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A theory of photonuclear reactions is formulated using a projection-operator formalism.
We obtain a T matrix describing a direct photoeffect and a resonance reaction. By intro-
ducing doorway and secondary-doorway states, we can conveniently study the structure and
energy dependence of the T matrix.

The formalism is applied to the analysis of the photonuclear cross sections of O~~. The
(y,n) and {y,p) cross sections are calculated. We consider those channels in which the re-
sidual nucleus- is left in the ground state (J~ =3 ) or the third excited state (J~ =23 ). In the
shell-model formulation, the doorways are taken to be mixtures of 1p-1h states, which are
constructed in the Tamm-Dancoff approximation. The secondary doorways are assumed to
be 3p-3h states, which are constructed in the interacting-boson approximation of Iachello
and Feshbach. By mixing the doorways and the secondary doorways, we obtain a micro-
scopic description of the compound states formed in the reactions. The doorways are shown
to be responsible for the gross structure of the giant dipole resonances, while their cou-
plings to the secondary doorways give rise to intermediate structure. A particular model
of the 3p-3h states, together with certain simpli6cations in the description of the reaction,
reproduces some of the experimental data (the photodisintegration to the J~ =~& ground state)
to a surprising degree of accuracy,

The calculation evidently shows the importance of the 3p-3h admixture in the low-lying
odd-parity states of 0~6. Our results also give strong support to assigning E1 nature to the
resonances at 21.0, 22.3, 23.1, 24.2, 25.2, and 25.6 MeV.

I. INTRODUCTION

Photonuclear disintegration of 0"has been a
very interesting subject for both experimental and
theoretical investigations. The gross features of
the cross sections have long been explained as due
to excitations of one-particle-one-hole (lp-lh)
configurations. ' These calculations, despite their
differences, come to essentially the same conclu-
sions, and suffer from the same shortcomings.
In the giant dipole region (20-26 MeV), theories
predict two major resonances, at 22.3 and 24.5

MeV, which carry almost all the dipole sum. '
This is in contrast with the experimental observa-
tions; the cross sections show a much more com-
plex structUre. Experimentally, there are at least
five distinct resonances in this region; roughly
they occur at 21, 22, 23, 24, and 25 MeV in both
o(y, n) ' and a(y, P).' For convenience, we shall
call such features "intermediate structure" and
reserve the term "fine structure" for the struc-
ture appearing with even higher resolution. ' Ex-
perimentally, such structure is so weG established
that the simple 1p-1h calculations ~ay be con-
sidered inadequate and we require a more sophis-

ticated theoretical interpretation.
A natural extension of the calculations is, of

course, the inclusion of more complicated nuclear
excitations in the reaction formalism. ' Such at-
tempts have already been made, for example, in
the work of Qillet„Melkanoff, and Haynal, ' and
Balashov and Kabachnik, ' who extended the calcu-
lation to include 2p-2h configur'ations. These cal-
culations use a microscopic description, but are
somewhat schematic and qualitative. Qn the other
hand, the dynamic collective model has been em-
ployed by several authors' who included the cou-
pling of the dipole states to the quadrupole surface
vibrations of the nucleus. These collective de-
scriptions in their simplest form may not be rele-
vant to the oxygen nucleus.

In the following we propose an alternative micro-
scopic interpretation of the intermediate structure
within nuclear shell theory. The problems which
we face are twofold: (i) the selection of the nu-
clear compound states necessary for a sufficiently
complete calculation, and (ii) the possible assump-
tions which we can make for the nuclear reaction
mechanisms.

The selection of the relevant compound states in
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the energy region of intex'est is not trivial. To
begin with, we make some observations concern-
ing the low-lying states of 0". The ground state
of 0"has been shown by shell-model calculations
to contain a large component of deformed Pp-2h
and some 4p-4h configurations mixed with the
spherical (closed-shell) configuration. ' lt is not
unreasonable to expect that the low-lying negative-
parity states consist mainly of lp-1h and Sp-Sh
configurations. This statement is certainly true
if we restxict our model space to the 2s-1d par-
ticle states and the 1p hole states in 0'6. It is al-
so clear fxom the experimental data'4'" that the
compound states responsible for the intex mediate
structure are probably of electric dipole nature
(Z'= 1,T = 1). We therefore wish to interpret the
compound states in the dipole region as mainly
composed of (J=1,T = 1) lp-lh and Sp-Sh config-
urations. "

For a simple presentation of the dynamics in-
volved in the reaction processes, we find it use-
ful to use the concept of doorway states. " For our
purpose, we find it convenient to define primary
doorways and secondary doorways. These defini-
tions depend upon the channels in question and the
interactions (e.g. , electromagnetic or nuclear)
coupling the compound states to. the channels.
Basically, we define Primly doorways to be
states which are strongly coupled to the open chan-
nels (nucleon or photon) and the secondary door-
svays are those states which are important in the
coupling of the primary doorways to the space of
even more complex compound states. In the case
of photonuclear reactions, we have the special cir-
eun1stance thRt the doorways fox' photon Rbsox'ptlon
(lp-1h states) are generally different from the
doorways for nucleon emission. In this work we
consider only the exit channels for which we may
use the sa~e doorways for both entrance and exit
channels. We will drop the designation "primary"
ln oux' discussion Rnd speRk only of doorways and
secondary doorways. (The latter states have on
occasion been called "hallways. ") Being strongly
mixed with 1p-1h states, some Sp-Sh states will
be chosen to be the secondary doorways.

The doorways and the secondary doorways are
not experimentally observable; only the compound
states (mixture of the doorways, secondary door-
ways, and more complex states) are observed at
the resonance energies. The doorway concept,
however, is very useful in this reaction theory.

In Sec. II, we present the formalism pf photonu-
clear reactions, formulated in terms of the door-
ways and the secondary doorways. A projection
operator technique" is used throughout. We sepa-
rate our Hilbert space into P (continuum), d (door-
way}, q (secondary doorway), and X subspaces,

and obtain the 7.
' matrix with a simple parametriza-

tion of the X space. The T matrix contains a di-
x eet term and a complicated resonance term. The
use of the doorway hypothesis greatly simplifies
the structure of the T matrix.

The shell-model wave functions for various
states are constructed in Sec. III. The P space

I
is essentially described by continuum, single-
particle states of a %oods-Saxon potential. The
1p-1h doorways are constructed, in the Tamm- .

Dancoff approximation (TDA). To construct the
eompbeated Sp-Sh states we employ a simplified
version of the interacting-boson approximation of
Iachello and Feshbach" which takes into account
the particle-particle and hole-hole interactions,
in addition to the particle-hole interaction used to
construct the 1p-1h bosons. The coupling of the
doorways and secondary doorways is also dis-
cussed in detail. Finally, we obtain the compound
nuclear states by a diagonalization of the energy
matrix in the space of both the doorway and the
secondary-doorway states.

%e may point out that the doorways Rnd second-
ary doorways are bound states, in our model de-
scription, whose energies are in the continuum
of the actual nuclear Hamiltonian. Their unbound
(resonance} nature is restored when their eou-
plings to the continuum space are incorporated;
such coupling endows each doorway and secondary
doorway an energy shift and a width.

The numerical results based on the shell-model
formulation are pxesented in Sec. IV. The gross
structure of the ground-state cross section 0"-.
(y, n, )0"is reproduced, in a trial calculation, by
including only the doorways. We then calculate
the energy-dependent compound shifts and widths
of the doorways which, when incorporated into the
T matrix, reproduce the intermediate structure. .

The agreement of this calculation with experiment
is excellent. Also we calculate the photoneutron
reaction 0"(y,n)0"* and photoproton reaction0"(y, P)N"* leading to the third excited state
(Z' = —', ) of the residual nucleus.

Concluding remarks are contained in Sec. V.
A discussion is also given concerning the experi-
mental support for the parametxization of the X
space. This may be of interest for further inves-
tigations.

II. FORMALISM OF PHOTONUCLEAR

REACTIONS

The formal theory of photonuclear reactions,
in terms of projection operators, has been pre-
viously discussed in the simple doorway-state
language. '4 Such formalism was applied to repro-
duce the gross structure of the giant dipole reso-
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nance of 0"." We are, however, interested in
explaining the intermediate structure existing in
this region. For an extension of the doorway-
state formalism, we have to include explicitly the
coupling of the doorways to more complicated con-
figurations. The concept of such doorway-com-
pound-state coupling has already been employed
by Feshbach, Kerman, and I emmer, "in their
discussion of the "intermediate structure" asso-
ciated with the doorways. In the following formu-
lation we also introduce several new features, in-
cluding the parametrization of the effects of the
neglected parts of the nuclear Hilbert space (the
X space) and the definition of an intermediate-
resolution cross section.

In first-order perturbation theory, the T matrix
of interest can be written as

T =&+&-&1jfyl G&, (l)

where
l G) is the initial (ground) state of the target

nucleus, and l4~ l) is a continuum state. The
electromagnetic interaction is II„. We are only
concerned with single-nucleon-emission process-
es to a limited number of open channels; other
channels are treated only indirectly.

I.et the nuclear Hamiltonian be II. Vfe have the
Schrodinger equation,

(z-a)lq'-')=G, (2)

states of the Q space which are thought to have
important coupling to the states of the d space. )
The definition of some of these operators and
their properties are simply given in Table I. We
should particularly note that the P space contains
only the open channels which we wish to treat in
detail, thus the X space will contain many other
open channels.

Following the standard techniques, we obtain
the following set of coupled equations":

(z -Xpp) lP4') =Xp, ld@),

(E-X„)ld@)=X, lPe),
where Xpp=PXP, Xpg=PXd, and lPC) =Pl+~ '),
l
d4') =dl@~ ~), etc. The effective Hamiltonian X

is defined as

We now have to solve the coupled equations (3) and

(4). The formal solution can be obtained by alge-
braic methods which yield

+~p Xpd@ X X 8(-)X +@pl 4
ue — up8p pu

describing a time-independent state of the nucleus
at energy E. Following the projection-operator
formalism of Feshbach, ""we proceed to classify
the states of our nuclear Hilbert space according
to their configurations. We make the separation
into the one-nucleon continuum space (P), the
doorway space (d), and the complicated space (Q),
which will be later separated into the secondary-
doorway space (q) and the X space. (Recall that
the secondary doorways are identified as those

/

where the homogeneous solutions satisfy

(z-X )lq,'-')=G.

The Green's function Bp is defined by

Bp' '=(Z —X~ —ie) ',
or equivalently,

g&-&= +i~a(Z X ),z-x~

(8)

TABLE I. Definition of the projection operators.

Operator Subspace Description of the configuration

Completeness

Orthogonality

Gpen-channel space
{continuum space)

Doorway spa, ce

Complicated
space

P+d+Q =1

Pd =dP =0; PQ =QP =0; Qd =dQ =0

A continuum nucleon in one of
the exit channels to be treated
in detail.

Simple excited states strongly
coupled to the incident photon
and outgoing nucleon channels.
{one-particle —one-hale states)

All the possible configurations
vrhich are not included in either
P or d space.
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where 6' indicates the. principal value. To solve
for l

d)II
& in a simple way, we compare the. follow-

ing equation, obtained from Eq. (3),

I pq&= Is.'-'& s,'-'x„ld~&, (10}

with Eq. (6). We immediately get the result

I
d~&=(E &-uu &-ups~1 'x~n) '&apl''. ') (»)

If the total wave function is written in the following
form

T=((I el+(dq l)x, lo&,

where we define a modified. photon-intera'etion
opex ator,

(14)

)e' ':) ()+ =P)())'e)+)de)),
By substlbItIGn8 vie obtalH. the T IHatrlx for pboto. -

n)uclem. . react&ons,

T =&q,'-'lx,
l
o&+(y&-&le„(z-x„x„8&&x„)- (x, +x„,g,"x,)l o&. (15)

This is a formal expression; the operators. in-
volved are complicated.

In Eq. (15) we have formally suppressed the de-
pendence of the T matrix on the Q space; this is
convenient, a.s the Q space will only be treated in
an approximate fashion. We now introduce a com-
plete set of eigenstates in the d space, (Q~j, which.
is defined by

(E~ -0'a) I tu& =-o.

