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The modified Tamm-Dancoff approximation (MTDA) for pairing vibrations is studied. It is
shown that the previously reported success of the method is connected with the fact that se-
niority is a fairly good quantum number for nuclear ground states. It is pointed out that the
MTDA may be useful for the treatment of pairing correlations in deformed nuclei. Numerical
calculations are presented for Mg . The random-phase-approximation extension of the meth-
od is carried out and used to calculate pairing correlations in ground and excited states of the
Pb isotopes.

1. INTRODUCTION

The concept of pairing vibration has been intro-
duced by Bohr' and explored by Bes and Broglia'
and Ripka' among others. This concept has been
found useful for the treatment of pairing correla-
tions in and near closed-shell nuclei. In particu-
lar the 4.8-MeV low-lying Q' state of Pb'" ha.s
been attributed to a two-phonon pairing-vibrational
state. Similar calculations have been carried out
for other closed-shell nuclear regions. Goswami
and Nalcioglu4 have recently shown that the con-
ventional Tamm-Dancoff approximation (TDA)
method for the treatment of vibration can be suit-
ably modified [modified Tamm-Dancoff approxima-
tion (MTDA)] for the pairing-vibrational case and
the results agree very well with the exact solutions
even for states of three phonons.

In this paper, we shall study, first of all, the
reasons for the success of this simple MTDA theo-
ry. Second, we shall carry out further extensions
of the theory that are necessary for its use in im-
portant physical problems.

Bohr has emphasized the presence of N'-type an-
harmonicity in the energy of the pairing-vibration-
al states. A simple group theoretic argument' can
be given to show this for the pairing Hamiltonian if
TDA is used for describing the vibrations. For
MTDA, this N' dependence will be shown to cancel
out, so that the MTDA value gives the correct
ground-state energy. This result, however, de-

pends on the approximate validity of seniority in
the nuclear ground state.

One expects the pairing-vibration concept to be
important for the treatment of pairing correlations
in deformed nuclei. This is because for the de-
formed nuclei, the average degeneracy of levels is
small and the BCS method is known not to be accu-
rate. ' Qn the other hand, the single-particle spec-
tra often show a considerable energy gap resem-
bling the shell effect. One can then treat the pair-
ing correlations in neighboring nuclei by describ-
ing them in terms of a few quanta of pairing vibra-
tions. We apply these ideas to the description of
the isospin pairing correlations in Mg" taking Ne"
as the core nucleus. A comparison with BCS and
FBCS calculations already reported' will then
prove the validity of this approach.

The extension of the MTDA to the modified ran-
dom-phase approximation (MRPA) is then carried
out. After a brief discussion of the MRPA method,
we apply it to the description of the pairing vibra-
tions in Pb isotopes, both in ground and excited
states. The results are compared with earlier re-
sults, ' and with experimental data.

In Sec. 2 we present the group theoretic argu-
ments in favor of the MTDA method. The exten-
sion of the MTDA to deformed nuclei with the cal-
culations for Mg'4 is given in Sec. 3. Section 4
gives the extension to MRPA. The application to
Pb isotopes is given in Sec. 5. Finally, a summary
and the conclusions are given in Sec. 6.
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2. MTDA METHOD

A. Basic Equations of MTDA

The basic equations of the MTDA have been de-
rived in Ref. 4 and will be sketched very briefly.

We start with the Hamiltonian

ff =pe„c'„C. ,'I-G-I P ~n. vn, A.'A, .
a, b

Here n denotes the single-particle quantum num-
bers n l j m „. We restrict ourselves to one type
of charge (single-closed-shell nuclei). Also we
shall use the corresponding latin letter a to denote
the same quantum numbers except the projection
m . Furthermore,

Q S Ctct„, A, = (At)t,1

&u,"is the energy of the ground state of the (K+N)
particle nucleus with respect to the ground state
of a (K+Ã 2-)-particle one and is the solution of
MTDA secular equation'

2 ~ Q, [1—2N, (K+N —2)]
IGI + 2e, —cu," (4a)

Note that putting all N, =0 in Eq. (4a} we get the
TDA secular equation

2 0,
(4b)

where ~o denotes the TDA energy of the pairing
phonon. The key point in the derivation of Eqs.
(2)-(4) is the commutation rule for the A operators

Q, =2j, +1, S„=(-)"
[A„A~ ] = 26,~(1 —2(N, ) } . (5a)

B&(K+N)
1
Q X~(K +N)

A
~n,

with

(2a)

Following Ref. 4, we assume that the ground
state of a (K+N)-particle even-even nucleus can
be obtained approximately from the previous
(K+N 2)-parti-cle nucleus by means of the pair-
ing phonon creation operator (K denotes the num-
ber of nucleons in the double-closed-shell core) X'K N)

2 =Q ' [1 —2N, (K+N —2)] .
a a

(5b)

Finally, to determine (N, ), we note that the state
I
K+N) can be written as

The notation (N, ) denotes expectation value of N,
in the ground state of the appropriate nucleus.

