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Conditions are given and proven that are sufficient to insure the saturation property of nu-

clear binding energies. Interactions mediated by two-body local static potentials are consid-
ered. For some classes of potentials these sufficient conditions are also necessary for sat-
uration.

1. INTRODUCTION

Recently, a rigorous approach to the old prob-
lem"' of the saturation property of nuclear bind-
ing energies has been revived, and necessary con-
ditions for saturation have been given, i.e., in-
equalities that the nuclear interaction must satisfy
to be consistent with asymptotic saturation. ' These
rigorous conditions can be used to demonstrate
that a given model of the nuclear force is incon-
sistent with saturation, or to pinpoint which fea-
tures of a possibly saturating nuclear interaction
are essential to bring about saturation. A remark-
able outcome of these investigations is the obser-
vation that current models of the nuclear force do
not comply with the requirements of saturation in
an entirely satisfactory manner. ' Moreover,
these results indicate that it is unlikely that the
empirical saturation displayed by the nuclear bind-
ing energies could be reconciled with a nuclear
interaction whose static part, considered by itself,
does not saturate. This conclusion, coupled with
the remark that the more usual and simple non-
static interactions (e.g., a local spin-orbit force)
are essentially incompatible with saturation, ' ' "~
focuses. attention on the static part of the: nuclear

force, and thus justifies the fact that our consider-
ation is hereafter limited to a nuclear interaction
mediated by a two-body static (local) potential.

Two basic features can be responsible for satu-
ration: the exchange character of the nuclear
force, and its predominantly repulsive nature at
short range. While either one of these features
can produce saturation, it is presumably a com-
bination of them that is operative in the nuclear
case. It is, nonetheless, quite interesting, to the
extent that it is feasible, to elucidate the role that
each feature is playing; this can to some extent
be done, for a given model of the nuclear force,
by modifying it so as to emphasize one or the
other feature, and- then testing whether saturation
is, or is not, achieved. As noted above, a useful
instrument to carry out this program is (neces-
sary) conditions that the nuclear force must satis-
fy in order to be consistent with saturation'; ob-
viously no less useful is the complementary tool
consisting of (sufficient) conditions such that if
the nuclear interaction satisfies them, saturation
is guaranteed. It is the purpose of this paper to
report sech conditions, ' together with their proofs.

Clearly sufficient conditions for saturation pro-
vide, moreover, an important tool to facilitate
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the search for a satisfactory model of the nuclear
force, a problem that lies at the core of nuclear
theory. It is indeed hoped that in the future such
constraints, which display some of the informa-
tion originating from the many-nucleon problem,
will be taken into account by the researchers who

produce models of the nucleon-nucleon force fit-
ting the experimental data for the (bound and scat-
tering) two-nucleon system.

As is wel1 known, sufficient conditions for satu-
ration are generally more difficult to obtain than
necessary conditions, because they require the
establishment of a, &ogler (rather than an upper)
bound for the ground-state energy of the many-
nucleon system. Indeed, in nuclear physics the
only result of this kind is the classical theorem,
proved a generation ago by Wigner, which states
that certain forces having a rather special ex-
change character [pure Majorana or pure Heisen-
berg, possibly mixed with a limited amount of
nonexchange (Wigner) force] possess the property
of saturation, provided the corresponding poten-
tials belong to a class that includes only functions
having a definite sign for all values of r. ' Another,
much more recent, development in this direction
is the work by Fisher, Ruelle, and others on the
stability problem in statistical mechanics. "'
These researches, while originally carried out
in a somewhat different physical context, can
rather easily be generalized and extended so that
they apply to nuclear physics (indeed they could
be taken over directly, were it not for the fact
that Fisher and Ruelle, ' although considering par-
ticles of different species, did not include ex-
change forces in their treatment).

