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'.~ model-independent result for the p-y correlation in aDowed p decay is given, including.".il second-ordex-forbidden cox'rections. A suggested method for measurement of the Qrst-
class contribution to the induced-tensor form factox' is discussed,

I. INTRODUCTION

, Fecently, we have reported predictions for con-
'.xibutions to the induced-tensor term d, in allowed

nuclear P decay which arise from the conventional
(first-class) axial-vector current. ' Of course, if
second-class axial currents contribute to the
semileptonic weak decays, as suggested by one
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interpretation of experiments on mirror nuclei, '
they would make a substantial contribution to the
induced tensor. However, in Ref. 1 we showed
how, by using mirror transitions, the second-
class component d» can be separated out so that
a measurement of the first-class contribution
alone results. We found, correct to first order
in recoil and assuming the nuclear impulse ap-
proximation,

d, =x&pI[fgo, xi., /[ n&,

where A is the mass numbex', so that experimen-
tal measurement of dI would provide an interesting
test of the impulse approximation in recoil order.

However, Ref. 1 was incomplete in that second-
order-forbidden terms of the order q/m, where q
is the momentum transfer and m is the nucleon
mass, were included but second-order-forbidden
terms of the order q r', where r is the nuclear
radius, were neglected. This may not be R good
approximation, since all but one of the suggested
decays is K-forbidden, thus tending to enhance
matrix elements of operators with ~& 1 relative
to those of operatox's with ~~1. Here we report
the calculation of the suggested P-y and P-n cor-
relations including RQ second-order-forbidden
corrections in a model-independent form. Elec-
tromagnetic effects are again ignored except for
final-state Cou1omb interactions included in the

standard Fermi function. In Sec. II we define the
relevant form factors. Section DI gives our re-
sults, and Sec. jV discusses the significance of
these results for the transitions suggested in
Ref. 1.

II. DEFINITIONS

Vile sI1Rll Rssume the VRlldlty of the usual cux'-
rent-current interaction. Then the p-decay am-
plitude is given (for electron decay —modifications
suitable for positron decay will be included in the
final formulas) by

"c—ose, (p ~ V„+X„~~, )f~, (l)

where G„ is the weak-coupling constant (Q„m 2

= 10 '), 8c is the Cabibbo angle, a,nd P is the ma-
trix element of the lepton current,

&" = ~(P)y" (i+ysk(&) .
Let p„p„p, and 0 denote the four-momenta of
parent nucleus, daughter nucleus, electron, and
neutrino; and M, and M2 represent the parent and
daughter masses. We also define

p -p~+p2 y q-pj p2 —p+k y

M=-', (M, +M,),
We write for the amplitude of a general allowed

transition including all form factors up to second
order in the momentum transfer4

(((+I v„la„)P =(&~P (+ q ()5zz &„„,-( (' ((xq)",". "

+cd 2~ 2M C~lm ~ 9 +
4 p 2 ~5~~2

+ 2 Crim. 'g Q C12.2 l(( f 2 (q) + 2 Z 3..Z Q 19.$ 8 'g 2 (q) 0

n, n' n, n'

where J,J' are the spins of the parent and daugh-
ter nucleus, respectively, Rnd M, M' repxesent
the initial and final components of nuclear spin
Rlong soQ1e axis of quRntlzatlon, Hel e l epeated
Latin indices are summed from 1 to 3, while re-
peated Greek symbols imply a four-vector con-
traction with the metric goo =-g, , =1. The form
factors a, b, ... , j~ are, in general, functions of
the momentum. tx'ansfex' q .

Our results, given in the next section, will be
in terms of these 10 form factors and will be in-
dependent of specific nuclear models. However,

in order to express our form factors in more con-
ventional terms, we give here the impulse-approx-
imation predictions for the nuclear form factors.
We find for the vector current

a =g~MF + -,'q'g~M„2,

b =g~M~+ (g„+g„)MGT,
1e = -3MAg&M„2,

f= V 3 Mh g yM @,

g=-3M gag,4 2



where g~ =1 and g„=4.V are the vector and weak-
magnetism form factors for neutron decay, and

MF =&Pily~)ll ~& Mi =&Pllp&F iii ~&

MGT =&Pily~;(;II o&, M„.=&Pll p&g~~'il ~&,

duced-tensor form factors for neutron P decay,
and

M,~ =&piii@7~+o, xL,, ii a&,

Thus, a is just the usual Fermi form factor,
while b represents the weak-magnetism contribu-
tion. Form factors e and f make contributions to
various spectral functions which are formally of
order E/M, where E is the electron energy and
M is the nuclear mass. However, they are both
forbidden (to lowest order in recoil) on the con-
served-vector-current hypothesis (CVC).' g is an
isovector quadrupole term related, on the CVC
hypothesis, to the difference of quadrupole mo-
ments of parent and daughter states if n, P are
isotopic analogs.

For the axial-current terms, we have

c g„MGT+A ~„M,~+ ~(2n, +q )g„M»,

1
AM I, +~M~g+M +M~g+Mo ++gllMGT

jq =-3M g~M2

j~ = —3M g~M3„,2

where g„=1.23 andg» ='P are the axial and in-

Thus e i.s the usual Gamow-Teller form factor,
while d represents the induced-tensor contribu-
tion. We note that the first-class contributions
to d vanish between states which are exact isoto-
pic analogs, as required by symmetry considera-
tions. ' A, is the induced pseudoscalar and includes
a pion-pole term. ' j, and j, are additional anal
form factors, which may be inportant to our re-
sults, as they have 4K=2, 3, respectively.