The "gap parameter" b, and hence the X,'s are
determined from an equation derived from the ap-
proximate boson character of the B operators:

X,(K+N)=an, (K+NI A, IK+N 2)-
Q, [l —2N, (K+N —2)] A(K+N)

2E a —
((PAL

I
K+N) = p(K+N) B (K+N) .Bt(K+ 2) I K)

+ other components . (6)

where

A(K+N) = gX, (K+N},
a

N, (K +N —2) = (K +N 2
I N, I

K+ N 2—)—
N, = —QC C

am&

(2c)

Here P(K+N) is a constant representing the frac-
tion of the state

I
K+N) that can be written in the

form B ~ ~ BtIK). The part of the state IK+N)
termed "other components" represents, for ex-
ample, contributions of states of higher seniority.
These other components can be expected to con-
tribute insignificantly to (N, ) which is then given
as

N (K+N}=(N )=P (K+N)(KIB(K+2) ~ ~ ~ B(K+N)N, Bt(K+N). ~ 'Bt(K+2)l K). (Va)

The right-hand side of Eq. (7a) can be evaluated by
noting that for all N &0,

B(K+N) IK) = O.

Then P can be determined from the requirement
that

B. Algebraic Treatment of the Pairing
Hamiltonian and MTDA

An algebraic treatment of the pairing Hamilton-
ian can be developed based on the quasispin for-
malism. Def ine

S, =Q vQ, A, =QS;, S =Q vQ, A, =QS',
g Q, N, (K+N) =N, (7b) (8)

N being the total number of extracore particles.
s, =ps;,
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with

S,'= 2N, -Q, .
We now write the Hamiltonian (1) in terms of the S operators,

H = —,Q e,($,'+ Q, ) ——,
i G i S,S (9)

We have,

[H S ]=~2/e [S S ] g(G([$ S S ] =2pe $ + $
a a

and

«+N+21 [N, $, ]l K+N& =2K ..(K+N+2~ S,
~
K+N&+ (K+N+ 2( S,s, (K+N&.

2

(10)

The left-hand can be evaluated exactly assuming that
I
K+N+ 2& and (K+N& are eigenstates of H with eigen-

values ~(K+N+2} and &u(K+N), respectively.
In the second term of the right-hand side, we make a complete-set expansion. We thus obtain,

[(o(K+N+ 2) —rd(K+N)] (K+N+ 2i S,iK+N&

=2ge, (K+N+2I S;(K+N&+ g(K+N+2I S,lt}'(K+N)&(y'(K+N)l S,IK+N&.
a

(12a)
We retain only terms ~g~(K+N)& =

~
K+N&, based on the approximate validity of the seniority scheme for

the nuclear ground states. This gives

[u&(K+N+ 2) —~(K+N)](K+N+ 2~ S+~ K+N&

=2+@,(K+N+2( S+(K+N& + (K+N+2) S+)K+N&(K+N( $, (K+N&.
a

(12b)

Now from Eq. (2c} and the definitions of S,[Eq. (8)]
and X, [Eq. (2b)]

(K+N+2~ S, ~K+N) = r (K+N+2) 2

G
(13}

[cu(K+N+2) —cu(K+N)] d.(K+N+2) 2

G

= 2+ e, (K+N+ 2~ S;~ K+N)

Here, (N) = (K+ N~ N
~
K +N&; and 8=Q, Q, N„ the

total number operator. From Eq. (14a), it follows
easily that,

[&u(K+N+ 2) —~(K+N)] —= ~,g ' + 2(»2 Qa

[Gj

Using the TDA secular equation (4b) we finally get

+ n (JC+N+ 2)(K+N
~
S,

~

K'+N&.

(14a.)
In the first term on the right-hand side if we use
the TDA, we have

(K+N+2~ S,'~K+N&= ' n(K+N+2) .
o

Recall that co, denotes the TDA energy of the pair-
ing phonon. Thus, we get

[&u(K+N+ 2) —&u(K+N)]
2

G

' + 2(N& —QQ,
a

(14b)

[&u(K +N + 2) —&u(K +N)] = &u, +
i G i (N) .

Thus, for N &2, the ground-state energy is not
given by the TDA energy and a N'-type anharmo-
nicity' is introduced. We will now prove that treat-
ing the first term in Eq. (14) by MTDA exactly can-
cels the N' dependence.