The introduction of the doorway states in Eq. (15)
leads to the T matrix

,~ &e'.-'Ix., l e,&[()e.lx, x.,s."x,
l 0&]

z-z, -w~-w,

where w'e have written the expression so as to fa-
cilitate the introduction of the (Q~) as doorways
for the photonuclear reaction. In Eq. (17}, we
have assumed that the doorway-do)orway-couplings
are d'iagonal, to simplify the inverse operator in
Eq. (15). The continulm and the compound mix
ings a,re, defined as

w'= &V.lx..e."x„l~.&, (Ig)

)F,= 4:))iq . H:, gj 5,)-;

respectively.
'The continuum mixing is separated: into a ecg-

tinumm sA)ift b;~ and a cgntinuum ggidtj'I, I'~ such that

I.

in the calculation of W~. The Q space contains
complicated bound states and iso the open. chan-
nels not included in the P space. Formally we
can define a complete set of states in the Q space,

(21)

The compound: coupling is then

~ &0 u llf uol +-o& (@ol Ifg~ I @g)

where the summation also implies integration
over the continuous spectrum of 0:@.

Mos't Sta'tes ln the Q space: are. too c)ompllcat&1
for any detailed theorehcal consideration. 13e-
pending on the nature of the doorways, a limited
set of Q states may be chosen as secondary door-
ways. The secondary doorways are chosen such:
that their couplings. to the doorways are important. .
They are the "doorways" connecting our primary
doorways to the ~est of the Q space. To introduce
the secondary doorways, we may formally extract
from the Q space a subspace, which we define as
the q space;, the rest of the Q space is then the X
space (@=q+X). Fellowing the definition of the
doorways, Eq„. (16), we may define the secondary
doorways (P,) by

(E, -H„)l y,&=o ..
If w'e assume that )I),.and Q, . are not coupled

through the X space- we may. write the- cempound
mixing as (see Appendix A)

w~ ~ &e,lIf..le.&&a,lff I~.&„
W~=n„—i 1~/2.*

(20) (24)

We'have to introduce the Q-space wave functions where b.,—i 1', /2 parametrizes the couplings of
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the secondary doorways to the X space. The cou-
pling of the doorways to the X space is parame-
trized by the quantity, b» i—I'»/2.

Finally we may define the compound shifts and
avidths as

action with the target ground state.
Finally we arrive at the simplest form of the T

matrix, which we shall employ in the calculation
of the photonuclear cross sections,

(e.lff..l e,&(e,llf,.l e,& (25)
T, ( ( )(E (()&,~ &&o'I~P, I &u&&@ul~yI»~ E-E, -a, -S,+f,(1,+r»)/2'

The matrix now assumes the following form,

&+ollfoplto&=o ' (30)

the latter assumption is reasonable for the P"
ca,se where we include in the P space only channels
in which the residual nucleus, 0"or N", is as-
sumed to be in a single-hole state (p», ' or p, ~, ').
Under such a hypothesis, the states f Q,) act as
the doorways for both the incident photon and the
open nucleon channels. Furthermore we assume
that

& ~, l~, I
o&» & ~, l~,.s,'-'~„l o&. (31)

Equation (31) should be well satisfied in the ease
where there is no single-particle resonance in the
P space. Under the assumption of Eq. (31), the
doorways are formed directly by the photon inter-

,~ Q.' 'laic„I e.)[&a, laic, ~.,8."~,I0&]
E Eg ——&g —d»+ i (I'~ + I'»)/2

(26)

where we have introduced the shift and width pa-
rameters,

(27)

(28)

Equation (26) gives us the T matrix in terms of the
continuum states, the doorways, and the second-.
ary doorways as well as the parameters A„r„
4x, and rx. Although we have made use of the
usual doorway terminology, the doorway structure
in Eq. (26) is only apparent. The operators in the
expression involve complete (and very complicated)
information about the entire reaction process.
Seeking a simplified version of the T matrix, we
would like to.introduce a hypothesis for the, .inter-
action mechanisms.

We assume that the Q space (therefore the sec-
ondary doorways) can not be formed directly by
the photon interaction with the target and that the

Q space is not directly connected to the P space
by nuclear for'ces. Specifically, we make the sim-
plifying assumptions,

(29)

and

(82)

Equation (32) is the central result of this section.
Assuming weak doorway-doorway coupling through
the continuum and the q space, the sum in Eq. (32)
has been reduced to a single sum over isolated
doorways.

The T matrix we obtain contains a direct term
and a resonance term. The direct interaction is
generally a smooth function of energy if there are
no single-particle resonances. The resonance
term may have complicated energy dependence.
If the shift h,„and the width r& are smooth func-
tions of energy, we see that the resonances, for
isolated doorways, would occur near E, +b, +Ax
and have widths I'„+I'x. This is the case for the
intermediate structure generally discussed. For
the energy averaging we have in mind, the situa-
tion is different. The L„and I'~ in Eq. (82) have

strong energy dependence due to the compound

mixing, 8'„(E). This feature will give rise to
additional resonances and can completely change
the resonance structure. The resonarice pattern
becomes dependent, for known E„'s and E,'s, upon
a complete evaluation of the coupling strengths be-
tween

~ Q~) and
~ P,). That is, the matrix elements

defining W'„must be known.
In our application to the photonuclear giant reso-

nance, we assume that the
~ Q~) are responsible

for the gross structure of the giant-resonance
cross section. The intermediate structure re-
vealed by better resot, ution is then interpreted as
due to the coupling of the doorways to nearby,
more complicated, excitations

~ Q, ).
The simplification we have achieved with the

doorway hypothesis [and Eq. (31)] should not be
overlooked. We have eliminated all the compli-
cated energy dependence due to the propagator
(E -H„) ' everywhere except in the term W, (E)

At this point it is useful to review the assump-
tions that have gone into the derivation of Eq. (32)
from the exact formal expression, Eq. (15). The
introduction of doorways to describe the photoab-
sorption process is expected to be an excellent ap-
proximation in. the resonance region. If the 9"
ground state is taken to be a doubly closed shell,
the appropriate doorways are linear combinations
of particle-hole states. (If ground-state correla-
tions are included, it is necessary to consider ex-
citation of particle-hole modes with respect to the
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correlated ground state. However, for simplicity
we neglect ground-state correlation effects; these
effects deserve further study. )

Unlike the case of nucleon elastic scattering,
the discussion of photodisintegration from a "door-
way" point of view requires the introduction of two

types of doorways, , doorways for the photoabsorp-
tion and doorways for nucleon emission. For the
example we have chosen, it is natural to choose
the same doorways for both these processes.
This choice is based on the assumed structure of
the final states reached in the reaction, the sin-
gle-hole states in 9"or N". If the states re-
sponsible for the intermediate structure (the sec-
ondary doorways) are indeed Sp-Sh states, simple
considerations show that these states are not cou-
pled to the final channels (one continuum particle
and one hole), if, as usual, the Hamiltonian con-
tains only two-body forces.

The assumption of the same doorways for both
the entrance and exit channel, in addition to sim-
plifying the calculation, has the following impor-
tant consequence. Inspection of Eq. (32), for ex-
ample, shows that the angular distribution is gov-
erned by the weakly energy-dependent direct pro-
cess and the resonant doorway-state term. The
magnitude of the resonant term is modified by the
relatively rapid energy dependence of W~, partic-
ularly that of b,~ and I"~. (In addition, in the door-
way model, there is further weak energy depen-
dence of the resonant term due to the energy de-
pendence of the nucleon escape amplitudes of the
doorway. )

If we could limit ourselves to E1 absorption,
then we couM conclude that where the resonant
part of the T matrix dominates the direct part,
that is away from the minima of the resonant part,
the shape of the angular distribution should be ba, -
sically energy-independent. In general, at the
minima of the resonant term one may have a some-
what different angular distribution as compared to
that at the peaks, since in the former case one has
relatively more significant contributions from the
direct term. (The direct term will have a some-
what different angular distribution than the reso-
nant term. ) This interplay between the direct and
reson'ant amplitudes can also be considered if one
tries to explain intermediate structure in the po-
larization of the nucleons emitted in the photore-
action [see Cole, Firk, and Phillips in Ref. 33].

The experimental studies of Jury, Hewitt, and
McNeil' and Baglin and Thompson, 4 however, in-
dicate important effects in the angular distribution
due to interference of various multipolarities.
Further information is needed concerning the M1
and E2 amplitudes in the resonance region before
we can draw any definite conclusions concerning

the validity of our doorway hypothesis for the cal-
culation of the E1 amplitudes. It is possible that
the 'addition of the dA'ect E2 amplitude to &he E1
amplitudes calculated here, . might be sufficient
to explain most of the characteristics of the ob-
served angular distributions. Further theoretical
study of the E2 and M1 amplitudes in the reso-
nance region are needed before one attempts to
fit all the details of the angular distribution in
that region.

The foregoing comments concerning the inter-
play of the direct and resonant amplitudes are
made for a single E1 doorway. For the photodis-
integration of 0" there are two important door-
ways. If it turns out that these doorways have
somewhat different ratios of the amplitudes for
s- and d-wave emission, the foregoing comments
would then apply to the intermediate structure in
the vicinity of each doorway.

If we now consider other final channels, the as-
sumption that we have the same doorways for the
entrance and exit channels is no longer valid. As
an example, we might consider final channels that
consist of a continuum particle plus 1p-2h states.
For such channels the 1p-1h states (the electro-
magnetic doorways) and the Sp-Sh states could be
doorways for nucleon emission. In this case, the
assumption expressed by Eq. (30) does not hold
for the 3p-3h states. If the states

~ Q~) are still
taken to be the 1p-1h electromagnetic doorways,
the coupling to the final channels is governed by
the effective interaction of Eq. (5) rather than by
Hp„as in Eq. (32). Thus I", and A~ will take on a
more rapid energy dependence. Also, the com-
ments made above concerning the single-doorway
dominance of the angular distribution will no long-
er be valid and the various intermediate-structure
peaks could have different angular distributions,
depending in detail on their 1p-1h and Sp-Sh struc-
ture. In this more complicated situation it may be
simpler to introduce mixtures of 1p-1h and Sp-Sh
states as doorways rather than the 1p-1h doorways
discussed in the foregoing.

With these comments in mind we return to the
discussion of the T matrix of Eq. (32). Related to
this T matrix we shall define an intermediate-~es-
otution cross section oz(E). We wish to treat the
quantities b,„, I"„, A„and I', as parameters in the
T matrix. As shown in Appendix A, the reduction
to the T matrix form of Eq. (32) with weakly ener-
gy-dePendent Parameters (6„, I'„, 6„ I',) is only
possible if one considers that some energy averag-
ing over the fine structure has been made. Some
fine structure would be due to the discrete com-
plicated states of the X space (see Appendix A)
and would be observed in experiments of greater
resolution than are presently available (see, how-



1904 W. L. WANG AND C. M. SHAKIN

ever, Ref. 5). Let us assume that we carry out
the averaging over the fine structure wwith an ener-
gy resolution 5E. We assume that the value of 5E
is chosen as small as possible, but not so small
as to leave any significant peaks in the cross sec-
tion that cannot be explained at the level of com-
plication contained in our q-space description.
We will term the resulting energy-averaged T ma-
trix of Eq. (32} the intermediate resolu-tion T ma-
trix. (Examples of a gross-resolution T matrix
can be found in the 1p-1h calculation with a com-
plex optical potential. ) From this T matrix we

may define an intermediate-resolution cross sec-
tion. At this stage we assume that the fluctuation
terms are negligible.

