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In the cluster model of Brink, Margenau, and Bloch, the motion of two clusters is de-
scribed by an integral equation for the generator-coordinate amplitude. It is shown that a
direct solution of this Hill-Wheeler equation provides a practical framework for the study
of cluster-cluster scattering; however, the Coulomb potential is not yet included in the for-
malism. The case of 0.+n scattering (with the Coulomb potential neglected) is studied in
some detail and dineutron —dineutron scattering is also mentioned.

I. INTRODUCTION

It is evidently desirable to have a theory which
describes the elastic scattering of two light nu-
clei in terms of the nucleon-nucleon potential and
with the Pauli principle properly taken into ac-
count. For a long time, the resonating-group
method' was the only practical framework for
such calculation and it has been extensively ex-
ploited. ' However, it seems that extending this
method to the scattering of clusters larger than
an e particle is very difficult.

The generator-coordinate method of Margenau,
Bloch, and Brink' is a more powerful theory that
is not limited to small clusters. Its application
to the scattering problem is very recent~ ' and
is still at a relatively primitive stage. The most
effective approach to date is that of Giraud, Hoc-
guenghem, and Lumbroso (GHL)' who transform
the Hill-Wheeler equation for the generator-coor-
dinate amplitude into a SchrMinger equation in
momentum space for the true wave function of
relative motion. Detailed calculations have been
performed for dineutron scattering. '

In the present work, we propose an alternate
formulation of the scattering problem in which
the Hill-Wheeler equation of the generator-coor-
dinate method is solved directly for the phase

shifts. Only the simplest case of a-n scattering
is studied directly, and the Coulomb potential is
neglected for the moment. The possibility ot gen-
eralization to heavier clusters is indicated.

II. FORMALISM: CLUSTER MODEL

Since the generator-coordinate method of Brink,
Bloch, and Margenau has been described very
clearly and in some detail in Ref. 3, we only sum-
marize it here.

The intrinsic state 4 (r„.. . , r~; s) describes two
n clusters located at +s, respectively; and is con-
structed as a Slater determinant of single-parti-
cle orbitals P, centered on es:

where g„„is a spin-isospin state vector. The gen-
erator coordinate s determines only the mean
positions of the two clusters. The basis states
of good angular momentum are obtained from 4(5)
by projection

21+1 p~
@,(r„.. . , r„s)=

2 ~
d cosp p, (cosp)

1

x&(p)e(r„. . .; r„.s) .
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J [H, (s', s) -EN, (s', s)]f, (s)s'ds =0.
0

(2)

Here H, (s', s) is a matrix element of the many-
body Hamiltonian taken between two states 4, (s')
and C, (s), and N, (s', s) is the overlap matrix ele-
ment of the two states.

The extension of the method to heavier spherical
clusters is straightforward, and only involves the
introduction of p-shell (or higher) harmonic-os-
cillator orbitals about each cluster site in addi-
tion to the s-shell orbital Q, .

Using the same approach as Ref. 6, it can be
shown that (apart from normalization factors)

4', (r„.. . , r,}= g, 8(g, (R)$,),

The complete wave function (including the intrin-
sic state of the clusters as well as their relative
motion) is obtained by taking a linear combination
of these basis states with all values of the cluster
separation 2s:

4,(r„.. . , r, ) = f, (s)c,(r„.. . , r„s)s'ds,
0

where the generator-coordinate amplitude f, (s)
is the solution of the Hill-Wheeler equation

where g, (R) is a true wave function of relative
motion (R is half the true cluster separation},

'

and g;„, are wave functions describing the in-
ternal motion within the clusters and the zero-
point motion of the center of mass, respectively,
and, finally, 8 is the antisymmetrization opera-
tor. The spurious center-of-mass motion arises,
as in the shell model, because we use determin-
ental basis states, but it does not cause any diffi-
culties. The relationship between g, and f, is

g, (R) = I', (R, s)f, (s)s'ds,
0

with

In the present case, it is possible to carry out
the angular momentum projections analytically.
If we define

1+(-)' 2s'+ 2s"
2(21+ 1

then the overlap and kinetic energy functions are

N)(s', s) =A)(s', s) g) 2 (
—4g( 2 +35) 0

4ss' r . 2ss'
b' /

' 5'

s +s', 547, 4ss' ., 4ss' 8ss' ., 2ss'

where i, (x) is the regular spherical Bessel function of imaginary argument and i,'(x) is its derivative. If
the nucleon-nucleon potential is central with a Gaussian shape,

