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The precompound theory of particle emissions predicts for the most energetic particles an
especially simple dependence of the emission probability upon residual excitation energy.
This paper examines this dependence, and compares it with experiment, to obtain the follow-
ing results: (a) a distinction between processes involving even and odd nuclei; (b) values of
single-particle densities, g, of plausible magnitude, whose uncertainties (due to experimen-
tal error in the data) are, however, too large to allow a firm conclusion about their energy
dependence; and (c) the expectation that a reduction in experimental error by a factor of 2 or
3 might allow a test of a more detailed description of the residual nucleus’s structure.

I. INTRODUCTION

Since the suggestion of precompound reactions
was first formalized several years ago,'~* these
processes have received a significant amount of
theoretical and experimental attention. Some tech-
nical deficiencies of the first, somewhat oversim -
plified, theoretical description' have been over-
come,”"® and connection has been made® between
such simplified, but not inadequate, descriptions
and more elaborate treatments of the full time-
dependent problem.!® Both approaches, in turn,
describe in the phase space of quantum states es-
sentially the same physics as earlier Monte Carlo
analyses had described in terms of the classical
position-momentum phase space.!!'’? Recently,
new experiments designed specifically to study
certain aspects of the precompound process have
been launched and reported.!® It seems fair to say
that the subject is currently an area of lively in-
terest still characterized by obvious questions
more numerous than well-known answers.

In this paper! we point out a few of the implica-
tions which follow from the very simplest nuclear
model [characterized by only one dimensional pa-
rameter, the single-particle level density, g, for
the very simplest reaction, (p, n)], and we attempt
to test this model against experimental data and
to assess the quality of the answers. In this mod-
el the precompound theory predicts for reaction
cross sections specific dependences upon the only
dimensionless variables available in the model,
namely, gE* (the dimensionless excitation energy)
and gU (the dimensionless excitation energy in the
residual nucleus). The possible tests therefore
are limited to three: (a) the dependence of cross
sections upon gU; (b) their dependence upon gE *;
and (c) the magnitude implied by the data for the
constant level density, g.
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II. TEST OF SOME ASPECTS
OF THE PROCESS

In this note the precompound description is test-
ed against the data'®~!” from ( p, n) reactions on
Sn!!® and Sn!'?. The test is posed for the very sim-
plest nuclear model, in which the excitation states
of the nucleus are assumed to be well described in
terms of particles and holes in a single-particle
spectrum with constant level density g.

In such a model one obtains the prediction (apart
from a slowly varying factor discussed below) that
the cross section for small gU depends linearly
upon gU for an even-even target, or for an odd-A
target whose extra particle is assumed to remain
inert during the particle-hole excitation process.
If the extra particle is assumed to be scattered by
the rearrangement processes accompanying the
first particle-hole excitation, then a quadratic de-
pendence upon gU is predicted. For this reason
we discuss first the dependence upon residual ex-
citation energy gU. The theoretical coefficient of
gU or (gU)? in each case depends only upon the val-
ue of gE*.

Thus, the consistency of the assumed model can
be tested by inquiring whether the data indicate the
expected dependence upon U, and if so, by deter-
mining g from the reaction data at various excita-
tion energies E* in a given nucleus, and checking
whether g does in fact remain constant and wheth-
er its magnitude is reasonably consistent with sin-
gle-particle level densities derived from other nu-
clear data. One would expect that a very stringent
quantitative test of this kind (i.e., a test against
very precise data) would provide evidence of the
inadequacies of the present oversimplified model
description of the low-energy excitations of the
residual nucleus, and might suggest changes in
the model to improve agreement with experiment,

1713



1714 E. V. LEE AND J. J. GRIFFIN Kl

a rewarding outcome, since just such evidence
concerning nuclear structure is the ultimate goal
of nuclear -reaction studies.

The discussion below will show that although the
data utilized here are too imprecise to support
such a detailed test, the data are adequate to re-
solve the question concerning the role of an odd
particle in the target nucleus during the early par -
ticle-hole excitation processes.