Now we should point out that the energy resolu-
tion of the experiments we are discussing will
probably correspond to a resolution AE which is
greater than 6E. We can make contact with ex-
periment by explicitly averaging the intermediate-
resolution crass sectile with an experimental res-
olution function. In our application we choose a
Lorentzian resolution function,

EE
2w (E E')'+ (AE)'j4 '

and the averaged cross section c(E) is given by

show, the gross structure can be interpreted as
due to these excitations. We shall take the door-
way configurations to be of this type. We believe
that the intermediate structure is due to the mix-
ing of 3p-3h states (taken to be the secondary
doorways) with the doorways. Generally 3p-3h
states have energies much higher than the dipole
states and are thus believed to be unimportant in
the splitting of the giant resonance. However we
will see that it is possible to find many Sp-Sh
states in the giant-resonance region. We will u'se

the interacting-boson approximation (IBA) of
Iachello and Feshbach, which we shall describe
briefly below, to construct our secondary door-
ways. In this section we will review some aspects
of doorway calculations and then indicate how the
IBA may be used for our problem. We also dis-
cuss the coupling between the doorways and the
secondary doorways in detail.

A. Continuum Space (Ref. 18)

The operator II~ governs the motion of a nucle-
on in an open channel. The eigenstates of II~ de-
scribe a continuum nucleon moving in a field creat-
ed by the residual nucleus. We make a prelimi-
nary definition of a channel vector by

r(z) = fr(z )p(zz, )dz', , (34)
(35)

where ol(E) is the intermediate-resolution cross
section. The definition of cz(E) and its relation to
the parameters are discussed in detail in Appen-
dix A.

We note that the parameters in the T matrix
should account for all the neglected nuclear effects
(energy averaging and neglected states) on the
cross section (see Appendix A}. It is therefore
important to find a criterion which will determine
these parameters. Formally we impose the con-
dition that the parameters should be so chosen as
to reproduce .the experimental value of the energy-
integratedr cross section.

In conclusion, we have developed a projection-
operator formalism in which intermediate struc-
ture in phetonuciear cross sections can be dis-
cussed in terms of doorways and secondary door-
ways. We shaU begin to utili. ze a specific nuclear
model —the nuclear shell model —to construct the
wave functions for each apace.

III. SHELKAfODEK, FORMULATION

The nuclear shell model has been used in the
analysis of the giant dipole resonance of 0'6.
Most of the calculations are„however, , restricted
to 1p-1h configurations. Aa these calculations

where we have characterized the residual nucleus
by l AIM~). Here X and. I are the state label and

the total angular momentum (with projection M, )
of the residual nucleus. The operator a creates
a spin- & particle with orbital angular momentum

l, total angular momentum j, at distance x. The
total angular momentum j (with. projection m) is
coupled to I to form the channel spin J (with pro
jection M). C"~,„is a Clebsch-Gordan cOeffieient.
We note that the channel vector lr, c) is not orthog-
onal to the bound states of the A-particle system,
since a~ may create a particle in a bound orbital.
Therefore lx, c) cannot be used to define our pro-
jection operator P for the continuum space. We
have to introduce the channel vectors lr, c), which
are related to lr, c) by

where l I)) denotes the single-particle bound orbit-
als, occupied. and unoccupied, with the same (l,j)
quantum numbers as those of the continuum nu-

cleon. In terms of the channel vectors lr, c), the

projection operator may be written as
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Pl%",")=g Jf
"' '- Ir , c).r'dr, (»)

c

where the amplitude v,' s'{x) is the solution of a sin-
gle-particle Schrodinger equation,

The effective Hamiltonian h, (r) is a local approxi-
mation, diagonal in the channel labels, to the non-
local operator,

a,„(r,~') =(r, c( If ( r', c'). (4o)

A reasonable guess for h, (r} is obtained by identi-
fying this operator with a real optical-model
Hamiltonian. Equation (89) becomes

d 2 l(l +1)
+U»{r) „,,( ) =o, (41)

where U(x») includes the nuclear and the Coulomb
potentials. In Eq. (41) we have restored the lj
label for the scattering nucleon. We define 6,'& ~
=e '~»~'e„.s(r}, where 5,~(E) is the phase shift
due to the potential U»(r) Bein.g normalized on
energy, the single-particle wave function has the
following asymptotic expression:

(42)

The main approximation we have made here is
the introduction of an average potential, which is
local and does not couple different channels. The
neglect of channel-channel coupling is reasonable
if there is no single-particle resonance in the P
space. In ease such resonance exists, we have
to redefine our P space according to the scheme
we have proposed previously. " The resulting P
space will then contain no resonance.

We next write the P-space Green's function in
the channel representation, '""

and satisfies the condition P'= P. The P space
thus defined is orthogonal to the doorway and the
secondary-doorway spaces. An eigenstate of II»
can then be represented in terms of the channel
vectors. In case of the absence of channel-channel
coupling by II~„, we may write the continuum wave
function in channel c as (~, c( b)(b[~', c)

E -E~ (46)

where r& and x& indicate the greater and the less-
er of the set (r, r'). The last term in Eq. (45)
ser~es to subtract all the bound-state terms in
the Green's function and makes its appearance
because of the use of. the channel vectors is, c)
rather than

~ x, c}in the definition of P and in Eqs.
(SV) and (44). The Green's function is to be modi-
fied according to Ref. 19, if any single-particle
resonance exists in the P space.

8. Doorway Space

Ne have defined the doorways for our problem
as states of 1p-1h type. These states are excited
from the ground state by the electromagnetic in-
teraction and are also strongly coupled to the P
space. These 1p-1h doorway configurations are
mixed through the residual p-h interactions. The
p-h interaction may be simply taken into account
in the usual TDA.

First we write the doorway Hamiltonian Hz~,

where Ho is the sum of the kinetic and potential
energies of the independent particles. V is the
residual interaction. In Eq. (46}we see that the
projected Hamiltonian II« is identical to the Ham-
iltonian II, as long as we restrict the configura-
tions to be in the d space. We may define a par-
ticle-hole state with good JT values as

~ ( }Jg-mm+ t -mgm

a„„„,a„

In terms of regular and irregular solutions of Eq.
(41), v, s(x) and w„s(w), respectively, the Green's
function 1s

gg,+g(&y & ) to, @(&&)
[

. { }
~

{ )]cg & cg

where the single-particle Green's function
g+s&(r, r') is defined as

"'(r, r') 1= r, c
Z -H~~+ ie (44)

where M and 7.', are the projections of J and T,
respectively. %e shall introduce the convention
that a symbol j represents all the single-particle
quantum numbers if used inside a state vector and
if used as an index without accompanying m or l
values. Otherwise j represents only the total an-
gular momentum of a single particle. We shall
also neglect the projections (M, T,) in our short-
hand notation for Eq. (4V}: ~(j,j, ')ZT).
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For a simple calculation of the particle-hole
interaction, we choose the zero-range spin-depen-
dent interaction"

V,.»
=-Vo(n', + pn, )5(r; -r,.),

where Vp is the strength of the interaction, re-
lated to the oscillator parameter b by

p is the singlet-to-triplet ratio, and r, and n', are
the singlet and triplet spin projection operators.
We write the particle-hole matrix element as

(i pi » '~~l vs 'pi » '~T) = Iri(i vi »i »i ») Fo ~

(5o)

Vo =8.5 MeV~4mb3, (49) where the coefficient M(j j „j'j „') depends on the

geometric factors:

( )»»+&»+»
IrI(i,i »i ',i »}=

4
[I+(-}'~"""~""]([j] [i»] [i'] [i»] )'"

jpj] ~ j'p jh~ ( )»»+»2+ I
x ~ (1 —26ro}+ [1-p —2&~(1+p)]-2o a

(51)

The large round brackets denote the Wigner 3-j
symbols, " [j]=-2j+1, and Fo is the radial inte-
gral of single-particle wave functions:

~V f
F0 =

4 Jl v» g (r}v» i (r) v»» j»(r) v»»»(»r r)dr '
4m p'p p'p

A

Dy (y, ) = (S4n)»»2(iky)g —T» r,. Y'»q(r";),

multiplied by a photon normalization factor
(2nft/&dL')'" for a volume L'. Here kz is the wave
number of the photon with energy A+. Also, 7, is
the isospiri operator with eigenvalue +1 for neu-
trons and -1 for protons. The matrix element of
interest is given as'"'4

(53)

2@k
(j j»'JTI Hy(p, ) I 0)=, (iky)Np»I05~, 5„„,

(52)
%'e next turn to the excitation of the particle-

hole states by photon interaction (see, for exam-
ple, the text of Eisenberg and Greinern'). In the
long-wavelength limit, we may write the photon-
nucleus interaction, II&, as the dipole operator,

the integral is

I, = v, , (r)rv, „,„(r)dr. .
'p &p

Following Lemmer and Shakin, 'o we define the
form factors for the doorways,

f..()=&., Ivl~. &.

Also it is useful to define

(57)

f.,(r) = (ik, )-'(r, cia, (t ) I o&. (58)

Recalling E»ls. (50) and (54), we find that the form
factors may be obtained from the following un-

projected form factors,

(r, cl VI 4,) =Cl';, 2 C,', Id(i pi »~'pi gr '
X z0 n n Jp~b

p h

x[v»»~»(r)v», », (r}v»(»(,(r)], (59)
I

where the C~~. z~ are the expansion coefficients of
doorways,

14,)= Z c,', li',i»'&»,
I )I php' h

and

(54) (r, clD, (» ) l»=ci'i, &p»v»„»„(r}, (61)

where the geometric factor Np„ is

2i j./2 l„jp j„

(55)

The curly bracket denotes the 6-j symbol, "and

if use is made of E»I. (36). The Clebsch-Gordan
coefficients in Eqs. (59) and (61}account for the

coupling and the recoupling of the channels in the

isospin space. Their appearance is due to the fact
that we do not couple the continuum states to good
iso spin.

Examples of the application of the form factors
are seen in the expressions for the following .
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matrix elements:

and

(68)

The form factors, Eq. (5V), we have defined dif-
fer from those of Lemmer and' Shakinm by the pro-
jection prescribed by Eq. (36), which was neces-
sary to make our channel vectors orthogonal to
the bound orbitals.

C. Secomdary~onvay Space

We now have to construct the secondary door-
ways and evaluate their couplings to the doorways.
Because of the shell structure of the nucleus under
study, the secondary doorways are chosen to be
3p-3h states. The construction of such complicat-
ed states in a microscopic theory is usually pro-
hibitively complicated. For our calculation we

find the IBA" quite useful. It provides us a sys-
tematic construction of higher particle-hole states,
taking into account various residual interactions.
For doorway-secondary-doorway interactions, we
have to further extend the IBA to include the "re-
coupling" interactions, which were also discussed
by Iachello. "

In the IBA, we use the idea. that a particle-hole
pair behaves like a boson. The higher particle-
hole states are then considered as multibosori
states correlated with residual interactions. For
a detailed description, one should refer to the
original work. ' In the following we shall present
a simplified version of the approximation. For
example, we shall not consider particle-hole and
other complicated boson-boson interactions (see
Fig. 1).

We first define a noninteraeting three-boson
state as a coupled product of three one-boson
states. We may write the noninteracting three-
boson state (4,& as

I C,&
=

I (B»)(B.,)&p'.(BM)»&, (64)

(65)

etc. The unperturbed energy of the (noninteract-
ing) three-boson state, B„ is simply the sum of
the boson energies; i.e.,

~, =&~+E3~+E5e (66)

where the bosons
~ B») (of angular momentum Z»

and isospin T») and
~ B„& are coupled to inter-

mediate angular momentum Jp and isospin T„
8, and T, are then coupled to the third boson

~ BM),
as shown in Fig. i. Each boson state is a linear
superposition of particle-hole states, as obtained
in the TDA (see Sec. III8). With the above nota-
tion, we may write

B)p B~~
PP

Bss Biz 8&„
hh

Bse

)2

JoTo

Js4T~4 Jsdss J,2T) 2

JoTo

Js4Ts4 Jsdss

(b)

1rrS rs r+we,y

Bss
ph

ei t+

Bss

J4 J

J)2T)2

Jo To

Js4Ts4 JseTse J)2T)2

Jp Tp

J34T~4 JssTs6

FIQ. 1. Boson-boson interactions: Vfe consider only (a) the particle-particle and (b) the hole-hole interactions
which involve minimum recouplings. The wavy lines represent interactions between bosons. The sum of interactions
{a) and {b) is given by Eq. {VO). Otherrecoup/ing interactions, such as {c) and {d), are neglected in our formulation.
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where E» is the energy of the boson state I B»& etc
The degeneracy of the three-boson states may

be removed if we allow these bosons to interact
with each other. The boson-boson interaction
may be of particle-particle (pp), hole-hole (hh),
and particle-hole (ph) type, as shown in Fig. 1.
Within our approximation, we assume that only
the pp and the hh interactions are important. We
also take into account only the pp and hh interac-
tions which involve minimum recoupling of angu-

lar momentum, ' these interactions are shown by
the wavy lines in Fig. 1. We have neglected any
ph interaction beAeeen bosons and more complicat-
ed "recoupling" pp and hh interactions. Some of
these neglected interactions are also shown by the
dashed lines in Fig. 1.