V(r») = Vo(W+MP„)exp(-r»'/a'),

then

1

V, (s', . s) =2(Xs+Xs)N, (s', s)+4(XD+Xs) (1 —e "'"'—e '"'"')A, (s', s) i,

2 / 2 2ss'
V

where

X~= (8W —2M)(a/p. )'Vo,

Xs = (8M —2W)(a/p, )SVO,

p, =a +2b'

b 2—

2 2

T-2 b-2+~-2

If the two-body potential is a sum of Gaussians,
then V, (s', s) is a sum of terms like the above.
The Coulomb potential is omitted from this dis-
cussion, partially because we have been unable
to carry out an analytic angular-momentum pro-
jection for this case. In all the calculations dis-
cussed below, the Brink and Boeker Bl potential'
is used.
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III.. FORMALISM: SCATTERING PROBLEM

In any scattering problem it is necessary to sep-
arate the coordi. nate space i.nto an external region
where the two clusters are moving freely, and an
internal region where forces and exchange effects
enter the picture. Although the Hill-Wheeler
equation is an integral equation, such a separa-
tion is still possible because the kernel is strong-
ly peaked' about s = s' with a spread of the order
of b. TypicalIy, the external region can be taken
to begin at a value sp of the separation parameter
which is a few times the value of b. The division
between internal and external regions is not un-
ambiguously sharp, but it is as clear as in the
case of a SchrMimger equation with a potential
that drops off exponentially with distance.

We now assert that the solution of the Hill-
Wheeler scatteri. ng equation in the external re-
gion ls

done analytically (see Appendix), we have not been
able to also do this for n, (ks). We have therefore
carried out the integration numerically for a
.range of energies and angular momenta. A typi-
-cal result is shown in Fig. 1. It can be seen that
the Hill-Wheeler equation is accurately satisfied
by the generator-coordinate function of Eq. (6)
for s'a 4.5 F, which implies that Eq. (6) is accu-
rate for s&3f

Noting that I', (R, S) is peaked about R = s, we can
write, for R-~, that

x [sin(ks) +B, cos(ks)]ds

=constx (sinkR—+B coskR) .
kR

This immediately relates 8, to the phase shift

f, (s) =j,(ks)+B,n, (ks), (6) B,= tan(6, ——,'Lw) .
5 kz = (6 - -,')eu +2(x, +x,) +16&6m

(7)

+ OC

4=0
KE= 7.5 MeV
%u) =19.4 MeV

The first two terms in Eq. (7) represent the inter-
nal energy of the clusters (including the center-
of-mass zero-point energy), while the third term
is the kinetic energy of relative motion (recall
that the cluster distance is 2s). This can be
proved by substituting the above expressions into
the Hill-Wheeler integral and showing that this
integral vanishes for all s' in the external region.
Although the integrals involving j,(ks) can all be

The scattering equation now becomes a nonhomo-
geneous integral equation over a finite interval
[E and k are related by Eq. (7)]:

Sp
[H, (s', s) —EN, (s', S I]f, (s)s'ds

p

= F,(s'; E) +B,G, (s') E),

with

F,(s'; E) = —
~l [H, (s', s) —EÃ, (s', s)]j,(ks)s'ds,

Sp

(10)

G,(s', Z) = —Jt [H, (s', s) —EN, (s', s)]n, (ks)s'ds.
Sp

This equation is to be solved for B, and for the
generator-coordinate amplitude f,(s).

IV. METHOD OF SOLUTION

-10
0

I

5
s'(F)

FIG. 1. The circles show the logarithm of the integral
~
f[H&(s', s) BN, (s', s)]j,(ks) s d-s

~
as a function of s',

for the Brink-Boeker B1 potential. A four-point Gaus-
sian integration formula with a step size of 0.25 F is
used. The triangles show the same integral but with
n, (ks) replacing j&(ks). The slight rise in the curves
near s' = 7 F is due to the nearness of the upper. limit on
the integral which was 11.0 F. The curves for different
l or different energies are very similar.

The integral equation for arbitrary s' is changed
into a set of algebraic equations for the values of
f, over a discrete set of N points S, We use a
four-point Gauss-Legendre quadrature formula
repeatedly applied over —,'N intervals ~. The N
+ 1 simultaneous linear equations

Q[H((si, si) —EÃ((s)~ s ~ )]f(( )(sd is. i
i=1

= F,(s,)+B,G, (s&) (j =.1-N)

f, (s„)=j,(ks„) +B,n, (ks„)
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TABLE I. The parameter Bp for l =0 n+n scattering
as @ function of energy (c.m.) . The integration param-
eters (see text) are (S=O, 2.4, 6.0, 12.0 F; M=0.3,
0.6, 0.3 F). The Brink-Boeker B1 potential is used,
Ncu =19.4, and the Coulomb potential is not included.

