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An explicit formula for Talmi-Moshinsky transformation brackets of unequal-mass parti-
cles is given which is the sum of simple expressions over five variables; it is especially
suited for numerical calculations.

I. INTRODUCTION

Many papers' "have been devoted to the study
of the Talmi-Moshinsky transformation. Since
the Talmi-Moshinsky brackets (TMB) find fre
quent and repeated application in programs for
various model calculations of nuclear structure,

one of the important aims of these studies was to
derive as simple a formula for them as possible.
Several excellent techniques have been developed
for these purposes. Let us only mention the crea-
tion-operator technique for oscillator quanta
which was introduced by Moshinsky'" and then
successfully applied in a number of works, '~ ' and
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the method of generating functions. ~' " Only re-
cently, "a computation of TMB by direct diagonal-
ization of some special operator expressions has
been suggested. An explicit and symmetrical ex-
pression of TMB for unequal-mass particles was
first obtained by Kumar. ' The other formulas~"'
can be easily reexpressed in Kumar's form.

At the end of this note we demonstrate an ex-
plicit and simple expression for TMB. Since we
have not succeeded in rewriting it from Kumar's
form, we derive it directly. The first step of our
approach consists in the derivation of the simple
expression for the special l =0 TMB. Next, follow-
ing the idea of Ref. 4 we look for the relation be-
tween the general and the l = 0 brackets. Substitut-
ing then the explicit expression for the l =0 brack-
ets into this relation we obtain the final formula.
The computing time corresponding to this formula
as compared with that for other existing programs
(for example see Ref. 4} is shorter by a factor
of 2.5-5.

II. PRELIMINARIES

It is convenient to describe the position of the
moving oscillator mass by the product x of the
square root of the respective mass and of the real
position vector. "' ' Taking, moreover, S~ ' as

a unit, where ru is the common oscillator fre-
quency, the harmonic-oscillator wave functions
with n radial nodes and angular momentum l, q are
then given by

q„~(z)= „,x'e """'L„""'(*')r~("—) ((xl=x).

Here the normalization constant

2nt
I' n+l+2 (2)

1/2
r= r, —1+d "'r, ,

1/2
R=(( ~ d) "'r, +( r, ,

(3)

is represented in the basis of their wave functions
by the Talmi-Moshinsky transformation brackets
according to the relation. '

and Y„(~), L„'""(z), and I'(z) [n!= I'(n+1)] are
the known normalized spherical harmonics, La-
guerre polynomials, and 1" functions, respectively.

The orthogonal Talmi transformation" ' "for
two oscillators with masses m„m„and mass
ratio d =m2/m„

(4)P(l,q„l~, (Xp)(p„, (r, )q)„, , (r,}= P (nl, NL, !) ~n, l„n,()„!)},(('q, LQ(A!()q)„„(r)(p»e(R).
q~ n1q NLQ

Because of the elementary conservation laws the basis wave functions are coupled by Clebsch-Gordon co-
efficients to the same angular momentum X, and the energy in both the frames (3) is related by the equa, -
tion

2n+ l +2N+I = 2n, + l, +2n, +l, . (5)

The notation chosen for the TMB expresses their dependence on the mass ratio d and, in the case of m,
=m„ their identity with the brackets tabulated by Brody and Moshinsky. ' From the definition (4) various
properties of TMB are easily seen. '~" There is a full correspondence with the usual Moshinsky brackets'
except for the necessary interchange of masses m, and m, in some cases. Phases are fixed within the
scope of the relation of parity conservation which follows from Eq. (5}.

III. SIMPLE FORMULA FOR THE l=a BRACKET

The expansion (4) must be fulfilled by general vectors of Eqs. (3) and it is, therefore, valid also for r =0,
R = (1+d}"'x, r, =d"'r, =d'"x. Since according to definition (1)

1 2I"(n+z} '~2 2
0'niq 10&q0 ++ l 0 q0 & (6}

then

g(l)q„ L~, ~LQ)(p„, , (x)(p„, .(d'~2x) =—g(nO, NL, L ~n, l„n,l„L}„—(p {(I+d)"'x).
q$

Let us multiply both sides of the equation by q) ~zo((1+d)"'x) and integrate over x. On the right-hand
side of Eq. (V) special TMB are projected out and on the left-hand side angular integrals are easily ob-

(7)
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tained using the definition (1) and the known formulas of Edmonds":

(2l, +1)"'(2l,+1)'"
(nO, NL1LI!nIIIpn212IL)d 2 v 52n+2N+L, 2RI+!I+222+2IR (2L+1)1/2

xd' "(I d)' ""'(l 0, I,OILO)c c c„,c„, J dr* """'
0

x e -(I+(L)RRL &+ I/2((I + (I)&2)L 1 1+»2 (XR)L12+I/2(d&2)
1 "2

If we substitute 2 = (1+8)2(' and write down the Laguerre polynomials L'„I"/2 and L„',""'explicitly"
1

I'(n+ o(+1)~ p! (n -p)!I'(p+(2+1)
P=o

the last integration can be performed according to the formula"

J"d„8-I, .L (,) ( I). I'(P)1'(P -/2)
n! I'(P —u —n)