In order to evaluate these pp and hh interactions,
it is convenient to introduce a pp and hh matrix
element between two 3p-3h configurations. We
may write a Sp-3h configuration

I p&, for example,

I P&
=

I (iii2 ')~»T»(isi4 ')~347'34' Jodo(i. ia ')~MT56~» (6V)

and
I P ) for the state with all the quantities primed, For simplicity, a noninteracting three-boson state

may be written as

(68)14,& =pc; I p&.
8

We now denote the pp and hh. interactions between configurations
I P) and

I P ) which involve minimum re-
coupling as,

Ipp(P', P) =&P'
I ~l P&pp

This quantity has been given by Iachello, " incorporating the isospin variables, as

(69)

Ipp(P 1 P ) 6JOJ'06roro+g~J6, g'~j~+», 34

~ ~ 'I '1 1 1 1
22 J12 21 22 J12 2 2 12J,T, O', T' g3 34 J34 J3 ~4 J34 2 2 T34

~ [G(j.j.j.'j.'&,'T,')fl (j,j,j,'j,' &,T,) + G(j,'j sj,i,~.T.)o (i,j,i,'j,'&,'T".)], (70)

where we have defined [J,T]—= (2J+ l)(2T +1). The curly brackets are the 9-j symbols. The G's are the
antisymmetrized two-particle matrix elements as defined by (see Ref. 20)

where (j,j„JTI Vf j,j~JT) are the unsymmetrized two-particle matrix elements. The other symbols in

Eq. (70) are defined as

and

5
~5~6 ~5~6 ~5~5 ~6J6 s6~56 56 56 '

&l', -=([&» T»][&-,TsJ[&» T»][J34 7's4])"',

(72)

(73)

(V4)

In our applications, we may simplify Eq. (70) by imposing the following conditions:

T 12
= T,', = T,4 = T,'4 = To = To = 0. (75)

Equation (VO) can then be reduced to

i1 i2 J12
fop(p', »=l&z.z;&r.r, t ~,~, , ~,),([&-,&s.]l&,'., &'J)"' Q I&.1[&'.][T.) i. j. ~.. j.' j,' z„

&& [G(j gj.jlj4&. T.)fl (j lj3i 'li 3 ~,T.) +G(i li 3i les ~37'8)fl (i 2i 4i 2i 4&,'T,)], (76)



INTERMEDIATE STRUCTURE. . . 1909

which we have used in our calculation.
Several remarks are in order in connection with

the above particle-particle and hole-hole correla-
tions.

(1) If we neglect the recoupling terms„ that is if
we use Eq. (76) in the 3p-3h configuration [Eq. (67)],
the pp and hh interactions are identical to those in
a 2p-2h configuration,

1(i.i2 ) J12T12(j3j4 ') J34T24 JOTO)

That is, the pp and hh interactions are calculated
only between the first two bosons in this coupling
scheme.

(2) The I""generally contain off-diagonal ma-
PP

trix elements in the representation of Eq. (64),
The new (interacting) three-boson states, l C,),
would be linear combinations. of the

l C,), after the
diagonalization of pp and hh interactions.

(3) We have neglected the Pauli principle, and
the problems associated with nonorthogopal basis
vectors in the construction of the three-boson
states.

The first remark shows that the expression Eq.
(76) can be directly used to calculate, at no extra
cost, the pp and hh correlations in a two-boson

state l (B,2)(B„)J,T,). If the off-diagonal I&& terms
are small, we may use the first-order perturba-
tion to obtain the energies of the three-boson
states lQ, ) as

E, =E, + Q Cg'C2 I0P~(P', P) .
8', 8

In this case the boson picture becomes even sim-
pler. The noninteracting bosons are shifted by,
but not mixed by, the pp and hh interactions. We
should also note that these shifts may be quite
large even if the mixing due to off-diagonal ele-
ments is small. The effects of the Pauli principle
cannot be easily taken into a,ccount. We simply
hope that these are small and thus can be neglect-
ed. Further discussion may be found in Ref. 13.

D. Doorway-Secondary-Doorway Coupling

After we have constructed the doorways and the
secondary doorways, we need the coupling matrix
elements between these two sets of states. Let us
denote the matrix elements between a lp-1h con-
figuration, l(j,'j2 ')JT), denoted by n, and a 3p-3h

configuration, denoted by P, in Eq. (67) as

v„, =((j,'f,' ')JTl vl(-j, f, ')J„r„(j,f,-')J„T„;J,r-, (j,j, ')J„T„J-T) (76)

The interaction between P4 and P, can then be writ-
ten as

(&4 I II4, I f4) = Q cn c8 vu 2 ~ (79)
n, 8

where C"„and C8 are the configuration-mixing co-
efficients of the doorways and the secondary door-
ways. Here n and P denote all the quantum num-
bers necessary to specify the configurations.

The simplest interaction in V 8 is the nonrecou-
pling term, as shown diagrammatically in Fig. 2.
This term has been evaluated by Iachello to be"

I",.= ( [J,.][7'„1)'"(-)"'""»"»&

&«~,1,, 1;&;((j4j2 ')J»&»I vl(Ai2 ')Jl2T12)

(80)
This term will be called the 2eference tecum in our
discussion. It describes the annihilation of the
1p-1h pairs (12, 34); the third particle-hole pair
moves independently and becomes the final state,
l (j1j2 )JT), as in Pig. 2.

There are two other such simple terms, ' which
do not involve any recoupling of the particlt:-hole
pairs used to define each boson of the three-boson
states (Fig. 2). The contribution of these simple

terms to Eq. (77) vanishes identically if the one-
boson states comprising the three-boson state; i.e.,
lB»), lB„), and lB„), are each orthogonal to the
final doorway (one-boson) state. Such a, situation
occurs in our application. We therefore have to
look for contributions from more complicated in-
teraction terms. As shown in Eq. (60), the refer-
ence term (and other simple terms) involves a
particle-hole pair annihilation interaction which
does not depend op. the particle-hole states in one
of the bosons. There are, however, more com-
plicated interaction terms where all the three
bosons are involved. We show one example of
such terms in Fig. 3. For simplicity we may call
these terms which involve "breaking up" the bo-
sons, the ~ecouPling teems.

There are six such recoupling terms. They can
all be related to the reference term by unitary
transformations. For simplicity, we shall always
restrict ourselves to Eq. (75). The six recoupling
terms are given in Table II. Diagrammatically
we illustrate the first recoupling term in Fig. 3.
For detailed derivation of these terms, one is
referred to Appendix 8 and Ref. 24.

The doorway-secondary-doorway coupling may
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j 21&

1' J4 J5]( 1'J6

I

J56

JT
FIG. 2. The nonrecoupling term in the doorway-sec-

ondary-doorway interaction. One particle-hole pair
Ij&je

~
J&6& moves freely and the other two pairs are an-

nihilated. The analytic expression for this diagram is
given by Eq. (80).

then be written as

FIG. 3. A typical recoupling term. The analytic ex-
pression for this term is given as R(1) in Table II, and
is expressed there in terms of the reference term of
Eq. (80).

(y, le„ly,&= g gc'„c;[z(n)l„„
n, 5 k=1

(8l) the energy matrix and obtain the comPound states
Ie &as

where R(k) are given in Table II, in terms of the
notations defined in Eqs. (80) and (78).

We have now obtained all the shell-model formu-
lation necessary to calculate the 7.' matrix and
therefore the cross sections of our interest. It
is, however, also interesting to study the other
nuclear-structure aspects of the calculation. With
the matrix elements, Eq. (81), we may diagonalize

le,& =pc,'I y,&+pc,'I y, &, (82)

where C„and C, are the configuration-mixing co-
efficients. (See Table VIIL)

IV. NUMERICAL RESULTS

In this section we shall present the results of

TABLE II. Recoupling terms R(k) [see Eq. (81)].

R(1)
j2 ji Ji2

(-)ji+j3+Ji2+Jp J58 ~ ([Ji2] [J34] [Jp]) j3 j4 J34 Li4 58J J58 Jp

R(2) (-)j2+j4+J34+Jp+ J ([J ] [J ] [J ])i/2 j j J34 L32 58
J J58 Jp

R(3) ( )j4+j8+J34+i+J ([J ] [J ] [J ])i/2 ~3 ~8 ~4 ~5 i2 L38
34 56 0 J J ~ J J ~

i2, 54

R(4) ( )ji+z5+J'i2+J58+i+Jp ([J ] [J ] [J ])i/2 ~2 ~5 ~i ~8 34 L521 J
58 0 J J j J J j i8,34

R(5)

R(6)

( )J3+J5+Zt2+ gg+ ([J ] [J ] [J ])U2 je jg +tt j5 j4 ~
L f4

34 Jp j4 Jp 58'j8

( )j2+j8+J34+Jp+i+ J ([J ] [J ] [J ])i/2 ~i ~8 J '~2 25 J34 Lipi2 58 0 J J j J J j 5g 34
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calculations based on the shell-model formulation
described above. We begin with a schematic of
the low-lying 1p-1h one-boson states of 0" shown
in Fig. 4, including some of the 3p-Sh states,
which we calculate as being in the giant-dipole
region (20-26 MeV). We are primarily interested
in the photonuclear excitation from the ground
state to the compound states (in the dipole region}
and their subsequent decay by proton or neutron
emissions. We consider the channels in which
the residual nucleus may be in the ground state
(J' = —', ) or the third excited state (Z=-', ); these
states are believed to be predominantly represent-
ed by simple one-hole configurations. " The posi-
tive-parity low-lying excited states of 0" or N"
are neglected in the present calculation, their
structure being more complicated, probably con-
taining 1p-2h configurations. The effects of the
neglected channels are parametrized in terms of
the quantities I; and I'x, as discussed previously;
4, and 4x are neglected.

We choose a local, real Woods-Saxon potential
to define our single-particle basis. We need the
neutron-particle states (with energy given in MeV):

1d„, (-4.14), 2s», (-3.27), and 1d„, (0.93),
where the 1d„, state is the single-particle reso-
nance, and the neutron hole states,

1ps&z (-21.84) and 1p~&2 (-15.6V) .

The corresponding proton levels are about 3.5
MeV higher because of the Coulomb forces. The
parameters for the Woods-Saxon potentials are
chosen to reproduce the bound-state energy or the
single-particle resonance energy. (The potentials
are chosen to be independent of the states of the
residual nucleus. ) The parameters are given in
Ref. 24, they are close to those used by Perez and
MacDonald. '

Owing to the presence of the d», single-particle
resonance at E~=0.93 MeV, we have to redefine
our P space as prescribed in Ref. 19. Following
the procedure outlined in this reference, we de-
fine the "resonance wave packet" Q„(r) as

y„(r)=au, , ~ (r), r&R

=0, r~R, (83)

where v~„, s„(r) is the continuum wave function
at the resonance energy E„, v is a normalization
factor, and R a cutoff radius. As a supplement to
Ref. 19, we show the effect of changing the cutoff
radius on the d„, potential scattering cross sec-
tion for various energies in Table III. We demon-
strate that the projection procedure" is not sensi-
tive to R, within a reasonable range of values.
We take R = 8.0 fm. 'The resonance wave packet,
Q„, is then to be considered on the same footing
as a bound orbital (see Ref. 19).

