-
nomials and the ratios an/aT were calculated from
the resulting parameters. The solid lines in Fig.
6 show these ratios, while the dashed lines show
our bmits of error.

Since the scattering amplitudes of silicon and
carbon are positive, the narrowing of e& relative
to QPO gives a positive scattering amplitude fox' tri-
tium. Our data yielded the following values for
tritium:

aT=+4.7+ 0.8 F (bound),

aT=+8.5+0.2 F (free),

o..h =4' T' (free}= 1.5 x 0.5 b (total coherent

cross section) .
A measurement of the total scattering cross sec-

tion of tritium in the Angstrom region done by Ver-
tebnyi et al.' has yielded a value of 1.3+ 0.3 b.
Comparison of the total cross section with the co-
herent cross section indicates that the incoherent
scattering is quite small and that

+triplet —+singlet = 8 5+ 0 8 F (free) ~

A theoretical calculation of the n-T scattering
lengths has been made by Szydlik and Werntz, '
giving the free values
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the tritium scattering" amplitude were, respec-
tively,

an =6.21+ 0.04 F (bound),

a„= -3.740+ 0.003 F (bound} .

There is, at present, some controversy about the
value of ao measurements made by neutron mir-
ror vs other methods. An example is the mea-
surement of Koester. ' Using Koester's value of
6.7+ 0.1 F for aD results in a tritium coherent
scattering amplitude of 5.0 F (bound) and a total
coherent scattering cross section of 1.74 b.

*Work performed under the auspices of the U. S. Atom-
ic Energy Commission.
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The evaluation of the finite-range distorted-wave Born-approximation matrix elements is
shown to be considerably simplified when one uses Eckart bound-state wave functions. The
use of these wave functions to describe the stripping reaction ttc( Li, d)~60 is found to give
reasonable aggrement with the experimental results. Also, the use of the Eckart interaction
as a test of the various methods for the evaluation of matrix elements is demonstrated.

I. INTRODUCTION

Transfer processes have been a valuable tool of
nuclear spectroscopy. Single-particle-transfer re-
actions have provided much information about the
nuclear shell structure of various nuclei. In the
same manner, composite-particle transfer can
provide considerable insight into nucleon cluster-
ing in nuclei. %bile the composite-particle-trans-
fer reaction is capable of verifying various models
for the cluster wave functions, the actual calcula-
tions are very difficult because of the complexity
of the mathematics involved. Even in the cases
where the distorted-wave Born approximation
(DWBA) is thought to be valid, further approxima-
tions are usually required in order to evaluate the
necessary matrix elements.

The matrix elements associated with the plane-
wave Born approximation (PWBA) are much easier

to perform, but this method neglects the important
effects of both the nuclear and Coulomb distortions
of the scattering wave functions. In fact, it is the
Coulomb repulsion which probably insures the va-
lidity of the Born approximation at low energies.
If the incident and target particles have a classi-
cal distance-of-closest-approach larger than the
radius of their nuclear interactions, the matrix
elements of the interaction should be small and
the Born series convergent. This assumes that
the long-range Coulomb effects have been included
in the distorted waves. In this paper we deal pri-
marily with the DWBA calculations.

The calculation of the six-dimensional DWBA
matrix element can be reduced to the evaluation
of a sum of two-dimensional radial integrals by
first performing the angular integrations. How-
ever, one of the angular integrations is usually
done numerically for every set of values of the ra-