Because of the definition (2}, the result is

d
(n0, NL, L ~nIl„nnl„L}2 = (-1)"2 'wI/2(I +Lt) 'I"

(8)

(2l, +1)(2l, +1)n!n, !n, !I'(n, +l, + —')I'(n +l + —)

52n+RP/+/, 2nl+11+2n2+(2+ (

[(l, + l —L )/2 + t, + t ]!I'((l, + l, + L)/2 + t, + t + —')
t, !t, !(n, —t,)!(n, —t,)![(l, + l, —L)/2 + t, + t, N)! I'(t, + l,—+ —'}I'(t,+ l, + 2)

'

The restrictions on the sum over the variable t,. are those arising from factorial functions. The last fac-
torial in the denominator of expression (11) may still be reexpressed using relation (5), but to no great
advantage.

Formula (11) is simple compared with the corresponding expression in Ref. 4. It is entirely symmetri-
cal under interchange of the quantities m„n„ l, and m„n„ l,.

IV. RELATION BETWEEN THE GENERAL AND 1=0 TMB

In Ref. 4 a useful relation was derived which relates the general oscillator brackets to the special / =0
brackets. We adapt, therefore, Baranger and Davies's procedure for unequal masses and translate it
into our analytical language. We start with the expression

(q, R) =I'(lq, LQ l )Y,,c(c)q„„tr)p„(R). — (12)

The last product of the two harmonic-oscillator wave functions can be expanded according to Eq. (4)

Y„c„(,R)= I ( O, NLL(, P„,j„L),(,lqLQ(IC)(P, O„P,O, (LQ, )q, (r, )q, , (r, )r'r„, (
—).

siPikiqQ

(13)
Since the relations (3) hold, the decomposition of the solid spherical harmonic' is now written in the form

1 4~~2I, +&~ylid (I d Lt)-l/2 ~ ( I )x2dt —xI/25
y ~ I+ 2'' (2XI+1}(2AR+1) 2AI

(14)

where the symbol ('„)=a!/(a —b)!b!. After having substituted the expression (1) for the wave functions
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and the decomposition (14) for the solid spherical harmonic into Eq. (13), we recouple the angular
siPi ki

momenta with a 9-j symbol and form two coupled products of spherical harmonics with the same argu-
ments r,./r, Next we reduce each of the coupled pairs to one spherical harmonic according to the formula

in Ref. 15 and obtain

(r R) ( 1)k+1+L(4ll) )/2(-1 +d)-l/2(2l +1)(2L ~1)1/2 Q ( 1)X2dkl/2

x5q q 1 (2p, +1)(2p2+1) (nO, NL, Lis, p„sop„L)„(p,O) X,OillO)

P1 P2 L

x(P,O, /). ,Oi!,0) X, X, l c, 2 c, , exP[-(r, '+r, ')/2]rP1'~lrP2'"2

x L»+"'(r ')I,"+'"(r ')(l,q, t,q, )/ t )Y, , (15)

The other way of transforming the original expression (12) is to apply the recursion formula for La-
guerre polynomials"

(16)

in the explicit formula (1}for the wave function q)~, (r) and to couple in reverse the Laguerre polynomials
L„"21/2 with the solid spherical harmonic r' Y„(r,/r)) to new wave functions q)&„2&,(r) using the same defini-
tion (1). The result is

V„,„~~„(r,R)=(4)/) "' p (-1) "'
(lq, IQiktl)t)(„»„(r)(/)»o(R).

qgp () P n-p l

We multiply both expressions (15) and (17) by Q, (l,q„ l,q2i Xtl)q)„*, , (r, )q)„*1,(r, ) and perform the inte-
gration over r, and r2 (f d r,d r, = f d rd R). Using the energy relation (5} the sum in the expression (17) re-
duces to one term with p =0, and because of the expansion (4} the overlap integral defines the general TMB.
In the expression (15) we perform the trivial angular integration using definition (1). Setting the results
obtained equal, we write

(nl, NL, Kin, l„ln„2X),=(-I)"L'~(1+d) '"(Pl+1)(2L+1)"' g (-1)"'d""'

2E -»2

P1P2 L
x ..., ( (po.,o))o)(po ..o(~ro)(.o, ~o, o(~„p„„p„o)fo...;",»"

l1 l 0

X S r1 Ll'1+1/2(r )Ll 1+1/2(-r 2) dr r 2+X2p+ l2+2 r2 L p2+ 1/2( 2)LI-2+1/2(r 2)1 nfl 1 2 2 2 tf2 2
40

(18)

Both integrals of Laguerre polynomials are of the same type, so we show the caiculation of only one of
them. We express again the polynomial I.P"" explicitly according to Eq. (9) and integrate using formu-
la (10):

J
! drr+'42+ 1+2LP+ll2(r2}L 1+1/2( 2) r2

0

[(~+p- I)/2+t]l I'((~+p+I)/2 . -='-)

n! t!(s t)![(~+ pl)/ -2t +]!nr(t+p+--', )

s-n+(X+@—t) /2

=-'r("p. -')( 1}" -"'