The basic 1p-1h configurations, used for both
protons and neutrons, of our doorway space are

28—

24—

6;55
MeV

N +p

Ip- Ih 3p-5h
Stotes Stotes

(i-, i)

/ / //

~EX///r

P/Ãii
FÃ/8
SW/8 ]

6.I 8
MeV

I ( I/

Q +n

d„,p,~,
' (22.77 MeV), s„,p„, ' (18.57 MeV),

d„,p„, ' (17.70 MeV), d„,p„, ' (16.64 MeV),

s,~, P,~,
' (12.40 MeV), d„,P», ' (11.53 MeV}.

These configurations are mixed through the resid-
ual interactions. Such calculations are famil-
iar" "and we shall not discuss the complete cal-
culation here. The residual interaction is taken
to be the zero-range limit of the Soper mixture;

TABLE III. Effects of the cutoff radius on the modi-
fication of the single-particle potential scattering cross-
section (in barns) (ds&2 partial wave only) .

( I,O)
(5,0)

Cutoff
radius
(fm)

Energy
(MeV)

0.943 1.04 1.14 1.24 1.34

0— (0,0)
0~6

FIG. 4. Some energy levels of 0~ and the decay modes
of the giant dipole resonances as considered in our for-
mulation. Some 3p-3h states, constructed in our calcu-
lation, are shown as being in the dipole region.

9.6
6.4
4.5
3.2
1.9

0.019
0.0001
0.013
0.068
0.665

0.005 0.007 0.008 0.01
0.0059 0.0076 0.0091 0.0112
0.018 0.0218 0.0259 0.031
0.070 0.08 0.0903 0.099
0.63 0.46 0.098 0.56

Unmodified
cross section (b) 5.24 1.03 0.46 0.30 0.23
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that is, we take (b=1.76 fm),

V;g =-582.3(&g+0.46&,)5(r; r—~) MeV fm'.

(64)

We list those 1p-1h states which eater our later
discussions in Table IV. 'The states at 24.45 and
22.31 MeV contain 27.5 and 65/p of the total dipole
strengths, respectively. " They are the "giant-
diyole states" and are therefore identified as our
doorway states. The projected and the unproje'ct-
ed form factors fox these two doorways are shown
in Figs. 5 and 6, for all the channels included in
our calculation.

Using the form factors, we may now calculate
the continuum mixing of the doorways. The
widths and the shifts will be smooth functions of
energy, if single-particle resonances are re-
moved from the P space. For example, we show
the modification of the co@tinuum shifts due to
the removal of the d,~, resonance from the P
space in Table V. We see that resonance be-
havior at about I MeV is completely removed.
(The effects of single-particle resonances on
the importance of channel-channel coupling was
also discussed in Ref. 20.)

The gross structure of the dipole resonance can
then be easily reproduced in our formulation by
setting 8'~ =0 in the T matrix. For illustration
we show the gross structure of the (y, n, ) cross
section in Fig. 7. It is interesting to see that our
T matrix with 5'„' = 0 and I"~ = 700 keV gives a
cross section quite similar to that obtained by
Buck and Hill. ' The result, however, falls into
the same epilog: The dipole strength is much too
concentrated and no account can be given of the

I.Q — Un.projected

O
O
CI
4

E
O

U

0.8—

O.6—

0.2—

0.0 =
0.2—

0.4—

0.8
Gl

0.6—
E

0,4

0.2
L
O

0.0
0

4

E
-0.2

0 -0.4

projec'3'ed

-0.6—
I I I I I

0 I 2 3 4 5

Radius ( fm )

-0.6'

0 I 2 3 4 5 6

Radius (frn)

FIG. 5. The projected and the. unprojected form fac-
tors, Eqs. (57) and (59), of the 22.3-MeV doorgray in
various channels. The superscript refers to the final
channel; (1) refers to the p&n channel and {3) to the

p»2 channel.

intermediate structure. For this reason, it is
natural to search for an extension of the doorway
calculation to include more complicated configu-
rations. ' ' In our formulation, such complicated
configurations are the secondary doorways which
in 0" are 3p-3h states. We may now turn to the
consideration of the 3p-3h states which may ex-
ist in the dipole region.

In the IBA, the 3p-3h states may be considered
as composed of three bosons interacting through
residual boson-boson interactions. First of all
we have to find our elementary bosons, which
will be considered as the building blocks for multi-
boson states. Here we return to Fig. 4 and Table

TABLE IV. One-particle-one-hole configuration mixing coefficients.

Energy
(MeV) (s~npsn ) (d5np3n ') «w~p3n ') (din pfn ') (s~/2 p~n ) «5n pu~

Giant-dipole states

24.45
22.31

-0.0607
0.1225

—0.0740
0.9345

0.9714
0.1452

—0.2173
0.2973

0.0021
0.0483

One-boson states

(1 1)
(1 1)
(2 1)
(3 1)
{1 0)

(1 0)

(3-0)

17.43
13.48
12.66
13.18
11.32
(7 1)
8.89

(spurious)
8.78
(61) 8

-0.0539
—0.0507

0.0243

0.2199

0.1400

-0.3160
-0.0440

0.202Q
—0.2210
—0.2221

0.7608

0.2719

0.1806
-0.0084
0.0530
0.0064
0.0344

-0.1441

-0.1974

0.9297
0.0011
0.0164

-0.1688

Q.5621

—0.0162
0.9977

0.9342

0.2548

0.9775
0.9753

0.9419

' Energies in parentheses are experimental values '(see Sec. V).
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TABLE V. Modification on the continuum mixing of the doorways due to removal of single-particle resonance. The
subscripts 1 and 2 refer to the doorways at 24.45 and 22.31 MeV, respectively.

Neutron continuum
shift
(MeV) 1.0 2.0

Energy in (d3&&P~&& )
channel (Me V)

3.0 5.0

Unmodified
Modified

4.65
-0.114

0.434
—0.083

0.217
-0.044

0.142
-0.0165

0.105
-0.0037

Unmodified
Modified

2.35
-0.0565

0.22
-0.041

0.11
-0.021

0.07
—0.007

0.054
-0.0006

hole-hole interactions are identical in both 2p-2h
and 3p-Sh states under our consideration (cf. Sec.
fDC).

Beginning with the lowest two T =0 bosons, we
obtain degenerate two-boson states, as shown in
Fig. 8. The degeneracy is removed by the p-p
and h-h interactions. The matrix elements due
to p-p and h-h interactions are shown in Table VI.
In Fig. 8, we keep only the first-order perturba-
tion, neglecting the off-diagonal terms of Table
VI; the two-boson states are considered unmixed
by the p-p and h-h interactions and are only shift-
ed in energy. In Fig. 8, we further notice that the

(lo) (IO)
l4. 2

(30) (lo)
I 3.2

(30)(30)
l2. 2

p-hh Correlations

J E. (MeV)

3 I l.9
2+ l I.4
4+ I l.3
2 I0.8

0 9.6
4+ 9.5

2 8.66' 86

Unperturbed
Two- Boson States

0 6.7

FIG. 8. Effect of the particle-particle and hole-hole
interactions in removing the degeneracy of the two-boson
states.

unperturbed two-boson states are perturbed by the
p-p and h-h correlations to such an extent that no
harmonicity is retained.

It is interesting to point out that we have shown
a mechanism for the 2p-2h states to come down
in energy without using a deformed state descrip-
tion. ' The two-boson states are at low energy
and their mixing with the ground state becomes
important. It is known that the 4p-4h states would
also be pushed down in energy and mixed with the
2p-2h states and the ground state to generate the
ground-state correlations in 0". The structure
of the 6.06-MeV 0' state may also be understood
in the IBA; a schematic calculation of this kind
was performed by Iachello. "

We may proceed to construct the 3p-3h states.
We denote the odd-parity one-boson states with an-
gular momentum J and isospin T as (JT) —see Ta-
ble IV. We first couple the two one-boson states,
(20) and (10), to some intermediate angular mo-
mentum J„and then couple these two-boson states
to (11), (21), and (21) one-boson states. The de-
generate spectrum is shown in Fig. 9. Incorpo-
rating the p-p and h-h correlations, the spectrum
is shifted downward and the degeneracy removed.
We have given only the states in the dipole region,
there being many higher states. We emphasize
once again that the general belief that the 3p-3h

.states will be above the dipole region is because
of the neglect of the strong p-p and h-h interac-
tions. We have now demonstrated the truth of our
first crucial assumption: There are 3p-3h states
in the dipole region.

We next turn to the question: Are these 3p-3h
states coupled to the giant-dipole states with ap-
propriate strengths? Since the "nonrecoupling"
interactions vanish, we expect small coupling
strengths from the "recoupling" terms. Keeping
in mind that we were able to reproduce the gross
structure by doorway calculations, we hope to
find only a fear secondary doorways with strong
coupling, just enough to reproduce the distinct
peaks in the cross section. We show the result
of our calculation in Table VII. Indeed there are
only a few states with strong coupling; they are
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also distinct in energy. Whether these coupling
matrix elements are of "correct" magnitude can
only be tested in a complete calculation of the T
matrix; the relative size of the peaks in the cross
sections are very sensitive to these values.

A trial calculation with the matrix elements as
given in Table VII and the parameters,

~, =s =0,

I;= F =400 keV, (s5)

gives the "intermediate structure" shown in Fig.
10. By comparison with the experiment, we real-
ize that both the resonance energies and the rela-
tive strengths are not correctly reproduced, al-
though they have successfully reproduced some
structure. Apparently the Sp-3h states are cou-
pled too strongly to the main peak at 22.3 MeV
and the energy of some state near 24 MeV needs
to be adjusted.

To introduce the necessary adjustments, let us
first recapitulate the approximations we have made
in the energies and the couplings of these 3p-Sh
states. The residual interaction, first of all, is
only a crude approximation of the nucleon-nucleon
interaction. Furthermore, we have calculated the
energies by including only the simplest terms of
the p-p and h-h interactions. There are other
smaller contributions from more complex recou-
pling terms, including some recoupling p-h inter-
actions. We have also completely neglected the
problems associated with the Pauli principle (the
blocking effect) and the nonorthogonality of our
Sp-Sh basis. In addition to the uncertainties in

TABLE VI. Particle-particle and hole-hole interac-
tions in two-boson states {MeV).

26 Mev

(rz(y, n, )dE = 17.0 mb MeV,
"20~ 5 MeV

(ss)

(Io) (IO) Jo(II)

(IO)(IO) J,(3I) hh Correlations

26-

(lo)(lo) Jo(RI )
HO)(IO3 Jo( I I )

(3O)(IO) ZA3I)

(30)(IO)Jo(2 I )
(30)(30)Jo( I I )
(3O)(30)+3I)

(30)(30)Jo(21)

Z= I T= l

Jp
2
2

the boson energies, the quantities hx and 4, also
affect the energies in Eq. (32). The force we have
used and the approximate nature of the wave func-
tions, of course, provide us only with approximate
coupling strengths.

We therefore judge ourselves at liberty to make
the following modifications: (i) We adjust the en-
ergies of two strongly coupled states as shown in
Table VIII, and (ii) we reduce all the coupling ma-
trix elements to the doorway at 22.3 MeV by 15/~.
The weakly coupled states are not shifted; they af-
fect the final calculations only in a minor way.
These adjustments should be deemed as minor and
well within the approximation.