111. DETAILS OF THE THEORETICAL
ANALYSIS

A. Energy Distribution of Emitted Neutrons

We follow the philosophy of the original discus-
sion of precompound reactions,’ and assume that
transitions occur at each of many stages of the re-
action via residual interactions which can scatter
particles (or holes), or create or annihilate one
particle-hole pair. We also assume that the frac-
tional neutron emission rate at a given stage,
when 7 particles and A holes are excited, is given
by the ratio of the transition probability into all
states with 7 —1 particles, X holes (sharing the re-
sidual energy U), and one neutron particle with
kinetic energy at infinity in the range dE, about
E, and orbital angular momentum [ to the transi-
tion probability into all possible m-particle-plus-
A-hole states. The corresponding level densities
are p,\(E*), ps, r-,(U), and p(E,). Finally, we
retain the assumption of small fractional depletion
at each stage, and utilize the second-order per -
turbation theory for the transistion rate. Then
the fractional emission rate for neutrons of ener-
gy E, is

W(E,)dE,

- N Pn-;,x(U)Pi-(Eo)Hb, C(l)'Vlb, b)'sz
Z[ZI: pvr,)\(E*)l <b7 bl VI b: b>| sz ] ’
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where [(b, 5[V |b, b)| »,2 is an average squared ma-
trix element between initial and final states both
bound, and |(b, c(})[V|b, b)| /2 is the correspon-
ding quantity for a final state with one continuum
particle with orbital angular momentum . The
various level densities p in Eq. (1) are discussed
in Sec. IIID below.

B. Ratio of Average Squared Matrix Elements
We estimate the ratio

oL, V10, 5)]°
R =, 5718, B[ @

by calculating the ratio of the average squared am -

plitudes inside the nucleus of the continuum wave
function, ¢(!), in the numerator and the bound
state which replaces it in the denominator. We
use a square well of radius a=1.2A3x10"** cm
to calculate R,? by averaging over a broad range
of internal wave numbers,

R .2 =a(k,a)j;(k.a) cosd, —n,(k,a)sind, ]2, (3)

for a continuum wave function for a neutron of ki-
netic energy E,=72k.>2/2M. Equation (3) and the
phase shift 6, in (3) follow from the two require-
ments that the value and first derivative of the ex-
ternal wave function match with the internal wave
function at the edge of the potential, »=a. It also
reflects the conventional choice that the continuum
states have unit amplitude at infinity. Its product
with pl(E,) is, however, independent of this choice.
Except for the very lowest energies, we assume
that for k. = 1> 1 the phase shifts §, assume a
wide range of values, so that the right-hand side
of (3) is given by the average over all 6, from 0

to 2m:

(R2) av = zalka){[,(k.a) | +[n,(k.a)}. (42)

Whence,
<R12> Av = %a’

For [> k.a, the phase shift is small and (3) can-
not be averaged over 0, in this way. Then the low-
energy approximation to the phase shift and the
small-argument expansions of j, and »; lead to the
estimate

(R ay = (Real'*?[(21+1)11]72, (4c)

which shows that (R,? decreases rapidly for I

> k.a. The physical content of (4c) is the familiar
statement that the angular momenta involved in a
reaction between particles of momentum 7k, inter -
acting with a range a are limited to values 7!

S kk,a. We reproduce this feature of (3) by cutting
off the I sum in (1) at the largest integer less than
k.a.

For k.a<1, the above discussion implies that the
1=0 term is the most important. For this term,
however, (4c) implies R2« (k. )? < E,. Thus, we
must take care not to apply (4b) at the very lowest
energies, but instead to note that

(R <E,. (4d)

when I< k.a . (4b)

C. Evaluation and Smooth Averaging of / Sum

We can use the results (4b) or (4a), and the im-
plication of (4c) and (4d) to evaluate the [ sum in

1),
SAE,=3 R ,*p(E)dE,, (5a)
1
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approximately, as follows:

20+1/2M \V2
SdE(,:Z(R,z)AVZ—"t—(ﬁzE) dE,, (5b)
=0 o]

where « is the largest integer less than k.a, and
the explicit form of the continuum level density,
pY(E,), has been inserted.

The result is a function which is discontinuous
at integral values of k. In accordance with our
philosophy of seeking a smooth, averaged descrip-
tion of the physical processes under discussion,
we replace this discontinuous function S with a
smooth function §, chosen to have the energy de-
pendence which S would have were the integral
quantity « replaced by the continuous quantity k.a,
but adjusted in magnitude to give the best fit to the
function (5b) for values of k.a in the range 2 to 5.
This process results in

1.1 /2Ma? 3/2 72 1/2
S =T< ﬁza ) [Eowz +2<2Ma2> +T3:| . (8)

In this expression the coefficient has a numerical
value of 1.1, instead of the value 1.0, as a result
of the adjustment to give the best-fit magnitude.
[The difference essentially accounts for a detail:
(4b) is an underestimate of (4a) for the terms with
k.a=1.] Figure 1 shows a comparison of S and S.