(MeV) Method 1
Bp-

Method 2

0.5
1.
2.
4 ~

6.
8.

10.
12.
14.
16.

1.7281
0.7625
0.1.584

-0.5106
-1.2937
-3.1053

-42.270
4.3922
2.1142
1.3511

1.7246
0.7615
0.1586

-0.5102
-1.2946
-3.1090

—42.016
4.4016
2.1159
1.3507

1.046
0.651
0.157

-0.472
-0.913
-1.259
-1.547
-1.794
-2.012
-2.207

TABLE II. The parameter B2 for l =2 e+e scattering
as a function of energy (c.m.) . The integration param-
eters are (S=O, 2.4, 6.0, 12.0 F; M=0.3, 0.6, 0.6 F)'.
The Brink-Boeker B1 potential is used, 8~=19.4, and
the Coulomb potential is not included.

B2

are solved for the N+1 unknowns f, (s,.) and B,.
The co,. are the weight factors associated with the
quadrature formula, and S„ is chosen near So. In .

practice it is preferable to solve for the values
of f, (S,) =[NI(S„SI)]"PfI(SI)after appropriate re-
normalization of II), N„ I'g, and G, in order to
avoid the strong zero of II, and N, that occurs at
Sy S- ~0.

GHL have noted that the Fourier transform of

f, (s) diverges at high frequency. However, the

Fourier transform of H, -EN, converges more
strongly, so that no fundamental difficulty exists
provided that a high-frequency cutoff is introduced.
This is done automatically by the finite step size
used in the solution of Eq. (I). Nevertheless, the
solution oscillates rapidly, the shortest wave-
length (-sIM) having the largest amplitude. Be-
cause of these oscillations, the f, (s, ) obtained
using different step sizes cannot be compared;
however, the phase shifts turn out to be com-
pletely stable.
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In the above method, the step size determines
the accuracy of the integration and also serves
as a short-wavelength cutoff. It is evidently de-
sirable to divorce these two roles. This can be
done by imposing a set of continuity conditions
which relate the values of f, (s, ) at adjacent points.
We have used a four-point Gaussian interpolation
formula for this purpose. The N+1 unknowns

f, (s, ) and B, are then overdetermined by the N
equations above and the (linear) continuity equa-
tions which can number up to N —2. This set of
equations is solved by a linear least-squares fit.

We have used both these methods to study n+ cy

scattering in the energy range from 0 to 15 MeV
for / = 0 and 2 with a size parameter S~ = 19.4 Mev
and with the Brink-Boeker B1 interaction. The
results are shown in Tables I and II. A typical
set of points S, is obtained using a spacing b8
=0.3 F over 0(S (2.4 F and ~=0.6 F over 2.4
&S & 6.0 F (=S,), while the integral over the ex-
ternal region is done with a step size ~=0.6 F
over 6.0 (S (12.0 F. We can abbreviate this into
a more compact notation (S = 0, 2.4, 6.0, 12.0 F;
AS = 0.3, 0.6, 0.6 F). It should be mentioned again

(MeV) Method 1 Method 2

0.5
2.5
4.5
6.5
8.5

10.5
12.5
14,5

0.0158
0.7624
1.5453
1.3134
0.9661
0.6968
0.4904
0.3239

0.0159
0.7615
1.5453
1.3137
0.9653
0.6965
0.4907
0.3244

0.016
0.651
0.997
0.920
0.768
0.609
0.456
0.313

I

1 2

I

I ~ I, I I

3 4 5
s (F)

FIG. 2. The generator-coordinate amplitude ifp(s)i ob-
tained by the second solution method (solid curve) is
compared with i jp(ks)+BpIIp(ks)i (dashed curve). The
integration parameters (see text) are @=0, 2.4, 6.0,
12.0 F; ~=0.3, 0.6, 0.3 F).
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that there are four points s, in each interval,
their location being determined by the Gaussian
integration formula.

It can be seen that the values of B, obtained by
both methods and with different step sizes are all
quite accurately the same, so that both methods

. may be said to work well. The qualitative behav-
ior of the phase shifts is as expected, but a com-
parison with experiment is not meaningful, since
the Coulomb potential has not been included.

Figure 2 compares the generator-coordinate
amplitude f, (s, )obtai.ned by the second method
with j,(ks) +B,n, (ks). As expected, the two func-
tions coincide closely for s &3 F, and there still
remains a small oscillation but of relatively long
wavelength (-2bS) and small amplitude. The os-
cillations in f, (s, ) obtained by the first method are
typically a few orders of magnitude greater in
amplitude and have a wavelength -—,'~. The ex-
tent to which the oscillations are changed in the
second method depends on the step size and also
on the weight given to the continuity equations.