For MTDA, we have

where wo" denotes the MTDA energy solution of
Eq. (4a) with N replaced by N+2. Then Eq. (14)
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modifies to the form

2[~«+N+2) —~«+N}]
i

2e, 0,[1 2N—,(K +N)]
N2 E'~ —cdp

a

0, [1 —2N, (K+N)]= (dp
2 6g

—co(~)

—2g 0,N, (K +N) + 2(N) .

(16)

(17)

We define the pair creation operator

1
A») o

= ~' Q (-)' ' '
C», CJ, .

~2
(20)

+ g (KKK=0 T =Oi V. iK'K'K'=OT =O&
E &0

x(N+1, Z+ li A»,
i
N, Z)(1 —2N»), (21)

The equation of motion for A. can be written as

(N+ 1,Z+ 1
i [H, A»]i N, Z)

=[a(N+ 1,Z+1) —(u(N, Z)] (N+1, Z+ 1
i A»iN, Z)

= 2e»(N+1, Z+ 1
i A» i N, Z)

[&u(K+N+ 2) —&u(K+ N)] = &uo, (18)

Using the secular Eq. (4a) in the first term and

Q, Q,(N, )=(P), we easily get
where

N» =-,'P(N, ZI C„,C„,IN, Z). (22)

i.e., the MTDA theory gives the exact ground-
state energy. Notice that the validity of this re-
sult depends only on the validity of the truncation
of the complete-set expansion in Eq. (12a) which
is based on the goodness of the seniority quantum
number for the nuclear ground states. Since this
truncation is expected to be reasonably valid in
most cases, the MTDA method can be expected to
be fairly accurate as has been numerically shown
in Ref. 4. It should be noted, however, that the
arguments presented here prove only the validity
of the energy secular Eq. (4a). The MTDA method
of Ref. 4 extracts the (A", ) appearing in the secu-
lar equation by using the pairing-vibration concept.
This procedure becomes less and less accurate as
N increases, and more involved methods' may have
to be used for the calculation of (A, ).

3. APPLICATION TO Mg

We have already pointed out in the Introduction
that one of the applications of the MTDA method
would be for the treatment of pairing correlations
in deformed nuclei. In this section we shall illus-
trate this with the example of the treatment of T
=0 pairing in Mg'4. This choice is dictated by the
fact that Hartree-Fock-Bogoliubov calculations'
on Mg" have already shown that Ne' can be as-
sumed to be a good "core" nucleus. Also, BCS
and FBCS results are available for Mg for com-
parison.

The T =0 pairing Hamiltonian in the deformed
axially symmetric Hartree-Fock (HF) basis, is
given as

H =Q»»C», C»,
KT

+ Q (KKK=OT =oi V, iK'K'K'=0 T=0)A»tA», .

r'&p (19)

Define the amplitude

(N+1, Z+1 iA»t iN, Z) X»
(1 2N )'~2 (1 2N )'» '

and

(do = CO(N + 1,Z + 1) —~(N, Z) ~

(23}

Then the equation of motion can be written as

xv'1-2N~ v'1 —2N~ g~, ,

with the normalization condition

1 =P X»'(1 —2N») =P X»'(1 —2N»)'

(24a}

(24b)

as before, which can be solved for the energy and
amplitudes X~ of the pairing phonon by matrix di-
agonalization. The procedure for evaluating the
N~ is exactly the same as outlined in Sec. 2 A.
Note that the amplitudes X~ are being used in or-
der to obtain Hermitian matrices. Obviously, for
the Mg'4 calculation, we have to start with the
Mg" HF representation. " We then proceed to cal-
culate first the state of the one T =0 phonon based
on Ne", and subsequently, the state of two pho-
nons corresponding to Mg". The force is taken
to be the one used for generating the HF repre-
sentation, namely Rosenfeld-Yukawa. 0" sin-
gle-particle energies are used for the HF calcu-
lation. In Fig. 1 the results of the present cal-
culation are compared with the BCS and FBCS
calculations of Ref. 7. Clearly the accuracy of
the MTDA method is intermediate between that
of BCS and FBCS methods. This in itself is grat-
ifying, since the arguments of the last section do

(uo X» = 2 e»X» + p (KK K = 0 T = 0
i V, iK'K' K = 0 T = 0)

K
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not apply to T =0 pairing. The important point is
that finite-range forces can be used without the
self-consistency problem, saving considerable
computer time.