The term T, in (6) is proportional to (E,)~ /2,
and would describe a divergence for small E, if
the behavior (4d) for S waves were overlooked.
However, at very low energies where k.a<1, the
expression (4d) for R,? should of course replace
(4b). Then no (E,)"'/? divergence occurs. More-
over, for moderate values of E, such as those
which actually occur in this paper, T, is small.
We therefore assume T,=0 in §.

The final result is therefore

W(E) _ 5~ Pr-10(U) (M
S(Eo S pw,)\(E*) ’

30+
|
|

2
(kea + 1)2
FIG. 1. The figure compares the dimensionless quan-
tities (h?Ey/2Ma®)!?S and (B*E,/2Ma®)!/%S, where S (dots)
and § (curve) are given by (5b) and (6), respectively.
We conclude from this figure that the expression (6) for

S represents a reasonably good smooth approximation
to S.
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in which the distribution W(E,) has been divided by
the slowly varying factor S in order to facilitate
the comparisons we shall undertake later.

D. Partial Level Densities

For nucleons of a specified type occupying sin-
gle-particle states of a spectrum described by a
constant level density g, the density of m-particle,
A-hole states at excitation energy E* is given
by18-21

PrEX)=g(EX)™ M [nixt(m+a-1)1]"1.  (8)

This result can be obtained by induction from
the corresponding result for (7 -1, A) by means
of a convolution of the densities p,,(x) =g and
Pr- (E* —x) and multiplication by the factor
(m=1)1/(m)! which accounts for the fact that there
are now 7 identical particles instead of 7 —1. The
result can also be generalized in the same manner
to describe the density, pm;,(E*), of states of 7
neutrons, A neutron holes, v protons, and u pro-
ton holes. The result is

an;W(E*)zg(gE*)‘"*)\ﬂ/ﬂ_z-l
x[wIxtplv(m+v+p+x=1)1"1. (9)

For the case at hand we need only the formulas
with v=1, pu=0, because of our assumption that
the protons in the Z =50 closed shell of Sn are not
available for excitation.

E. Predicted Dependence on Residual
Excitation U

By means of the level densities (9), the right-
hand side of (7) can be reduced to an explicit func-
tion of U, involving E* and g as constants: one
finds

poulo(U) + plZ;lO(U) RN
Pr1:10(E*)  Pazi10(E*)

(10)
for (p, n) reaction on the even-even target Sn''%;
and

P11:10(0) +pzz;1o(U)

P21:10(E*)  Paz;1o( EX)
6 [U 5N
T(GEX) | E® 2<E*>

(11)

for the odd-N target Sn'!? if the odd neutron is as-
sumed to be scattered by the particle-hole excita -
tion process. Omitted terms involve higher pow-
ers of U/E*, and are therefore negligible for
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small U. Indeed, even the terms in (U/E*)? and
(U/E*)* included above are actually small correc-
tions for the experimental circumstances consid-
ered herein.

IV. COMPARISON OF EXPERIMENT
AND THEORY

A. Qualitative Features

In Figs. 2 and 3 the data? from Sn''® and Sn!!”
(p, n) reactions are plotted as U/E* and (U/E*)?,
respectively. It is obvious that the probability of
the (p, n) reaction from the odd-A target exhibits
a dependence better described by the (essentially)
quadratic formula (11), while the (nearly) linear
dependence (10) is exhibited by the data from the
even-even target. One thus concludes that the
loosely bound odd nucleon participates in the ini-
tial particle-hole excitation processes to a signif-
icant degree.

In addition, for the case of Sn''® the slopes of

6 T T
[ y (153; 39)
4+ B
f
I/
2r /1/ J (16.3; 40) )
S y _
| {
2k ¥ -
o) 3 (17.3; 4.
u% 0 / —
3 I/I/I / (183; 31) 3
2 I/ T/}V n
7 /11
o/ /f J
, [1 ;
L i 4
¢ i Sn'"6(p, n)Sb'  (E®;q)
% ol 0z 0.3
(U/E™)

FIG. 2. Comparison of experimental and theoretical
results [(7) and (10)]. The excitation energy E* of the
Sb*'? nucleus is indicated for each data set, together with
the best-fitting value of g which characterizes the theo-
retical curve. Clearly, no single g value could be chos-
en for the model at hand to provide from it a good de-
scription of these data.

the (nearly) straight-line best-fitting curves gen-
erally decrease with increasing E*, as would be
implied by the proportionality of the theoretical
coefficients to (¢E*)~!, and the assumed constancy
of g. The corresponding expectation is, however,
not well realized in the odd-target (Sn!!”) data of
Fig. 2. We test this feature further by consider -
ing these coefficients quantitatively (see below).