We may now recalculate the cross section with
the adjusted spectrum and coupling strengths.
First we have to define an intermediate-resolution
cross section. This can be done by choosing ap-
propriate values for 1", and 1X to reproduce the
integrated cross section. With the parameters
given by Eq. (S5), we have the intermediate-reso-
lution cross section oz(y, n, ) satisfying

Configuration (30) (30)J (30)(10)J (10)(10)J'
c 24—

LLI

J=O

(30) (30)J
(10){10)J

(30) (30)J
(30) (10)J
(10)(10)J

-5.524
-0.886

-3.6
-0.026
-0.34

-1.83
0.43

-4.624

C:0
'a

LP

LLI

22-

(3o)(3o
29.8

Three-Partic

States in Q

2O—

2
2

(30) (30)J
(30)(10)J

(30) (10)J
J=6

(30) (30)J

-2.74
-0.185

-3.63

-0.185
-1.92

FIG. 9. Effect of the particle-particle and hole-hole
interactions in removing the degeneracy of the three-
boson states. The intermediate angular momentum of
two-boson states is denoted by Jo. The state denoted
(11)* is at 17.43 MeV (see Tables IV and VII), and the
state (30)(30) Jo (11)*has an unperturbed energy of 29.8
MeV.
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25.88
25.58

24.53
24.48

24.28
24.13 (+0.72)

23.98
23.46

23.08
22.64 (+O.21) '
22.08
21.78

21.26
20.18

(3O) (10)2(11)
(30)(10)2(31)

(30) (10)2(21)
(30) (10)3(31)

(30) (1O)3(21)
(3{})(10)4 (31)

(10)(10)2(11)
(30)(30)0(»)"
(1O) (1O)2(31)
(1O) (10)2(21)

(1o)(1o)o(11)
(30) (30)4(31)

(30)(30)2(11)
(30) (30)2 (31)

(30)(30)2(»)
(3O) (30)O(11)

0.025
0.224

0.132
0.003

-o.lo4
0.091

0.008
-0.447

-0.195
-0.069

-0.032
0.504

-0.096
-0.238

—0.667
-0.131

0.000
-0.057

-0.041
0.016

-0.002
-O.O36

-0.014
0.405

0.028
—0.010

-0.008
—0.132

{}.034
o.124

0.015
0.013

' al calculations.d 111 oux' fina cats in energy use~ Adjustments xn e 1 * is at 17.43 MeV.b The state (11)* is a
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O
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D

FIG. 11. The compound shifts, D„(E), and widths, I'~{E},
of the doorways. For this calculation, the spectrum of
the 3p-3h states is adjusted and the coupling matrix ele-
ments to the 22.3-MeV doorway are reduced by 15/p (see
Table VII). The parameter I is taken to be 400 keV.

they remain essentially pure 3p-3h states. It is
also interesting to see that the states at 22.3 and

24.2 MeV now have only 50 and 74% 1p-1h config-
urations, respectively. We have used the adjusted
spectrum and the reduced coupling strengths in
this calculation. The complete spectrum is com-
pared with the experiment' '" in Fig. 13, where
only levels with known quantum labels are shown.
In Table IX we compare the dipole-strength distri-
bution with the "strengths" obtained from various
experiments. We have defined the strength for
each compound state i, as

(87)

(Quantity I; is not simply proportional to the inte-
grated cross section at each resonance. ) The

20

E& {MeV)

I

24 26

FIG. 12. The intermediate structure in 0~6(y, no)O 5,

leading to the ground state of O~5. The experimental
data are from Caldwell et al. (Ref. 3). The dashed line
represents the intermediate-resolution cross section.
The solid line is obtained from the intermediate-reso-
lution cross section using Eq. (34) with an energy reso-
lution ~=200 keV.

agreement with experiment is very good. It should
be noted that the experimental values are generally
obtained by comparing relative integrated cross
section under each resonance; this scheme is sub-
ject to large uncertainties.

From the agreement obtained in Table IX, we
see that the compound states are well described in

TABLE VIII. Configuration-mixing coefficients of 3p-3h and lp-lh states.

Unperturbed
energy
{MeV) Configuration 25.16

Eigenstate energy {MeV}
24.22 23.10 22.28 20.97

25.58
25.06
24.53
24.85
23.98
22.85
21.78
21.26
20.18
22.31
24.45

(30) (10)2 (31)
(30) (10)2(21)
(3O) (1O)3(21)
(30)(30)0(11)*
(10)(10)2 (31)
(30) (30)4 (31)
(30) (30)2(31)
(3O) (3O)2(21)
(3o) (3o)o(11)

(11)
(11)

0.121
-0.347

0.016
0.786
0.029

-0.051
0.025
0.020
0.004

-0,126
0.476

0.024
0.030
0.031

-0.502
0.040

-0.055
0.036

-0.012
0.000
0.086
0.856

-0.037
-0.027
0.031
0.095
0.092
0.836

-0.071
-0.154
-0.019

0,499
0.057

-0.0040
-0.0028
0.027
0.107
0.068

—0.527
-0.285
-0.382
-0.037
0.688

-0.035

-0.018
-0.012

0.011
0.045
0.025

-0.102
0.113
0.880

—0.062
0.442

-0.017

' See Table VII.
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our model as mixtures of one- and three-boson
states. The states at 21.73 and 25.60 MeV, al-
though containing some dipole strength, are
smeared out by the intermediate energy averag-
ing; they are not visible in the cross sections.
We particularly note that the state at 21.73 MeV,
with proper change in F, and I'~, may contribute
to the lower-side asymmetry of the main peak at
22.3 MeV. This asymmetry was discussed by
Greiner" as due to isospin-mixing of a T = 0,
1p-1h state with the dipole state.

A careful study of Tables VII and VIII shows
that the 3p-3h states containing the one-boson
state (1 0) as a component are not important in
our calculation. This means that the elementary
boson (1 0) we have used may be neglected alto-
gether; the octupole-vibration boson (3,0), on
the contrary, plays a critical role in our calcula-
tion. This observation may relieve us from other-
wise repudiative identification of our (1 0) state
at 11.32 MeV with the experimental level at 7.1
MeV, as discussed before. The (1 0) state at 7.1
MeV may have much more complicated configura-
tion; we will return to this point at our conclusion.

We now examine the structure of the imPortant
compound states which are responsible for the in-
termediate structure. The compound states at
25.16, 23.10, and 20.97 MeV all contain the two-
boson states, ~(30)(30)Z). These states may be
considered as two octupole vibrations (3,0) cou-

26—

Ip-Ih and 3p-3h States

Unmixed Mixed

24—
ia
OP
C

LLJ

C0
22—U

LLJ

20—
Theory

I

Experiment

J=l T I States in O
I6

FIG. 13. Energy spectrum of J~=1, T =1 states of
0~6 in the dipole region. The unmixed spectrum is just
the energy levels of the dipole 1p-1h states and the 3p-3h
states as constructed in the IBA. The mixed spectrum
is obtained by diagonalizing the doorway-secondary-
doorway interactions. The arrow indicates the shift of
the unperturbed state which constitutes the major com-
ponent of the compound (mixed) state (see Table VIII).

TABLE IX. Distribution of the dipole strengths in the intermediate structure. [The strength I is defined by Eq. (87).]

(MeV)

Present
calculation

ry
(ev)

(y, n, ) '
g

(MeV) I

Measurements

(y, Pp)

(Mev)

(y absorption) ~

E r,
(MeV) (eV) I

(Elliott-Flowers)
E r

(MeV) (ev)

13.48

17.43

19.85

20.97
21.73

22.28
23.10

24.22
25.16
25.60

115 0.8

224 1.6

453 3.3

1703 12.3
437 3.2

4998 36.2
2499 18.1

1273 9.3
1757 12.7
183 1.33

17.10
17.25

0.5
2.0

4.0
4 0
1.5
8.5
2.5

19.0
19.4
20.1
20.9
21.6
22 1 40 0
22.3
23.1 11.0
24.1 26 0
24.3

17.25 5.6
18.0 1.5
19.0 4.4
19.9 8.6

20.9 11.2
21.5 6.3
21.9
22 4
23.3 10.1

} 2R.D

17.2

19.0
19.4

20.9

22.3
23.1

24.3
25.2
25.8

145 3

250 5
375 6

650 10

2500 33
530 6

1200 12
1250 12
1000 10

13.7

17.3

20.4

22.6

25,2

60

140

20

12 000

5800

See Firk in Ref. 3.
See Denisov and Kul'chitski7. in Ref. 4.
B.S..Dolbilkin, Proceedings (Trudy) of the P. N. Lebedev Physics Institute, edited by Academician D. V. Skobel'tsyn

(translated by Consultants Bureau, New York, 1967), Vol. 36; See also Ref. 30.
d See Ref. 1.
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exact formal expression Eq. (15) to the form
Eq. (32) is given in Sec. II. We recall that the
assumption of the single-hole nature of the resid-
ual states of N" and O" allowed us to use the
same doorways for the entrance and exit channels.
If we were to consider other final channels, we
would have to study the relative importance of
the escape amplitudes due to the 1p-1h and Sp-Sh
components of the compound states formed in the
reaction.

We also pointed out in See. II that a detailed
fit to the angular distributions in the (y, n) and

(y, p) reactions requires the calculation of the
E2 and M1 a.mplitudes. If we assume that the E2
and M1 amplitudes are direct (i.e., nonresonant)
in the dipole-resonance region, the variation of
the shape of the angular distribution with energy
will depend (in the doorway picture} on the inter-
ference of the more xapidly energy-dependent E1-
doorway amplitude and the weakly energy-depen-
dent direct amplitude.

The use of the sgyyg. g doorways for both the exi.t
and entrance channels leads to a constant angular
distribution for the various intermediate reso-
nances associated with a single doorway, if one
neglects the direct Photodisintegration amP/it@de.
The latter amplitude will be relatively more im-
portant at the minima of the resonant amplitude.
(As mentioned previously, the interplay of these
two amplitudes, one of which having rapid Quctua-
tions in magnitude, may also account for inter-
mediate structure in the polarization of the emit-
ted nucleon in the case of photodisintegration lead-
ing to the one-hole states of the residual nuclei. )

Further study of the angular distributions and
polarizations is clearly necessary before we can
completely explore the full consequences of our
model.

Our work is also dependent upon the choice of
Sp-Sh states as the secondary doorways. In the
harmonic-oscillator shell model it is possible to
obtain 2p-2h states with J=1, T =1, but only if
one introduces the 2P-lf shell. (We neglect the
1s sheQ, as exeitations involving that shell would
be at quite high energy. ) As the "2p If shell" is-
in the continuum of a potential more realistic
than the harmonic oscillator, it is very difficult
to justify the inclusion of such bound oscillator
states in a shell-model calculation where we pay
particular attention to continuum effects. How-

ever, for relatively narrow resonances (such as
the d„, state considered in this work) a method
has been presented which allows the incorpora-
tion of a corresponding state (a "wave packet")
into the bound-state calculation. Of course, it
would be of interest if one could determine ex-
perimentally the relative importance of 2p-2h

and Sp-3h admixtures (with 4=1, T= 1) in the
dipole-resonance region.

We also wish to point out that there is a great
advantage in working directly with the T matrix.
We are able to si.mply adjust various parameters
which we cannot ealeulate explicitly, to faci.litate
comparison with experimental data. This is an
advantage over coupled-channel calculations
where such modifications would be much more
difficult to make.

As our results show, the shell-model descrip-
tion of the nucleus is quite successful, provided
residual interactions are properly taken into ac-
count. Such interactions give rise to the collec-
tive nature of the dipole states. They also shift
the higher configurations downward in energy and
mix states with different configurations. In a
straightforward application of the shell model
one would have a vast number of 3p-Sh states to
consider as candidates for mixing with the lp-1h
dipole states. Clearly one needs to introduce
some scheme that will simplify the calculations.
Our success is then largely due to the use of the
IBA, which successfully generates the low-lying
three-boson states. Although various extensions
of the IBA are possible, the approximation, as
it stands, should be of interest for further appli-
cations.

In Table VIII, we have presented the results of
a, calculation of the compound states, i.e., mix-
ture of doorways and secondary doorways, ob-
tained by diagonalizing the Hamiltonian matrix.
It mill be interesting to see if we may obtain fur-
ther evidence to support our configuration assign-
ments for these states.

We now turn to possible extensions of our cal-
culation. One may consider the decay of the com-
pound states to the channels where the residual
nucleus is left in low-lying positive-parity ex-
cited states.