III. RESULTS

Suppose a parent nucleus of spin J undergoes
an allowed p decay to a daughter nucleus of spin
J', which subsequently decays, emitting either a
photon or an a particle to a final nucleus of spin

We assume the parent nucleus to be unpolar-
ized, and we integrate over the neutrino direction,
considering the spectrum in its dependence on the
electron variables and on the photon (or e) direc-
tion. The latter is characterized by a unit vector
A" along the photon (or o.) momentum as measured
in the lab frame (rest frame of the parent). The
spectrum is then found to be'

de=E, {E,E) . , (E -E)'OEEEEQ,d() If(E)+E(E) ee(E)

where E(p) is the electron energy (momentum),

1 +m, H/2 M4
l+n. /2M

is the maximum electron energy, and E, (Z, E) is the usual Fermi function and accounts for the dominant
Coulomb effects. The spectral functions f, g, h are found to be

f(E&= ill'+ Ici'-- ~ilcl'+Rec*(b+d)l+- —(3isl'+5lcl'+»«*t)2 F 2 E
3:M 3 M

2
i c i' + Rec*(2b +d) —38ea*e —Rec*h

1 m~
3 ME 2M

g(E) =,M'„,

4-t'ai'+-.

' ici'il —,n„', ,,-(L)D-3M„„(l~i'+ ~ic I'il —~n, ,,', ,-(L)lk,

e(E)= (E) Iaeaaa)[[a['*Hea'(e-d)[ —0—, (e(eHea'E e
' +HeaefdeeHeaefd , e )-

-A z z,~ +Re c*g)(
H

0 + 3Rec*f+3Rec*jH H —I'~ ~+3Rec*jH
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where the upper (lower) signs refer to electron
(positron} decay and c* is the photon (n) velocity
in the center-of-ma'ss frame of the daughter nu-

cleus. The coefficients q«, Q~ ~, . . ., r~, ~„(L)
are given in Appendix A.

IV. DISCUSSION

In Ref. 1 we suggested a means to measure the
first-class component of the induced tensor via
measurement of P-y (or P-n) correlation coeffi-
cients for certain mirror transitions. For exam-
ple, if one measures the P-n correlation for the
decay of Li' to the J =2', 2.90-MeV excited state
of Be' and that for the decay of B' to the same lev-
el, then (assuming no second-class vector cur-
rents)

combination of E=1 and K =2 states, with ampli-
tudes y and 6, respectively. Thus, for Li', we
assume the ground state has an extra neutron in
the ¹lsson orbit having the form

~
Njl0) =

~
1 ~ 1 ~)

in the limit of zero deformation and a vacancy to
exist in the

~

1-,'1—',) (for K=1) or
~

1 —', 1--,') (for
K =2) proton orbits. Harmonic-oscillator wave
functions are used with radius parameter o. =O.V5.

For a deformation parameter Is =0.3, as sug-
gested by nearby quadrupole moments, we find

= 7)(10&— »- =1.q)&102-6 5
A2c y ' Amc y

'

M ~—'= 2.5+7.5—
Ac m M~T

so that

E 1 M ~ 5 Eo-2E 5 Bo+qE

-M (,, ~
c~

' —

Record,

-Rec*j,&~
cl 2

6 „,. 2S, +5Z
't(36)'~' s 2M

If the terms of second order in momentum trans-
fer are omitted, as in Ref. 1, an experimental
measure of M, ~ results (assuming

~ c~ to be known

from ft values). However, when O(q r ) terms are
included there are two new features. First, we

pick up additional contributions proportional to
Rec*j„Rec*j,and, secondly, d, is no longer just
the interesting term Ag„M, ~ but receives first-
c.lass contributions also from M„and M, „.

In order to see whether experimental measure-
ment of M, ~ is still feasible, we have, for mass
8, calculated the relevant reduced matrix elements
in the Nilsson model assuming the daughter state
to belong to a pure rotational band with K = 0 and
the parent nucleus (Li' or B') to be in a linear

(8)

The experiments of Nordberg, Barnes, and Mor-
inigo were performed with E = 11 MeV, whence
the terms in the unknown mixing ratio 6/y tend to
cancel somewhat, but still yield a result which
is of the same order as M,~/MGT. For mass 8

then, n+ can yield only a rough estimate of d» and
in general the contribution of terms in j, and/or

j, can obscure completely the, measurement of
M,~. The cases of masses 24 and 28 which were
suggested in Ref. 1 appear especially dubious
when O(q'r') terms are included, since in these
cases, involving 4K =4, 3, respectively, j, is ex-
pected to play a dominant role. %e conclude that
although the nuclear impulse approximation pro-
duces a first-class contribution to the induced
tensor, it is a difficult proposition to verify this
prediction experimentally unless the absence of
second-class currents is assumed, in which case
a measurement of d itself —without separation of
first-class and second-class components -is
sufficient. '

APPENDIX A

We here quote values for the parameters used in Eq. (6). We find, for P -a correlations

L(L + 1)(2L + 1) '12 (2Z' —1)(2J'+1)(2J'+ 3)
(2L —1)(2I.+ 3) J'(Z'+.1)

Explicit forms of r ~ ~„(L) for L =1, 2 are given in Ref. 1.
Also, we have

-J'/(2J'+ 3), Z =J'+ 1

1,
-(J'+ 1)/(2Z' - 1), J=Z' - 1;

(Al)

(A2}



-(2J' —l)[J'(J'+ 2)]'i"W2(u+s)(u -l)
(2J'+ 3)[(J'- l)(J'+ l.}]'+,

[J'(u +s)/(J'-l)(u'+s)j &, J=J +l
Jl'0 ' (J +2)(J l) (3/2pys J p
ss (u'- l)(u'+3)

[(J'+l}(2J' s)/(J'+2)(2J' i)]'&' J=J

(A2)

For P-y correlations rz, z, (I ) is multiplied by a factor l -3/I (I + l) for E(I ) or M(I ) multipole radia-
tion.
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