B. Quantitative Comparison of Model and Data

By determining the values of the coefficients of
(10) and (11) which provide the best fit to the data,
we have extracted a value of g for each experi-
mental situation considered. The results are tab-
ulated in Table I, which also indicates the esti-
mated standard derivation, ¢,%, in g, given by the
expression:

o =3 (eg/ox o, (12)

4 T T T T T

(15.9; 10.1)
2r /E/ B

1/ (16.9; 4.4) .
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FIG. 3. Same as Fig. 2, except that the data involve
the decay of Sb!'8 and (11) is the appropriate theoretical
expression. The best-fit values of g obtained here vary
more among themselves than the corresponding results
in Fig. 2. However, in contrast to Fig. 2, where the re-
sults were linear in U/E*, these results give nearly
straight lines when plotted against (U/E*)2.
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TABLE I. This table exhibits for the two nuclei in
question and for the various experimental values of the
proton energy and excitation energy (columns 1 and 2)
the values of g which characterize the best theoretical
fit of the form given by (10) (for even-even targets) and
(11) (for odd-even targets). Also listed is ogz, the stan-
dard deviation of g estimated by (12). Finally, the qual-
ity of the best fit is indicated by the probability, p (x,
that x* should exceed its value for the best fit. These
quantities indicate in most cases that the assumed model
is rather unlikely to be the appropriate description for
the observed data. For comparison, we note that values
of g in the range 3.5 <g <4.5 are indicated by level-den-
sity systematics [see A. Bohr and B. R. Mottleson,
Nuclear Stvucture (Benjamin, New York, 1969), Vol. I,
pp. 187, 188].

Single-particle level densities from (p, n)
E, E* gxo,’

(MeV)  (MeV)  (MeV7H) ¥, /ON-1)  p(x®y-1)

SnllG

11 15.3 3.9£0.3 8.4/4 0.08

12 16.3 4.0+0.4 14.2/4 0.01

13 17.3 4.120.3 1.12/4 0.86

14 18.3 3.120.2 23.4/6 <0.01
&1117

11 15,9 10 =+1. 7.2/4 0.13

12 16.9 44+0.2 1.0/4 0.90

13 17.9 3.0£0.2 34.2/6 <0.01

14 18.9 4.4+0.3 8.4/4 0.08

where X, are the N experimental data and o, the
corresponding experimental errors. In addition,
Table I gives values of x* for each case fitted and
the probability, p, that y*,_, should exceed the
value listed.

The results of Table I suggest that the adjust-
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ment of the parameter g in the constant-single-
particle-level -density model is not able to produce
highly probable agreement with that model. In
view of well-established deviations from that mod-
el in nuclei at low excitation (e.g., pairing and
collective levels), this result is not surprising.
On the other hand Figs. 2 and 3, which display the
same information as Table I in more detail, do
not suggest any systematic alterations of the mod-
el which would improve the probability that the
model describes the data.

We might reasonably conjecture that a reduction
of the experimental error by a factor of 2 or 3
ought to increase the x* values sufficiently to al-
low the decisive rejection of the present oversim-
plified model; hopefully, also, such data would
exhibit systematic patterns which would suggest
how the simple inodel ought to be altered.

V. CONCLUSIONS

The above results seem to substantiate the fol-
lowing conclusions:
(1) Within the framework of the constant-level -
density model, odd target nucleons should be as-
sumed to participate, at least partially, in the
particle-hole excitation process.
(2) A constant-single-particle-level-density mod-
el provides an adequate qualitative description of
data discussed here, but the dependence upon gE*
is not well predicted by a single constant g value.
(3) The extraction from precompound reaction da-
ta of detailed inferences concerning low-energy
nuclear structure is not possible with the data
used here. However, a reduction of experimental
error by a factor of 2 or 3 ought to permit such
a test of more detailed models.
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