In this paper, we use both the approach of Wig-
ner' and that of Fisher and Ruelle' to obtain re-
sults relevant to nuclear physics. The first re-
sults consist of a generalization of the theorem of
Wigner to more general mixtures of exchange
forces. While the final sufficient conditions for
saturation obtained in this manner are rather sim-
ple, their proof involves considerable algebraic
complications, and requires some group-theoreti-
cal results relative to the characters of certain
representations of the permutation group' that
were not available when Wigner wrote his paper.
The second results are obtained in a rather
straightforward manner applying the technique of
Fisher and Ruelle' to the nuclear interaction.
Roughly speaking, the results of the first kind
are more suited to test a model of the nuclear
interaction that saturates due to the exchange na-
ture of its forces; indeed, they are applicable
only to potentials that do not change sign. The
results of the second kind are instead applicable
also to potentials that do change sign (and that

may be quite different in each spin-isospin state),
and are therefore more appropriate to test an in-
teraction that saturates mainly because of the re-
pulsive character of the forces at short range.
Thus, these two sets of sufficient conditions for
saturation are to some extent complementary, as
witnessed by the existence of (saturating) models
of the nuclear force that satisfy one set of condi-
tions, but not the other. Moreover, they can be
used in conjunction, as explained below.

In the following section a number of prelimi-
naries are dealt with, including a precise defi-
nition of saturation. In Sec. 3, the generalized
theorem of Wigner is proved, and in Sec. 4 the
set of sufficient conditions for saturation is estab-
lished that follows from a straightforward exten-
sion of the Fisher-Ruelle method. ' Section 5 con-
tains a statement of the final theorem that em-
bodies the results proved in the previous sections.
It has been written having in mind the convenience
of a reader who is interested in using the results,
but not in checking their proof; thus, it is com-
pletely self-contained (at the cost of some repet-
itiveness), and it can be read directly after Sec.
2. The concluding section contains also a discus-
sion of the results, including a comparison with
the necessary conditions for saturation. Some
mathematical details are confined to the Appendix.

2. PRELIMINARIES AND DEFINITIONS

We write the nuclear interaction acting between
the ith and jth nucleon in the form.

where P,'~ and P", are, respectively, the projec-
tion operators over the spin and isospin states
(triplet or singlet) of the interacting nucleon pair,
r = r, —r, is the internucleon distance, and S~ is
the usual tensor operator

Sr(i,j ) =-o, o,. + 3(o,. r)(o,. ~ r)/r'. (2.2)

As is well known, this operator vanishes identi-
cally in the singlet spin state, and in the triplet
spin state its expectation value ranges between
the extrema -I and 2, depending on the spatial
configuration of the wave function. This same
interaction can be written in either one of. the fol-

W&,.=P,' (i,j )P,' (i, j)U,3(r)+P,' (i,j)P, (i,j)U„(r)

+P'.-'(i, j)P (i, q)V'„(r)

+P'. '(i,j)P' (i, f)V-'„(r)

y; l(., j)U;,(r)+ P' (,j)U;, ( )]S,(,j),
(2.la)
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lowing two equivalent ways:

WI1= Vr(r) + VB(r)P~(i,j)—V„(r)P,(i, j)
—V'(r)P. (t, j}P,(t, j)

negative) values of r, the inequalities

U'. ,'(r) & U'. ,(r), a, ~=1, 2,

/U3,'(r) f~ /U3, (r)/, T=l, 2.
(2.6a)

(2.6b)

+ [V~(r) —V„(r)P,(3, j)]sr(i, j)
= V (r)+a, o, V, (r. )+ r,. T, V,.(r)

(o, ~ o )(,. ~,.)V, (r)

+ [V4 (r) + TI T,. V „(r}]Sr (i,j),

(2.1b)

(2.1c)

where P, (i,j) and P, (i,j) are, respectively, the

operators that exchange the spin and isospin co-
ordinates of nucleons i and j. The connection be-
tween these different notations is implied by the
relationships

P,' ~ (i j ) = 3 [1+ P, (i j )]= —,
' + —,'(1+ o, o,), (2.3)

and by the analogous relationships for the isospin
operators. Specifically:

and

IV 4( 33 31 13 11}1

B 4( ~33 +31 ~13 ~11) 1

VB = 4( %33+ %31 %13+ Wll) 1

+JC 4( 33 ~31 13 ll}1

Vw 3(U3, + U31) ~

V'„= —,'(-U,', + U,',),

V(yy —~(%33 %31 U13 + Wll) \

V; = -,'(U,', —U,', ) .