In weak-coupling models, these positive-parity
states of the resi.dual nucleus may be described
as a 1p„,hole coupled to the low-lying collective
states of 0". They thus have predominantly 1p-2h
configurations. This is consistent with most of
the results obtained by Lie, Engeland, and Dahll, 32

who also obtain admixture of Sp-4h configurations.
We are particularly interested in the &' and &'

excited states near 5 MeV. The &' state is de-
scribed to have 82/q lp-2h configuration"; this
state is probably a 1P„,hole coupled to the oetu-
pole vibration (3, 0). We may thus deduce from
their description that the 3p-Sh admixture in the
(3, 0) state may be about 18%, our identification
of the (3,0}state as pure lp-lh is therefore ap-
proximately justified. The 2' state of the residual
nuclei is, however, shown to contain 65% Sp-4h
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configurations. " If the weak-coupling description
is valid, the lowest (1,0) state of 0'6 contains
about 65% 3p-Sh configuration. This prediction
would thus repudiate our assignment of 1p-1h na-
ture to the (1,0) state of 0". We maintain, how-
ever, that the (1,0) state in our calculations is
so unimPoxtagt that our results will not be changed
at all (see Sec. IV). The nature of these states,
(1 0) in 0 and ( ) in 0 ~ should be investigated
further.

We note that the compound states may be coupled
to the above open channels. For such considera-
tioQ, we may simply relax the doorway-state hy-
pothesis for the exit channels, or reformulate
our theory to accommodate new open channels.
Within our formalism, this extension immediately
enables us to explicitly evalute some contribu-
tions to the parameters, I'x and I;, from the
additional open channels placed into the I' space.

If the doorway-state hypothesis, in our formal-
ism, is droyped for the exit channels, various
coupling lnterRctloQs lQ the T matrix become eQ-
ergy-dependent on the intermediate-resonance
scale. In this connection, it might also be inter-
esting to estimate the validity of Eq. (31).

Finally we may also study the structure in photo-
neutron yolarization measurements in the dipole
region. s' Such a calculation was performed by
Buck Rnd Hill' who obtain the gross structure;
the data, however, show "intermediate" reso-
nances.

On the experimental side, further investigation
of the dipole region may be called for to deter-
mine the quantum numbers of the intermediate-
structure resonances. Particularly related to
our hypothesis is the prediction of the 3y-3h states
in this region. Experiments such as C"(He', y)O"
are of interest; the data of Puttaswamy and Kohl-
er" have already shown prominent resonances at
24.1 and 25.1 MeV.

In the near future we hope to present results for
the polarization cross sections and angular dis-
tribution for the photodisintegration of 0". We
hope these results will lend further support to the
model discussed in this work.¹teadded in Proof: As this report was com-
pleted and ready for publication, we encountered
an error in the computation associated with our
multiboson states, as defined by Eq. (64). The
states )C,) are not properly normalized; the nor-
malization factor should be [1+5» „j '~', where
5,a „=0 when the boson (B») is not identical to
the boson )B,g. The corrections we have to make
are as follows. In Table VI, we have to: (1) divide
the dlRgonRl matrix elements by R fRctor of 2~ lf
the two bosons are identical; and (2) divide the
off-diagonal elements by W if any of the two-

boson states contains identical bosons. This
would give rise to a new spectrum of 2p-2h states.
In Table VH, we then: (1) recalculate the energy
spectrum of the three-boson states, and (2) divide
the coupling matrix elements by W2 if (B») is
identical to (B,g in the three-boson states. We
also have to make corresponding modification in
Tables VIII and IX and in Pigs. 8-16. Such modi-
flcatlons Rre obvious Rnd do not wRrl Rnt a quanti-
tative reevaluation here. Our reason may be
given as follows. Keeping in mind that only some
of the three-boson states and their coupling ma-
trix elements in Table VII are crucial in our cal-
culation, we may discuss the conditions under
which we could preserve the features which we
have obtained in Table VII, as shown. If we carry
out the modifications as discussed in detail
above, we find that: (1) the crucial states come
out too high in energy, and that (2) their cou-
plings to the doorways are too weak. Such dis-
crepancies may be readily remedied by a xenox-
malization of the strength of the residual interac-
tion. For such a modification, we may increase
the particle-particle and hole-hole interactions
by about 45/~ and the particle-hole interaction in
the coupling matrix elements by 20%. The modi-
fied energy spectrum is then within 1 MeV of the
spectrum shown in Table VII. The coupling ma-
trix elements are essentially identical to those
used in our calculation (the values in Table VII,
further reduced by 15%%uo). With such final adjust-
ments, we are to obtain essentially the same con-
clusions as reported in the text. Again the above
adjustments, or the renormalization, should not
be deemed as un''easonable. The approximate na-
ture of our calculation has been discussed in the
text. Aside from the neglected recoupling matrix
elements, the particle-particle or hole-hole in-
teractions may also be renormalized through core
polarization, for example. It is therefore not
surprising that the renormalized particle-particIe
and hole-hole interactions are quite different from
the particle-hole interactions. A detailed discus-
sion of such renormalization is, however, well
beyond the scope of our investigation. It does not
seem possible to determine the strength of the
residual interaction by simply fitting the experi-
mental low-lying states. We have chosen our
strength by fitting the energies of the giant-dipole
states, while Iachello has used a much stronger
force to reproduce some of the low-lying, T=-0
states of 0" (private communication). We would
like to thank Dr. F. Iachello for correspondence
concerning the relative magnitudes of the particle-
hole and the particle-particle hole-hole matrix
elements in his calculations and ours.
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Finally we see that &» —ii'»/2, of Eq. (24), is
given by

APPENDIX A. ENERGY AVERAGING

In this Appendix, we shall derive Eq. (24) and
show that, with some energy averaging, the quan-
tities 4„F„4x,and I'x become weakly energy-
dependent. They consequently can be treated as
parameters in our theory.

Dividing the Q space into X and q spaces, we
have the identity, "

( 1+X IE -Hxx -Hx, H,»' E-H„
+CX'oss terms.

The q states and X states are defined by

(E, -H„)ly,&=o,

From Eqs. (A5) and (AV), we find that the quan-
tities 4„1"„4x,and Fx vary rapidly in a xe-
gion of enex'gy of the order of the level spacing
of the discrete spectra of H„and H». The rapid
energy dependence of these quantities would give
rise to "fine structure" in the T matrix. In order
to obtain a T matrix which varies significantly
only over the intermediate resonances, we have
to introduce some energy averaging to eliminate
the fine structure. Since the compound mixing,
in the doorway approximation, is the only factor
in the T matrix [see Eg. (82)] which has strong
energy dependence, we only have to average 8'„
over some energy interval M.

We may write the goggled 8'& and averaged
Parameters (r „ I;, &», I'x) as follows (using
the same notations for these quantities as before),

W„=W~ (E+i 5E—/2)

(Z'x-Hxx)I4x& =o (A3)

~z-z, n, , +i(-1;/2+eZ/2) x 2 '

(A8)

respectively. We now assume that the q states
are not coupled to one another through the X
states, and that X states are also not so coupled
through the q states. Dropping the cross terms
in Eq. (A1), the compound mixing, W~(E), can
then be written as

&e. lHle. &&@.IH le, &

E E, n, , +-il;-/2

E —E» —nx+if'x /2
X

(A4)

(A5)

where the sum over X states also implies inte-
gration over the continuous spectrum of.H». The
shifts and widths in Eg. (A4) are defined as

where [see Eg. (A5)]

~ &m. lHle. &&a.lH le.&

E-z, +i5E/2

The coupling of the doorways to the X states is
now parametrized by

, I'x ~ &A.

IHIP'»&&4»IH

le.&~ 1&~. IH I@.&l' „.,E,E-E +i5E/2
(Alo)

From Egs. (A9) and (Alo), we have shown that,
after an appx'opriate choice of 6E, the quantities,
n, , —iF,/2 and b,» —ii'»/2, are smooth functions of
energy. They can therefore be treated as (con-
stant) parameters in our theory The fact.or 5E/2
appearing in the denominator in Eq. (AB) is
dropped in Eg. (24) for simplicity.
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Hex'e me shaQ present some of the angular momentum algebra necessary to obtain the recoupling terms
in the doorway-secondary-doorway interactions. The analytic expxessions for these terms are given in
Table II. As illustration, we shall derive two typical terms, R(1) and B(3), in detail.

%'e denote the reference term by

where we have suppressed isospin variables. The tildes indicate that the right-hand side is a single inter-
action term, in which the pair (j, and j, ') moves freely to the final ph state

~ (j)j,' ') JT& as shown in
Fig. 2.

In the above notation, the recoupling term R(1), which is shown in Fig. 3, may be written as

(82)

Keeping the form of the reference term in mind, we may try to couple the pair (j, and js ) together and
relate E[I. (82) to the following [Iuantity:

(83)

where O'„J,', and J, are to be defined below. It is clear that E[ls. (82) and (83) are related by unitary
transformations. The ox'der of such transformations is not important.

Beginning with E[l. (82), we first interchange j, and j„obtaining a phase factor C„,
=( )&a+&s+~s4, (84)

which is due to the Clebsch-Gordan coefficient in the ph state ~(j,j, )J,g. In order to bring j, and j, to-
gether~ %'e need to recouple j» j2s j3~ and j4. By standard technique, ' me have

The recoupling coefficient in E[I. (85) is related to a 9-j symbol by"

(86)

Comparing Eq. (85) with E[I. (83), we see that the (jn 'j,) pair should be moved out of the intermediate
angular momentum Zo. %e see that

where the recoupbng coefficient is related to a 6-j symbol by

[[z,z')z, z„zl(z.z„)z,z!Jl=(-)""~'*""([z„z])"'I' (88)

After interchanging j~ and js, we have
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Equation (89) can be simplified if we recall the 6-function conditions in the reference term, Eq. (80),
which require

(810)

otherwise B(1}vanishes identically. We may rewrite Eq. (89) as

~2 J12ft(1)=(-)"""""'"(I:J l[J j[J ])'" J I.-34 o ~4 ~3 34 14, 56

J56 J JO

This expression is listed in Table II. Here we have also used the following relation:

56 56 ( ) 156+X +/6([ J J]) 1/20
J J J0 56/ ~ (812)

For the next example, we considex

ft(8) =-&(j',j.'-') J Ii l(j,j.-') J,.(i.j.-')J.,J., (~.i.-')J,J&. (818)

This term can be transformed, by similar steps as described above, to the following reference form:

2, 5
= &{jl,jl ') J I &1(j,j. ')J„(j,j, ')J.' Jt, (j3i. ')J J)

where J,', J,', and J, axe to be defined below. We shall, however, take an alternative method, making use
of the result of our fixst example.

We may recouple J», J34, and J„such that

ft(8)=Z[(J»J34) J6J56JI J»«34J56) Jt J]&(A'j2 ')JII"l(jtj2 ')J» (j3j4 ')J.,(j.j. ')J,.Jt J& (816)
Jg

We may now interchange (i) J» and J, in l(J»J, )J& and (ii) J,4 and J„in l(J,4J„)J,&. This gives

a{8)=( )'"' '--"Z[{J„J„)J,J„JIJ,.(J„J,)J Jl&(j,'j,' ') JII/'l(j, j, ')J,(j,j, ')J„J,(j,j, ')J,.J&
J't

(816}

We note now the form of the matrix element in Eq. {816)is identical to Eq. (82). Making use of the re-
sults of Eq. (89}, we have

&5 &6 J56

g(8) ( )/6+/4+134+ 1+J»([J ][J ][J ])1/2 Q ( )dt([ J ][Jt][ zjJ)1 2[/]Jj j J

y 12 34 0 S 142 t t I 1 J y ' -1 J ' —1 J JI ' 1
r~

~

~I
~

~I
~

~
~
}

~ ~I~~
~

~
~II ~I

~
~

1~ ~~ ~
~t~

~
~I~ ~

s I

We may now impose the following condition:

The summations in Eq. (817) are reduced to a single sum. We have

(817)

(818)

J J J 2526 56

ft(8) ( )/4 '6+/'3 1+1([J ][J ][J ])1/2g [J ] 56 34 t j j J 136 (819)

where we have also made use of Eq. (812). The sum in Eq. (819) is given as

12 t

(820}

If we interchanged, in Eq. (BIV), J, and J» in the (J,J») J', coupling, we would have a phase factor C:

( ) /6+ J»+St

which is positive, by Eq. (818). So Eq. (819), together with Eq. (820), is identical to the analytical expres-
sion given in Table D for R(8).