V. DINEUTRON SCATTERING

O
3-

N + N scattering2 2

g =0
b ~15 F

0 I I ~ I ~ I ~ I I ~ I I I I ~ I ~ I I I I I

0 5 10 15 20
E (MeV)

25

ler equation will ultimately prove preferable to
transforming it into a Schrodinger equation with
a nonlocal potential.

FIG. 3. The l =0 phase shifts for dineutron-dineutron
scattering are shown as a function of energy (solid curve).
The circled points are taken from Ref. 6. The integra-
tion parameters (see text) are (S =0, 2.4, 6.0, 12.0 F;
M =0.3, 0.6, 0.3 F).

The preceding calculations can easily be re-
peated for the scattering of two dineutrons. We
have done this in order to compare our results
to those of GHL. ' We have used the parame-
ters given in Ref. 6 and step sizes specified by
(S=0, 2 4, 6.0, l2.0 F; M =0.2, 0.6, 0.2 F).
The results are presented in Fig. 3 and show that
both methods predict very much the same phase
shifts. There is, however, a systematic differ-
ence between the two curves of a few percent. W' e
have varied our step sizes by up to a factor of 2
without. affecting the phase shifts by more than
three parts in 104, so the difference is not likely
to come from this source.

VI. CONCLUSIONS

We have shown that it is possible to solve the
Hill-Wheeler equation for the scattering of two
clusters by direct techniques. This direct method
is simpler to use than the method of GHL~ which
is an important consideration if the scattering of
heavier clusters is the ultimate aim of the project.
However, a great deal of work must yet be done
before heavier clusters can be treated: In partic-
ular, the Coulomb interaction must be properly
included; the mathematical properties of f,(s)
must be investigated more formally; and the pos-
sibility of including absorption in some approxi-
mation must be studied. It is therefore not yet
clear whether a direct solution of the Hill-Whee-
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APPENDIX

If we omit from the usual overlap and energy
functions all those terms which refer to either an
interaction or an exchange between the clusters,
then we obtain

4 /

N~~(s', s) =A, (s', s)i, y2

T~(s', s) = h(oA, (s', s)

s +s' . 4ss' 2ss'. , 4ss'.

V~(s', s) = 2(XD+Xs)N~~(s', s) .

The motion of two free clusters can then be de-
scribed by the equation

I [H((s', s) -EN, (s', s)]f, (s)s2ds=0. (Al)

By direct evaluation of all the relevant integrals'
it can be shown that the solution of the above equa-
tion is

f((s) =j g(ks),



i888 N. B. DE TAKACSY

with the energy E given by Eq. (V). Similarly a
direct evaluation of the relevant integral [Eq. (4)]
gives the expected result for the true wave func-
tion

gf(R) '=q, (IR),

where all multiplicative constants have been omit-
ted. This also establishes that j,(ks) is a solution
of the full Eq. (2) for large s', since it is not hard
to show that N, (s', s) N-f(s', s) and H, (s', s)
-Hf (s', s) for large s'.
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Council of Canada.
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y-vibrational states in the rare-earth region are studied within the framework of the ran-
dom-phase approximation (RPA), employing the surface & interaction as the residual inter-
action. The calculations are performed without recourse to the schematic model. All terms
in the interaction arising in the RPA matrix are taken into account. The results are com-
pared with those obtained considering only the particle-hole term and with experiment. It is
seen that previous schematic calculations overestimate the extent of the HPA correlations.
Agreement with experiment, however, is not significantly improved.

1. INTRODUCTION

The quasiparticle random-phase approximation
(QHPA)' has been employed by several authors
with relation to the microscopic description of
collective nonrotational states in deformed heavy
nuclei. The method presents considerable numer-
ical difficulties. Huge matrices must be diagonal-
ized for every collective state, owing to the fact
that in these nuclei the single-particle level den-
sity is very high.

The problem, however, can be easily overcome
if one resorts to schematic separable forces. In

this special case it suffices to look for the roots
of a simple secular equation. ' Thus, remarkable
success has been achieved in the description of
collective vibrational states in the rare-earth and

transuranic regions, ' ' using the pairing-plus-
quadrupole or pairing-plus-octupole models (PQ
or PO). More recently, similar calculations have
been performed utilizing an even simpler (although

more realistic) force, the surface 5 interaction
(SDl) 8-13

The characteristic QRPA matrices are built with

two types of interaction terms: particle-particle
and particle-hole terms (and their corresponding