(2.4a)

(2.4b)

(2.4c }

(2.4d)

(2.4e)

(2.4f)

(2.5a)

(2.5b)

(2.5c )

(2.5d)

(2.5e)

(2.5f)

The notation (2.1c}is employed in the treatise of
Blatt and Weisskopf'; the notation (2.1b} is more
old-fashioned, the potentials V~, V~, V„, V„
being associated, respectively, with the names
of Wigner, Bartlett, Heisenberg, and Majorana.
We shall present our results using the notation
(2.1a), not only because it is nowadays more
fashionable, but because it has the distinct advan-
tage of employing only positive definite spin-iso-
spin operators (apart from the tensor operator
that is intrinsically not positive definite), imply-
ing, therefore, validity of the following:

Remark. If the interaction W of Eq. (Z. la) satu-
rates, so does any other interaction W' such that
the corresponding potentials satisfy, for all (non-

Trivial as this result is, it is quite useful, as it
may enlarge the scope of the sufficient conditions
for saturation derived below. We shall return to
this point in Sec. 5.

The restrictions on the potential functions that
are required for the validity of the results given
below shall be specified later. The only assump-
tion that is understood hereafter is that all poten-
tials vanish asymptotically at large interparticle
separation, and that they are finite-valued func-
tions for r &0.

Throughout this paper the following definition
of saturation is adopted. Let E~ be the ground-
state energy of the system of A nucleons inter-
acting via the nuclear interaction (2). The inter-
action is termed saturating if there exists a finite
constant c, independent of A and such that, for
all (positive) values of A,

E &-cA. (2.7)

Of course this condition is restrictive only as far
as the asymptotic value of E„at large A is con-
cerned (since c is an arbitrary constant), and it
corresponds to the requirement that the binding
energy -E„not grow faster than linearly with A.
This definition of saturation (termed "asymptotic"
saturation by Blatt and Weisskopf') need not, of
course, correspond to the "conditional" satura-
tion manifested by the binding energies of real
nuclei, which are always composed of a finite,
if large, number of nucleons. The use of such
a definition is the price that must be paid to ob-
tain rigorous and simple results. It should, how-
ever, be emphasized that, far from being academ-
ic, the requirement of "asymptotic" saturation
for the nuclear force is a very reasonable one,
and, in fact, as A for heavy nuclei is indeed a
large number, an asymptotically nonsaturating
force (that typically produces a binding energy
-E„that grows at large A quadratically rather
than linearly in A) generally grossly overbinds
heavy nuclei.

Another characteristic feature of the phenome-
non of saturation is the lack of dependence of the
(mean) density of the ground state of the many-
nucleon system on the value of the nucleon number
A at large A. Our analysis does not consider this
facet of the problem; all we can say is that gener-
ally saturation of density and saturation of binding
energy are associated, as they clearly originate
from the same basic cause, namely the fact that,
in the ground state of the many-nucleon system,
each nucleon is close to, and interacts with, only
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a few other aucleons.
The nuclear interaction under consideration

conserves the total spin, isospin, and angular mo-
mentum of the many-nucleon system, and there-
fore it should be considered separately in each of
the sectors of the Hilbert space characterized by
a given set of values of the corresponding quan-
tum numbers (say, S, S„T, T, , L, L,). And