INTERMEDIATE STRUCTURE. . . 1925

f Work supported in part by U. S. Atomic Energy Com-
mission.

*Based on a dissertation of W. L. Wang submitted to
Massachusetts Institute of Technology as a partial ful-
fillment of the requirements for the degree of Doctor of
Philosophy (May, 1971).

f. Present address: Department of Physics, Carnegie-
Mellon University, Pittsburgh, .Pennsylvania 15213.

~G. E. Brown, L. Castillejo, and J.A. Evans, Nucl.
phys. 22, 1 (1961); J. P. Elliott and B.H. Flowers,
Proc. Roy. Soc. (London) A242, 57 (1957); J. D. Perez
and W. M. MacDonald, Phys. Rev. 182, 1066 (1969);
J. Raynal, M. A. Melkanoff, and T. Sawada, Nucl. Phys.
A101, 369 (1967); S. Fujii, ibid. A132, 385 (1969);
B.Buck and A. D. Hill, ibid. A95, 271 (1967); A. M.
Saruis and M. Marangoni, ibid. A132, 433 (1969).

~Additional structure has been produced in eigenchan-
nel calculation of H. G. Wahsweiler, W. Greiner, and
M. Danos, Phys. Rev. 170, 893 (1968). This feature has
been criticized as being spurious. See Saruis and
Marangoni in Ref. 1 and C. Mahaux and H. A. Weiden-
miiller, Phys. Bev. 170, 847 (1968).

3F, W. K. Firk, Nucl. Phys. 52, 437 (1964); J.T.
Caldwell, R. L. Bramblett, B. L. Berman, R. R. Harvey
and S. C. Fultz, Phys. Rev. Letters 15, 976 (1965);
T. A. Khan, J. S. Hewitt, and K. G. McNeill, Can. J.
Phys. 47, 1037 (1969); J.W. Jury, J. S. Hewitt, and
K. G. McNeill, ibid. 48, 1635 (1970).

4N. W. Tanner, G. C. Thomas, and E. D. Earle, Nucl.
Phys. 52, 45 (1964); V. P. Denisov and L. A. Kul chitskii,
Yadern. Fiz. 2, 70 (1965) [transl. : Soviet J. Nucl. Phys.
2, 48 (1966)]; J. E. E. Baglin and M. N. Thompson,
Nucl. Phys. A138, 73 (1969); R. J. J. Stewart, Australian
J. phys. 21, 107 (1968); P. M. Tutakin, Yadern. Fiz.
8, 661 (1968) [transl. : Soviet J. Nucl. Phys. 8, 383
(1969)].

'B. S. Ishkhanov, I. M. Kapitonov, E. V. Lazutin, I. M.
Piskarev, V. S. Sopov, and V. G. Shevchenko, Yadern.
Fiz. 12, 892 (1970) [transl. : Soviet J. Nucl. Phys. 12,
484 (1971)].

M. V. Mihailovic and M. Bosina, Nucl. Phys, 40, 252

{1963);S. Fujii, ibid. 67, 592 (1965).
~V. V. Balashov and N. M. Kabachnik, Phys. Letters

258, 316 (1967); V. Gillet, M. A. Melkanoff, and J. Ray-
nal, Nucl. Phys. A97, 631 (1967).

N. P. Yudin, Izv. Akad. Nauk SSSB Ser. Fiz. 26, 1222
(1962); [transl. : Bull. Acad. Sci. USSR, Phys. Ser. 26,
1234 (1962)]; J. B, Seaborn, Phys. Rev. 179, 958 (1969);
G. D. Dracoulis, M. S. thesis, University of Melbourne,
1966 (unpublished) .

~See, for example, G. E. Brown and A. M. Green,
Nucl. Phys. 75, 401 (1966).

~0V. V. Verbinski and J. C. Courtney, Nucl. Phys. 73,
398 {1965);W. R. Dodge and W, C. Barber, Phys. Rev.
127, 1746 (1962); E. D. Earle and

¹ W. Tanner, Nucl,
Phys. A95, 241 (1967).

~~We shall not attempt to describe the states which may
show up in the cross sections due to other mechanisms,
e.g., isospin mixing and states of other multipolarities.
For isospin mixing, see C. Mahaux and A. M. Saruis,
Nucl. Phys. A138, 481 (1969); and W. Greiner, ibid. 49,
522 (1963).' H. Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958); Xg,
287 (1962) ~

I

3F. Iachello, Ph.D. thesis, Massachusetts Institute of
Technology, 1969 (unpublished) .

~ C. M. Shakin, Ann. Phys. (N.Y.) 22, 54 (1963);
L. Estrada and H. Feshbach, ibid. 23, 123 (1963); W. M.
MacDonald, Nucl. Phys. 56, 647 (1964).

5J. D. Perez and W. M. MacDonald, Phys. Rev. 182,
1066 (1969).

H. Feshbach, A. K. Kerman, and R. H. Lemmer,
Ann. Phys. (N.Y.) 41, 230 (1967); F. Iachello, ibid. 52,
16 (1969).

~VJ. Hufner and C. M. Shakin, Ann. Phys. (N.Y.) 52,
486 (1969).

For discussions in this section, one is referred to
N. Auerbach, J. Hufner, A. K. Kerman, and C. M.
Shakin, Rev. Mod. Phys. 44, 48 (1972). Our assumption,
(@o(Hz ~P iit )) =0; allows us to neglect the distinction
between Hzz and X~z in the continuum.

~GW. L. Wang and C. M. Shakin, Phys. Letters 32B,
421 (1970).

B. H. Lemmer and C. M. Shakm, Ann. Phys. (N.Y.)
27, 13 (1964).

~A. R. Edmonds, Angular Momentum in Quantum
Mechanics (Princeton U. P., Princeton, N. J., 1957).
22J. M. Eisenberg and W. Greiner, Excitation Mechan-

isms of the Nucleus (North-Holland, Amsterdam, 1970).
23J. da Providencia and C. M. Shakin, Ann. Phys. (N.Y.)

30, 95 (1964).
W. L. Wang, Massachusetts Institute of Technology,

Ph.D. thesis, 1971 (unpublished). Some errors found in
this reference have been corrected in this paper. The
errors also appear in C. M. Shakin and W. L. Wang,
Phys. Rev. Letters 26, 902 (1971).
25See, for example, S. Lie and T. Engeland, Nucl. Phys.

A169, 617 (1971).
V. Gillet and N. Vinh-Mau, Nucl. Phys. 54, 321 (1964).

2~The dipole-strength distribution we obtain is also
quite close to that of the finite-range calculation with the
Soper mixture as obtained by Brown, Castillejo, and
Evans in Ref. 1.
28See Caldwell et al., in Ref. 3.
2~There are discrepancies in the absolute magnitudes

of the measured cross sections; we, however, consider
our result also in excellent agreement with other exper-
iments in Ref. 3. Different absolute magnitudes of the
cross sections may be reproduced by varying the quanti-
ties I'x and I, or by "fine tuning" of the spectrum of
the secondary doorways and their coupling strengths. In
this work, we are only concerned with the intermediate-
resonance structure of the cross sections.

OF. Ajzenberg-Selove, Nucl. Phys. A166, 1 (1971).
3~P. F. Yergin, R. H. Augustson, N. N. Kaushal, H. A.

Medicus, W. R. Moyer, and E. J. Winhold, Phys. Bev.
Letters 12, 733 (1964); V. P. Denisov and L. A. Kul'chit-
skix, Yadern. Fiz. 2, 70 (1965) [transl. : Soviet J. Nucl.
Phys. 2, 48 (1966)]; R. G. Morrison, J. R. Stewart, and
J. S. O' Connell, Phys. Bev. Letters 15, 367 (1965);
J. T. Caldwell, Ph.D. thesis, University of California,
1967 (unpublished); Lawrence Radiation Laboratory Re-
port No. UCRL-50287 {unpublished); K. M. Murray and
J. C. Ritter, Phys. Rev. 182, 1097 (1969); H. Ullrich
and H. Krauth, Nucl. Phys. A123, 641 (1969); R. O.
Owens a,nd J. F. E. Baglin, Phys. Rev. Letters 17, 1268
(1966).
~~S. Lie, T. Engeland, and G. Dahll, Nucl. Phys. A156,



W. L. WANG AND C. M. SHAKIN

449 (1970).
33G. W. Cole, Jr., F. W. K. Firk, and T. W. Phillips,

Phys. Letters 30B, 91 (1969); F.A. Hanser, Ph.D.
thesis, Massachusetts Institute of Technology, 1967 (un-

published) .
N. G. Puttaswamy and D. Kohler, Phys. Letters 20,

288 (1966).

PHYSICAL REVIEW C VOLUME 5, NUMBER 6 JUNE 1972

Two-Body Photodisintegration of He Between 40 and 150 MeV

Nancy M. O'Fallon, f Louis J. Koester, Jr., and James H. Smith
University of Illinois at ghana-ChamPaign, Uxbana, Illinois 61801

(Rec.eived 24 January 1972)

In an experiment with semiconductor and scintillation counter telescopes we have measured
the photodisintegration cross section of He at photon energies from 40 to 150 MeV and pro-
ton laboratory angles of 30, 60, 90, 120, and 135'.

I. INTRODUCTION

This paper describes an experimental measure-
ment of the photodisintegration of He' into a pro-
ton-deuteron final state for photon energies be-
tween 40 and 150 MeV. In the region from thresh-
old to about 40 MeV, the two-body photodisinte-
gration of He' has been moderately well studied,
as has the inverse reaction. ' " The general fea-
tures are clear. The cross section rises rapidly
from threshold to a peak of 1.0 mb at an energy
of 11 MeV. It then tails off to about 0.2 mb at
40 MeV.

The angular distribution is best known from the
inverse reaction. " Here again the features are
clear. The angular distribution at 15 MeV is a
sin'(9 distribution pushed toward forward proton
angles near 75 in the center-of-mass system.
There is essentially no isotropic component (&lg).

Theories based on fairly simple ground-state
wave functions that also fit electron scattering
data are capable of describing the magnitude and

energy dependence of the photodisintegration. The
forward peaking in this low-energy region can be
understood in terms of simple retardation effects
caused by the size of the nuclear mave function. ""

At energies above 40 MeV, data are rather
sparse. Fetisov, Gorbunov, and Varfolomeev'
have measured the total cross section and angular
distributions, but with very limited statistical
accuracy. Picozza eI' a/. "have measured 90' dif-
ferential cross sections between 180 and 500 MeV.
Didelez et a/. "have measured the inverse reac-
tion for the equivalent of 109-MeV photons and

have a well-determined angular distribution.
This experiment was undertaken to investigate

the energy and angular dependence of He' photo-

disintegration from the region where it is well
measured and moderately well understood in terms
of photon interactions with nucleons described by
a simple wave function up to meson threshold
where other mechanisms for the interaction should
become important. " An additional feature of in-
terest is that detailed balance can be tested at
109 MeV where meson effects are not completely
negligible.

II. EXPERIMENTAL APPARATUS

AND PROCEDURE

A. Experimental Method and Arrangement

The experimental arrangement is shown in Fig.
l. The He'(y, p)H' reactions were produced by a
250-MeV bremsstrahlung beam incident on a low-
temperature He'-gas target. Deuterons mere
counted in a counter telescope consisting of three
transmission-type silicon semiconductor detectors
followed by a plastic scintillator. Protons were
detected in time coincidence by means of a tele-
scope of four plastic scintillators. The photon
beam was horizontal. The axes of the two detec-
tor telescopes were also horizontal and could be
rotated independently about the target.

The solid angle mas determined by the semi-
conductor detectors of the deuteron telescope.
The plastic scintillators of the proton telescope
were large enough to intercept all protons cor-
related with deuterons in the deuteron telescope
throughout the entire energy interval. At each
angular setting, therefore, cross-section mea-
surements for all energies were carried out at
the same time.

The energies of the deuterons and protons are
determined by a combination of range and pulse


