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Model-independent results, correct to first order in recoil terms E/M, are given for vari-
ous spectrum and correlation effects in allowed B decay with parent polarization and/or ori-
entation and for B-y circular-polarization correlations.

I. INTRODUCTION

Recently, experiments have begun to probe the
effects of second-order forbidden terms in allowed
(Aj=0, £1; “no”) nuclear and hyperon 8 decays.!
Measurement of these terms, e.g., the familiar
weak-magnetism contribution, can provide infor-
mation concerning nuclear structure,® the validity
of the conserved-vector-current (CVC) hypothesis,®
the existence of second-class currents,” etc.
Papers discussing allowed nuclear 8 decays have
generally omitted such effects or have given them
in a model-dependent form, generally based on

the impulse approximation.

We assume here the validity of the current-
current form of the weak interaction and give,
using elementary-particle methods,® model-inde-.
pendent forms for the decay spectra correct to
first order in the “recoil” parameter E/M, where
E is the electron energy and M is the nuclear
mass. We make certain approximations, which
we note at the beginning: (1) Electromagnetic ef-
fects are ignored except for final-state Coulomb
interactions included in the standard Fermi func-
tion; (2) we adopt the CVC hypothesis, thus elimi-
nating two (small) vector form factors.®



1850 HOLSTEIN, SHANAHAN, AND TREIMAN 5

Section II defines notation and gives the Hamil-
tonian for allowed B decay in terms of four re-
duced matrix elements. In Sec. III results in
terms of these form factors are given for:

(i) spectra and correlations for decay of unpola-
rized nuclei,

(ii) the spectrum integrated over neutrino direc-
tions for decay of polarized (and oriented) nuclei,
(iii) B-particle correlation effects for a situation
in which the daughter nucleus (from the 8 decay
of an unpolarized parent) itself undergoes a decay
into a granddaughter nucleus and an additional
(possibly polarized) particle. ’
Finally, in Sec. IV we discuss somé implications
of our results.

II. DEFINITIONS

For definiteness we discuss the case of elec-
tron decay. Modifications appropriate to posi-
tron decay appear in the final formulas. We con-
sider the reaction

- p+e +7,.

Let p,, p,, p, and k denote the respective four-
momenta of parent nucleus, daughter nucleus,
electron, and neutrino. The parent and daughter
masses are M, and M,. We also define

P=p,+p,, a=p,-p=p+k,
M=%W1+M2), A=M,-M,,

We assume the weak-decay amplitude is given
(for AS=0 decay) by

T=—QK£‘/—(_)2_—SQQ(BIVH+A“|<1)I", (1)

where G, is the usual weak-coupling constant
(Gym 2=~107®), 6 is the Cabibbo angle, and I* is
the matrix element of the lepton current’

F =7 (L +vs)v(k).

For strangeness-changing decays we, of course,
replace cosfc by sinfc.

In the rest frame of the parent nucleus, let E®®)
denote the energy (three-momentum) of the elec-
tron and let % be a unit vector in the direction of
the neutrino momentum. The maximum electron
energy allowed by kinematics is E,,

Eo=AQ+m 2/2MA)/(1+A/2M),

where m , is the electron mass. Then, to first
order in E/M the decay spectrum is given by

|T|? 1+ 3E=Eo=3p -k
2n)® M

dr = )(E0 — EVpEdEdQ 4R, .

)

We first consider the familiar case of hyperon
Bdecay (j=j'=%). One can write for the matrix
element of the weak current, correct to first
order in recoil quantities and assuming CVC

BlV,+A,|a)l*
=ﬁ(p2)<gv'yul" - ihngM-ouvl“qv

+g4ruYslt - izﬁMnayyjl“qv?’s)u(Pl) .
3)

Here g, (g,) are the conventional vector (axial-
vector) coupling constants, g, is the weak magne-
tism contribution related (on the CVC hypothesis)
to the anomalous magnetic moments of states «, 8,
if @, B are members of the same isospin multiplet.
The so-called induced tensor term, gy, is an ad-
ditional axial form factor. If a, 8 are members
of a common isotopic multiplet then g+ 0 re-
quires the existence of second-class currents.®
However, if a, 8 are not isotopic analogs, gy can
receive contributions from both second-class and
the usual first-class currents.® We now reduce
the expression appearing in Eq. (3) to a form in-
volving only two-component (Pauli) spinors and
generalize this version to an arbitrary allowed
nuclear g decay.