indeed, even the very definition of saturation
should include a specification of the sector of the
Hilbert space it refers to; in fact, a nuclear in-
teraction might saturate in one sector (for in-
stance in the sector where the total spin S and iso-
spin T are maximal, S= T= ~Ah) and not saturate
in another (for instance in the sector with S= T
« —,'Ak). Although it would be easy to keep track
of this refinement, we shall use the most strin-
gent definition of saturation, corresponding to the
requirement that the condition (2.7}holds in all
sectors of the Hilbert space (or equivalently, for
all possible values of the set of conserved quanti-
ties). Equivalently it may be stated that the ground
state energy E„ introduced above is the energy of
the lowest possible state of the A-nucleon system,
not the lowest state for some given value of the
conserved quantities. The justification for this
decision is that the cases of actual physical in-
terest correspond to values of the conserved quan-
tities S, S„T, T„L, L, close to zero, and that
the conditions of saturation valid in this sector
coincide essentially with the conditions of satura-
tion for the whole Hilbert state. This is due to the
assumed asymptotic vanishing of the forces at
large interparticle separation, which implies the
possibility of forming clusters. It is then obvi-
ously impossible for an interaction to saturate in
the state with, say, S=O, and not in the state with
S=-,'hA; for, nonsaturation in the latter case im-
plies for large A the existence of a state composed
of A/2 nucleons and having S~ —,'KA and with a bind-
ing energy growing more than linearly with A.
However, two such clusters, kept apart so that
they do not interact, can always combine into a
nonsaturating state with S=0. The converse, of
course, is not true, but the case of a nuclear
force that saturates only in states with S and/or
T and/or L of the order of RA is not sufficiently
interesting to justify a separate treatment. In any
case the recovery of the results apposite to some
of these eases from those given below is an easy
task, as it requires only retracing the steps in-
volved in the proofs given in the following sections.

The theoretical framework of our treatment is
nonrelativistic quantum mechanics. However,
because our purpose, as indicated by Eq. (2.7),
is to obtain a lower bound for the ground-state
energy of the many-nucleon system [or rather, to

In this section we consider the special class of
nuclear interactions that obtains if in Eq. (2.1a)

U'. ,'(r) = U'. ,'u(r), (3.1)

with Uc;r constant and with the function u(r) char-
acterized by the integral representation:

u(r) = dp g(p)f(r/p),
0

(3.2)

where g(p) is nonnegative and integrable (over the
range 0 to ~) but otherwise arbitrary, and f (x) is
the common volume of two spheres of unit radius
whose centers are at a distance x.

f(x) =~v(16- »x+2)e(2- x). (3.3)

The principal restriction that this integral repre-
sentation implies for u(r) is that it is a positive
semidefinite function.

For such a nuclear interaction we now prove that
validity of the following set of inequalities:

9U~3+3U3, +3U,3+ Ui, )0,
3U +U, &0,

3Uss+ Ui3-Oy

(3.4a}

(3.4b)

(3.4c)

establish conditions that, if satisfied by the nu-

clear interaction (2.1}, guarantee the existence
of the lower bound (2.7)J, we shall hereafter sys-
tematically neglect the kinetic energy part of the
Hamiltonian, since it is an essentially positive
operator, and limit our consideration to the po-
tential energy. In this sense, therefore, the re-
sults that we give remain valid even for a classic-
al system. A more picturesque, if less precise,
way to phrase this point is to recall that both the
Heisenberg uncertainty and the Pauli exclusion
principles raise the ground-state energy of a sys-
tern, and therefore favor saturation. Thus, for
a given nuclear interaction, saturation in the
classical case (i.e., with the requirements of the
Heinsenberg and Pauli principles not enforced and
the nucleons considered as pointlike particles
obeying the equations of classical dynamics) im-
plies saturation in the quantal case. The results
given below have been obtained neglecting the
Heisenberg principle; the Pauli principle has been
used to obtain the results of Sec. 3, but not to ob-
tain those of Sec. 4. It should, however, be noted
that inclusion of these additional restrictions will
not always permit the establishment of a less
stringent set of sufficient conditions. This is in-
deed demonstrated by the fact that, in some cases
(see below), the set of sufficient conditions for
saturation that we derive also constitutes a set of
necessary conditions for saturation.