4. EXTENSION TO MRPA

q( ) ~ X, N)A,

tr = particles

X (K+N)Ai

m=holes m

(25)

where X, and X are given by Eq. (2b) with

A(K+N)= [QX,(K+N)++X (K+N)]. (26)
a m

The MRPA secular equation is given as

Just as the ordinary TDA can be generalized to
the RPA to include the effect of correlations of
the ground state, the MTDA can also be general-
ized to the NRPA in a straightforward manner.
Indeed, this considerably broadens the applica-
bility and scope of the method, since small
changes in the occupation numbers of the closed-
shell "ground state" by pairing correlations can
be taken into account. We generalize the Hamil-
tonian (1) so that the summation index runs both
over unoccupied states (particles) as before, and
also occupied states (holes).

The definition of the pairing phonon state is now
extended to

As before, the approximate boson character of the
B~ operator gives the expression for evaluating
n, (K+N) from the relation

~X, (K+N)[1 —2N, (K+N -2)]
Q,

~X~'(K+N)[1 —2N~(K+N —2)]
0

(28)

Again the procedure for evaluating the (N,)'s is
the same as that outlined in Sec. 2A. In numeri-
cal calculations, one may start assuming that in
the case of the one-phonon calculations, the occu-
pation numbers can be taken to have closed-shell
values. Alternatively, one can put in occupation
number corrections for the "closed-shell" nucleus
with a "self-consistent" procedure, but the merit
of such a method is dubious and will not be used
here.

5. APPLICATION TO Pb ISOTOPES

We have calculated the relative ground-state en-
ergies ufo" = cu(K+N) —&u(K+N+ 2) using the MRPA
secular Eq. (27). The single-particle (hole) ener-
gies are taken from the work of W. W. True et g$."
The strength of the pairing interaction is taken to
be G=0.0865. The results are given in Table I,
along with the values of ~.

As pointed out in Refs. 2 and 12-14, it is par-
ticularly interesting to discuss the theoretical val-
ue of the ratio

2 ~0)1—2N, (K+N —2)]
fc] ~ 2e, —cog

~Q [1—2N (K+N —2)]
2& —coN

(27)

This ratio can be determined with fair accuracy
from the experimental ratio of two-nucleon-trans-
fer cross sections. "" For the "hole"-type Pb
isotopes, we get

IOO—

75—

0 H. F.

& B.C.S.
O F.B.C.S

MTDA

+(pb208) I2

n(pba04)
~

2

which compares very well with the experimental
value" of 1:1.7 (+20%). Note that our value is

O
I-
~ 50—
OO
O

25—

TABLE I. Values of the ground-state energy wp and
the gap parameter ~ for Pb isotopes ~

Wp

(MeV)
Bes and

Nucleus MTDA MRPA Broglia
(Mev)

MTDA MRPA

-I5 -IO -5
H. F SINGLE-PARTICLE ENERGY (MeV)

FIG. 1. Occupation of the fourfold degenerate single-
particle states of Mg24 for the HF, BCS, FBCS, and the
MTDA.

Pb212

Pb2~P

Pb2
pb2P4

—1.68
-0.96
-0.21
0.04

-2.50
—1.40
-0.45
—0.15

-1.50
-0.40

0.430
0.370
0.197

Divergent

0.596
0.520
0.381
0.540



1586 M. K. GHOSH AND A. GOSWAMI

also very close to that given by the harmonic pho-
non approximation, namely, 1:2.

On the other hand, for the "particle"-type Pb
isotopes, we get

TABLE II. Excitation energy above nuclear ground
state E„and the gap parameter g for some Pb isotopes
predicted by the present method.

a(pb'") ~'

g(PPX2) (2 Nucleus
(MeV)

MRPA Expt.
(Mev)
MRPA

~

Pb"' ')= ~4 ~2), q) =B„(K+2)~4, ),
with

(30a)

X X'PC+2IA„X X',(K 2)A,
)~n.

(30b)

The one-phonon calculation is identical to that of
Ref. 2. However, the inclusion of (gg in MRPA
introduces correlation correction in the two-pho-
non calculation. In particular, this improves the
ratio" of

~

A(Pbmxo) ~K

)
A(P+08')

)

2

whereas, the experimental data" give 1:2.3. Rea-
sons for this discrepancy are not clear at present.

The MRPA method can in particular be used for
the calculation of excited 0 pairing-vibrational
states in Pb isotopes analogous to the 4.87-MeV
state of Pb'~. We assume' that this latter state
is a "two-phonon" pairing-vibrational state, where
the two phonons are made of physical "particles"
and "holes, " respectively. One can first calculate
the ground state of Pb'" as

IPb'") =I@'2,) = H'(&+2) l@r)i

(29a)

with

X X.UC ~ 2IXt X X (K+2)X")
2 ~ vn.