Suppose parent (daughter) nucleus has spin j
(4") and spin component 7 (7 ’) along some axis
of quantization. Then in the rest frame of the
parent, to first order in recoil quantities and as-
suming CVC, we can write for the decay ampli-
tude?®

4

(BIV“+A"|a)l"=W

P lﬁjjlémm:

i, e s
-W(jlm lk‘],]-]m)eijk
X [201,;+ i€; 55 o1 M (cP" #dg")],
(4)

where the - (+) sign preceding d refers to elec-
tron (positron) decay.!! Here repeated Latin in-
dices are summed from 1 to 3, while repeated
Greek indices imply a four-vector contraction.

All results in subsequent sections will be given
in terms of the four form factors q, b, ¢, d and
will be independent of specific nuclear models.
However, in order to express our form factors
in more conventional terms, we give here the pre-
dictions for a, b, ¢, d provided by the nuclear im-
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pulse approximation® zero momentum transfer for neutron B decay, as
_ given in Eq. (3), My (M gq) is the usual Fermi
a=gyMg, (Gamow-Teller) matrix element, A is the mass
b=[gM,+(gy +g Mgz ]A, number, and (8] 6 @) indicates a reduced matrix
(5) element - for a tensor operator 8} of rank A:
c=gs[Mer+A(a/2MM,,], g

st t | gA T . = (it2 ? Sy 4 A
d=(eg Moy +gMonA, Bj'm |6y ajm)=(j'm Al jrjmXBl 6 ).

(6)
with
Me=BlIX 1 la)y, Mer=BIX i0;ll), IIl. RESULTS
i i
M =BIX 7 Llley, My +BliY7ioxL,|la). Using the form factors defined in the previous
i ! section and the techniques sketched in Appendix
In Eq. (5) gy, g4, &u, &u are the form factors at A, we find the spectrum in electron and neutrino

variables for B decay from unpolarized nuclei:

2 . N = .5\2 2
dr =F.(Z, E)EVZ;T%GQ (E,- EVpE dEdQ 49,1 f,(E) + fz(E)RE’g + A(E)[(%) -% 1%2—]5 , )

where the dominant Coulomb effects are contained in the energy-dependent Fermi function F.(Z, E), the
upper (lower) sign applying to electron (positron) decay. Similarly in the following expressions for the
spectral functions f;, upper signs refer to electron, lower signs to positron decay. We find

filEY=|al|?+ |c|?-3 —Q[lclzi 2Rec*(b+a‘)]+ (3]a|2+5|c]21 2Rec*b)—§ ME[ZIclzi Rec*(2b+d)],

f(E)=|al?- sIC|2+— —Q‘“clzi Rec*(b+d)]-— —(3] |2+ Rec*p), (8)
HUE) =2 (=3lal?+ c[).

For polarized (or oriented) nuclei, we suppose the parent nuclei to form an incoherent ensemble with
respect to the spin pro;ectlon m along an axis of quantization described by unit vector #. The mean pola-
rization vector is then j/j j=(m)/j)@, and we shall require an additional parameter A; which describes the
deviation of (m?) from the value j(j+1)/3 obtaining for an ensemble of randomly orlented spins?3:

A;=1=-3m?/j(j+1).

The spectrum, integrated over neutrino directions, is*
dr =2F.(Z, E)E%c;’)ﬁﬁ (Ey— EV*pE dEdSQ, ) f,(E) + £,(E) ]’ b, fs(E)A [( Ep ) % 2;]% ) )
Here the spectral function f,(E) has already been given, and for the other spectral functions we find
fu(E)=6,, ,/(#i)m[Z Rea*c —g % Rea*(c+b+d) +3 2 E Rea*(7ci: b :hd):'

=F—}]:.’1%;Ic|2 332- Z2[|c|?+ Rec*(p +d)]+=— M[ll]cFiRec*(Sb d)]%

(10)
E)=0,, ol |c[*+ Rec*(b-a)],
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where
j+1 j=j'+1
vi,0=41 i=j’
-j  j=i'-1,
-(+1)/@2j=-1) j=j'+1
=41 Jj=j
~j/(2+3) j=i'-=1.