(n+t}!I'(n+ l+t+ 2)
n!t![(A. +p —l)/2+'s —n —t]![n+t —(X+p —l)/2]! I'(n+t+(p+ l —X)/2+-,')

(19)
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In the last sum we introduced a new summation variable to involve only the terms with factorials of non-

negative arguments.
If we add the largest values of the summation variables,

X+P, —l, X+P, —l L l l +l
s —n+ ' ' ' + s —n+ ' ' =n+N+ —+—-n —n, — =0,

2 2 2 2 ' 2
(20)

we find out that the sum must be zero according to the energy-conservation relation for TMB and the rela-
tion X, +X, = l in formula (18) and according to relation (5}. Because of their nonnegativity each of the pa-
rentheses in Eq. (20) mustbe , zero. The sum (19) reduces to one term with t, =0 and also

x,. +p,. —l,s, =n, —
2

We substitute the results obtained into Eq. (18) and write the final result:

(nl, NL, X
~
n, l„nL„mX}~= (-1)"'"'"'"~'"'(1+d) '"(2l+ 1)(2L+1}"'

3 3 1/2
)gal! r( n+ )2r( n, + l, +g)r(ng+ la+-, )

r(n+ l+ -', ) X1+ X2, l

x (2p, +1)(2p, +1) (p,O, X,Oi l,0)(p,O, A.,Oi l 0) X, X, l
1 l, l

1 Pl 1 t 2 P2 t
~1 1 1 p P2 2 2

nO, NL, L n, — '
2'

' p„n, — 2' p„L

(21)

This agrees with a similar formula in Ref. 4.

V. GENERAL FORMULA

Summing up the two formulas (11) and (22) we obtain the expression for the genera) TMB

(nl, NL, X(n, l„n,l„k), =(-1)"""2'"'(1+d) '"2 '(2l+1)

X
v n! n, !n, !r (n, + l, + —,'}r(n, + l, + —,') "'

N! r(n+ l+ &)r(N+L+ 3) 2rt+t+2N+L, 2flg+lg+2&g+I2

2E
( 1)"I ~1+ 2+&&x+&s+ &~~d&2+~~1+~2'~~(1+de ~y ~2 &&x+Pg&»

2X X1+ X2, t
&i ti ~i 1

P, P2L
x (2P, + 1)(2P, + 1)(P,O, X,O

~
l,O)( P,O, X,O ~ l,0)(P,O, P,Q

~
LO) X, X, l

l, L,

r(( p, +p, + L)/2 + t, + t, + -', )
r (p, + t, + ~)r(p, +t, +-,')

[(p, +p. —L)/2+t, +tm]!
t, !t~! [n, —(X~+p, —l,)/2 —t,]![nm —(X2+p~ —Q)/2 —t,]![(p, + p~ —L)/2+ t, +t2 —N)!

(23}

The values of the summation variables p„A.„t, are
restricted by the functions occurring in the sum:
factorials, Clebsch-Gordan coefficients, 9-j sym-
bols (and Kronecker 5's); only five of them are
independent.

Now we compare expression (23) with the pre-
vious ones. In Kumar's formula' one sums over
four pairs of quantum numbers n, /. Energy-con-

servation relations of the type (5), however, fix
three out of the four nodal quantum numbers,
which is not a symmetrical operation and thus
was not carried out explicitly; that was done in
various ways and on different footings in Refs. 6,
8, and 9. The sums over the remaining four angu-
lar momentum quantum numbers differ mainly in
the sense that in Kumar's formula the 9-j symbol
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with the stretched configuration does not occur,
in contrast to Eq. (23). In the important case of
the quantities n=0, 1=0, formula (23), or (11),
agrees with the one given in Ref. 5 (see also
Ref. 10).

Instead of the orthogonal transformation (3),
generalized transformations of the U, group were
investigated in Ref. 12, and again Kumar's form
of TMB was obtained for the special transforma-
tion (3). It means that the specific form of for-
mula (23) is closely tied to the (real and) orthog-
onal subgroup 0, of the U, group.

Baranger and Davies apply different methods of
calculating the Moshinsky brackets, i.e. , TMB
for m, =m, . Their alternative expression, for
which the code was also written, contains the sev-
en independent summation variables. When
summed over two properly chosen variables it
is very likely that expression (23) with d =1 will
be obtained. A substantial simplification in ex-
pression (23) arises by use of the simple formu-
la (11).

Programs of formula (23) were elaborated and
examined by M. Gmitro and M. Sotona; in this
context a useful formula for the calculation of the
9-j symbol with one stretched configuration" oc-
curring also in Eq. (23) is to be mentioned. Their
efficiency was compared with various similar pro-
grams. ' As compared with Davies's widely used
code, for example, the code corresponding to ex-
pression (23) was found to be roughly by a factor
of 5 less time consuming for the l =0 TMB and by
a factor of 2.5-4 less time consuming in the other
cases." It is also worth mentioning that formula
(23) inclusive of the expression for the stretched
9-j symbol of Ref. 17 allows an easy computation
of TMB tables in the form of powers of prime
factors if only the mass fractions d are rational.
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