(29b)

The two-phonon pairing-vibrational state of Pb'"
is then given as

pb212'

pb210
'

pb208
'

Pb206'

pb204'

5.72
5.37
5.06
5.86
5.43

4.87

0.678
0.580
0.358
0.517

Divergent

from 1.85 to 2.1. The experimental value" is 2

~ 0.8 which agrees with our calculation. Clearly,
the correlation corrections are important. Calcu-
lation of the excited pairing-vibrational states of
other Pb isotopes can now be carried out using
the state

~ 4,'~~I ») of Pb208 as the starting point.
Table II shows our predicted excitation energies
of the "excited" pairing-vibrational state (relative
to the respective ground state) analogous to the
4.87-MeV state of Pb' ' for some Pb isotopes. We
also give the predicted value of ~ for these states.

6. SUMMARY AND CONCLUSIONS

The important results of this paper are as fol-
lows: First, the success of the MTDA secular
equation in predicting the ground-state energy is
shown to be due to the approximate validity of
seniority for nuclear ground states. Second, the
accuracy of the MTDA method for deformed nuclei
is shown to be significantly better than the BCS
method. The advantage of the MTDA method for
the calculation of pairing effects in deformed nu-
clei is that one can use realistic forces with con-
siderably less numerical complication than FBCS
calculations. " Third, the method is generalized
to include ground-state correlations (MRPA).
This enables us to calculate the pairing-vibration-
al states in or near closed-shell nuclei. Signifi-
cant improvement is found for the theoretical pre-
dictions for the 4.87-MeV state of Pb' '.
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Commission.
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Levels of Kr Fed in the Decay of Br~
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W. Scheuer, and J. F. Su6,rez
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The decay of Br has been studied with high-resolution Ge(Li) detectors by applying on-
line mass-separation techniques to ~S~U fission products. 19 transitions were positively as-
signed to this decay through half-life comparisons, and for 10 of them direct measure-
ments of the half-life were performed, yielding an average value of 59+4 sec. Levels for
~Kr are proposed at (J~ within parentheses): 1564.62+ 0.09 keV (2+), 2349.60+ 0.14 keV
(1,2), 2850.2+ 0.4 keV, 2926.24+ 0.13 keV (1,2), 3099.20+ 0.16 keV (3 ), 4315.75+ 0.17 keV
(2, 3 ), 5406.6+0.5 keV (1,2), 5519.0+0.9 keV (1,2 ), and 6209.9+0.5 keV (1,2 ).

I. INTRODUCTION

The nucleus "Kr has four protons less than a
filled doubly magic core. Both the feasibility of
a shell-model description and the possibility of
obtaining information about the new core through
the "Kr spectrum makes this nucleus a very in-
teresting object for nuclear physicists.

Although Stehney and Steinberg' discovered 54-
sec "Br in 1962 through the "Kr(n, p) reaction,
other authors ' ' obtained it as a ' 'U fission pro-
duct and, from its decay, studied the level struc-
ture of "Kr. However, when the "Br activity is
produced in this way, complicated fast chemical
techniques are generally required to separate the
Kr, I, and Xe radioactive isotopes. Once this is
accomplished it is still difficult to avoid contami-
nation due to other Br isotopes, especially "Br,
which has almost the same half-life as "Br. The
only successful attempt to separate "Br with this
approach has been made by Williams and Coryell'
who exploited the difference in the half-lives of
the Se precursors, and performed singles and co-
incidence y-ray spectroscopy with Nal(Tl) detec-

tors. Recently, Lundy' studied the decay of the" "Br mixture with Ge(Li) detectors. His results
are in partial disagreement with those of Williams
and Coryell, only six y rays being assigned to
mass 86 based on the identification given by these
authors. Lundy interpreted an initial growth of
the activity of some y rays in his measurements
as due to an isomeric state of 4.5 sec in "Br.

In recent years, from nuclear-reaction studies
on 'Kr targets, several levels have been identi-
fied' ' in this isotope. However, a definite spin-
parity was assigned only to the first excited state.

The present work is devoted to clarifying the
general features of the decay of "Br and removing
the discrepancies between Refs. 2 and 3 by using
on-line electromagnetic mass separation of "'U
fission products and high-resolution y-ray de-
tectors. Definite mass assignments were obtained
for 19 y rays, and a level scheme is proposed for
"Kr based on our own, and on previously reported
data. It contains three new levels and more than
twice the number of y rays of the only previously
reported' level scheme. Spin-parity assignments
are proposed on the basis of log ft value and rel-
ative y-ray intensities.