Finally, we consider a situation in which the daughter nucleus produced in the g-decay process under-
goes a subsequent transition to a final nucleus of spin j” with emission of an accompanying « particle or
(possibly polarized) photon. The latter is characterized by a unit vector K along its direction of motion
in the laboratory frame (rest frame of the parent nucleus). The spectrum then contains certain kinematic-
shift terms associated with the transformation to the lab frame from the rest frame of the g-decay daughter
nucleus, wherein the subsequent transition is most simply characterized. In the following, it is the spec-
tral function g which expresses these kinematic effects. We find the spectrum for delayed o emission':

2 2 >, = 5.2 \2 2
ar="r,(z,B)SC 98 % (p _ pypEarde, o) fi(E) + B, v, A #(L)] EP +A§r,jn(L)f6(E)l:<%)> -1 1]%

@n)° 1A E 3 B
(11)
Here f,(E) has been given previously, and
% 2 i _2 E, 2o L cl2[1= 2 A0, 4 E (243 ]| [1= LAl u(L)
g[E, v ,)\j/'ju(L)]—E M’U*{—!a, +3ICI[ —l—-okjl'ju L)]}—3 M’U*{,a +§ c [ —Eaxj:'ju ]},
(12)

JolE) =5 [ [* £ Rec*(b- )],

where v* is the velocity of the a particle in the center-of-mass frame of the g-decay daughter. 1}, ;#(L)
is a coefficient which depends upon the nuclear spins involved and on the angular momentum L of the «
particle with respect to the daughter nucleus. A general expression for 1}, ,~(L) is given in Appendix B.
Here we consider only the case of p-wave (L=1) or d-wave (L=2) emission. Then we have

Nprgr(L)=ny 5750, 4m(L), (13)
where
-(j=1)/2j+1) j=j'+1
5,40 =9 1 j=j’
-(j+2)/(2j+1) j=j'-1,

and
(25'+3)/5" jr=j"+1
le'jn(L=1)=2 —(2jl+ 3)(2]'— 1)/_7,(]’+1) jl:j”
(25'=1)/(5+1) jr=4"-1,
225" +3)/j’ jl=j"+2

~@j7+3)(j" =5)/j"(j’+1)  j'=j"+1
Ty(L=2)=83 (257 +5)(25' = 3)/j'(j'+1) j'=j"
-5/ =1)(j'+6)/j'(j'+1) j'=j"-1
2(25'-1)/(j'+1) i'=j"=2 -
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For circularly polarized photon emission, we have

G, cos’6,
(27)°

For E(L) or M(L) multipole radiation

dr=1F.(Z,E)

(E,— EVpEdEAQ A Kg f1(E)+ f,(E) I%ﬁ +£,( E)[( = >2 -

K-

ol

I

ol
&

o] 2 E N 2 E
f(E)=g[E, 1, I‘j:,J-»(L)]+0T,,',H(L)(w/ﬂ§+ 1o, ,; [2Rea*c—§ HQ Rea*(cibid)+§ 7 Rea*(7ctb:td)]

“‘m'% le[2-2 Zapjc [ Rec*(b+ )]+ 505 [11]c |7 Rec*(5b—d)];>,

(15)

E
fo(B)=T], ;u(L) fo(B) = 3071, (L) 37 (8, VITG+ T) 2Rea*c 2K, 5+ [c °] -

Here
=(j=1) j=j'+1
K, ={1 j=j'
(j+2) j=j'-1,
E(L) with right-hand circular polarization
M (L) with left-hand circular polarization

-1 E(L) with left-hand circular polarization

M(L) with right-hand circular polarization.

General results for T;. ;.(L), I}, ,»(L) are
quoted in Appendix B. Here we note that for di-
pole radiation [E(1) or M(1)]

Ti,m(L=1)==4n, ;7,0 m(L=1),

J'+1 =gl

1 = s
TGt (162)

=J

Tjr,jn(L= 1)=

’

j/ =j"— 1 ;
while for quadrupole radiation [E(2) or M(2)]
r;r'jn(L-_-z) = %ﬂj ,jIle,jII(L=2) 5

2(jr+1)  jr=jre2
(j+3)  jr=jr+1
Tj,,j»,(L=2)=6j,(—;,+1$4 3 jr=j"  (16b)
~(57-2) jr=jr-1
250 jrejr-2.
IV. SUMMARY

We have given results for the spectral functions
f;(E) in terms of four nuclear form factors-a, b,

¢, d. In leading approximation — when recoil order

terms are neglected — the spectral functions are
independent of energy and depend only on @ and c.

However, inclusion of b, d produces corrections
of order AE/M =E/m, m being the nucleon mass.
There exist also recoil terms in a, c of order E
over the nuclear mass. Although we carried
these along for completeness, these may usually
be neglected for all but the lightest nuclei.

By careful experimental study of the spectral
functions, as discussed in Refs. 8 and 9, we can
measure the coefficients b, d (we consider q, ¢
to be determined, as they dominate the spectra)
and thus provide information concerning nuclear
structure and/or the weak interactions. The size
of b, of course, bears directly on the validity of
the CVC hypothesis,® while d provides a measure
both of possible second-class axial-vector cur-
rents and of the validity of the impulse approxi-
mation.*®

Except in g-y or f-a correlation coefficients
recoil effects are generally small corrections to
the leading terms and may only be isolated via
their energy dependence. A place where such
terms may be of importance is in the measure-
ment of Coulomb mixing via the -y circular-polar-
ization correlation,’® wherein one measures the
coefficient f,(E)/f,(E) and attempts to deduce the
size of a, which in a nonanalog transition provides
a direct measure of isospin mixing effects. Thus,
for example, in the decays

Na*(A1*)(I=1,J°=4")
~Mg*(1=0,J2=4*)+e"(e*) +v
N
Mg (1=0,J2=2"%)+y,

the experimental results for right-hand circular
polarization are!”

({5% )Na =0.091+ 0.017,

(f%%)m =-0.086 + 0.054,
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while the predicted value, in leading approxima-
tion, is

f—-”——(E)=:t 1(1i4\/5-2) 117
.fl(E) -3 c . ( )
It is known from f¢ values®® that ¢ ~0.07 (the de-
cay is strongly K-forbidden); th\;s we find

A= (0.7 1.6)x 107, aA™*=(=0.3£5.1)x 10"

providing rather strong limits on isospin mixing.
However, if we include recoil terms and average
over the electron energy spectrum we find

8- ifueantei(2sg] oo

Now the impulse approximation predicts b/Ac ~+5
and Wilkinson’s experiments comparing f¢ values
for mirror decays* imply according to one inter-
pretation d/Ac~-6.° Then the experiments on
the mass-24 system yield

E (b .d
12[4‘[5 ﬁ(?'scﬂ

Since EN?'/m ~2x10~° and Eé"l%/m ~9x1073,
in either case a sizable d coefficient, as suggested
by the Wilkinson data, can mock up isospin mix-
ing even if g vanishes or can mask an actual mix-
ing effect. Our purpose is not, however, to draw
specific numerical conclusions but rather to in-
dicate the importance of inclusion of recoil terms
in the analysis of g-decay experiments.

-(0.3+5.4)x 1072

(0.8+£1.7) x10"2

APPENDIX A

We assemble here a few details of the calcula-
tions whose results are reported above. We begin
by noting that the weak-current matrix element
given in Eq. (4),

(BIVy +A, | 0) 1" =502 P 18,108

_ﬁ (j'm'1k|j'1m)e,y,

X [2b1,9;+i€;;5n(cP" Fdq"1*],
(A1)

is split into two components according to trans-
formation properties under spatial rotations—a
term (a/2M)P -1 transforming as a scalar and a
second part, consisting of the term in brackets,
transforming as a 3 vector. Then, for example,
in calculating g-y correlations, we successively
decompose parent and intermediate nuclear states
into products of nuclear states and spherical har-
monics relating to the weak current and the pho-
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ton polarization. The work is simplified consider-
ably by choosing the axis of quantization to be
along the direction of photon momentum and speci-
fying definite photon helicity. Thus, for the vec-
tor terms and E(1) radiation we write

ljm) =(j'm "1k |j'1 jm)Y¥(S) |j'm"), (A2)

where
li'm"y= (G m "1y "y m Y i) |jm "),

where € represents the polarization of the photon,
and where

(g)l_" €;[200,q;+ i€ ;5,1 M (cP" Fdq")].
A similar analysis may be carried through for
the scalar component of the current.

One then squares, expresses the products of
spherical harmonics in rotationally invariant form,
and multiplies by phase space as in Eq. (2), yield-
ing
dI" «< phase space

X[A§.§*+B(@ 5 -84- 18%-§)+i0§ x5

a* la
+2DReq -§ = sl U E g 411}213 -IP- z*J

(A3)

Here @ is a unit vector describing the photon di-
rection in the rest frame of the g-decay daughter
nucleus, and A, B, ..., E are combinations of
Clebsch-Gordan coefficients. -Finally, we substi-
tude

Iy=puyky+kyb, — 8y p Rkt ieauﬁbpakﬁ ’

and normalize so that integration of § over the
sphere yields the standard allowed B-decay spec-
trum.

APPENDIX B

We give here the forms of the coefficients
)x;r,j"(L), I‘;r'ju(L), le'jn(L) for transitions of
arbitrary multipolarity.2® We find

, ,:(L) [l—mrj Jn(L)

_ [L(L+1)(2L+1) 1n
M| L= 1)(2L+3):|

[(2] - 1)(2j'+1)(24" +3)]1/2
§'(5'+1)

XW(23'Lj";j'L), (B1)
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and

[ 2L+1 77 25741 7
vew| fr] 7]

XW(15'Lj";5'L), (B2)

where the W’s represent Racah coefficients.
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