3. GENERALIZED WIGNER THEOREM
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3U33+ U11 -o,
U„&0,

where

T C
33 33 ~33 33 1 31 31 931 31 0

C
13 13$11 111

(3.4d)

(3.4e)

(3.5)

X jf ~ XS XT I y g ~ ~S "S'+~T+ XS "S +~T T

(3.7}
Here we have introduced the many-nucleon spin
function is~ „(o,.), that corresponds to a definite
Young tableau (characterized by the index A.s) with
Yamanuchi index p, s. For a given spin S the index
A. s is fixed. The notation for the many-nucleon
isospin function y„„(7,.) is analogous. The
Clebsch-Gordan coefficients of the permutation
group C~ ~" » in Eq. (3.7) combine the spin and
isospin functions into a spin-isospin function
C ~„z ~ (o„r,) with definite symmetry (charac-
terized by the indices A and p) under simultaneous

and each of the constants q33 and g» can take the

values 2 or -1, is sufficient for saturation.
This set of conditions consists of 5 inequalities

if only central forces are present, and of 14 in-
equalities if tensor forces are present in addition
to central forces. A discussion of these condi-
tions is given below, after their proof.

Our method of proof is closely patterned after
Wigner's treatment. ' Let C(r, , o, , ~,), i =1,
2, . . . ,A, be the wave function associated with the

many-nucleon system; r„oj T j are the space,
spin, and isospin coordinates of the ith nucleon. In

order to fulfill the Pauli exclusion principle, the
function 4(r„o„7,)must o. f course be antisym-
metric under exchange of the (space, spin, and

isospin) coordinates of any two nucleons.
It is convenient to begin the proof considering

a (fictitious) nuclear interaction that differs from
Eqs. (2.1) and (3.1) in two respects: We assume
u(r) = 1 (so that the potential functions are con-
stant), and U„=0, r = 1, 3 (so that only central
forces are present).

For central forces, the total spin S, its z com-
ponent S„ the total isospin T, and its z component

T, are conserved. Thus, each state of the many-
nucleon system can be characterized by a given
set of these quantum numbers.

The wave function of the many-nucleon system
can be decomposed as follows:

+ri o~ 7 }=Zb~ +~ Z@~i(r )@~p.)s~r(o rg)
g, a

(3.6)

where the spin-isospin part can in its turn be
written as follows:

&~sos' &~s&s ~s "s "sss '

+&TAT T&T T T PTPT
C

(@Xp Xs Xrs k'p'. Xs Xr) aa' XX' p p' s

(4'~q, 4'q „)= c a 6xx 6„„., caa =1.

(3.8a)

(3.8b)

(3.8c)

(3.8d)

The Clebsch-Gordan coefficients of the permuta-
tion group are real and satisfy the orthogonality
conditions'.

&S &T

Sl S' Tt T SI Se TAT N T T ~T~T
V~PS XT

(3.8b)

C xu C~S "S~ T~T S S ~ T T N S S "S"S
Ps AT S

(3.9c)

These orthogonality conditions imply for the coef-
ficients b) the normalization condition:

(q, e)= g (h, .('=1. (3.10)

The ground-state energy E„of the A nucleon sys-
tem is given by

E~=m'nI 4 Z7',. + P W,
j=1 j&j=l

(3.11)

where the minimum is to be taken over all func-
tions of the type (3.6). Of course, since total spin
and isospin are conserved, one can restrict the
minimization procedure only to the class of wave
functions that have definite values of S, S„T,and
T„and the corresponding ground-state energy E„
is then that appropriate to the sector of Hilbert

permutation of spin and isospin variables. The
index n is a repetition index that distinguishes
different possibilities of constructing the spin-
isospin Young tableau characterized by the in-
dices X and p from the two (spin and isospin)
Young tableaux characterized, respectively, by
the indices A. s and A, T. N~ is the dimension of the

representation characterized by the index A. . The
totally antisymmetric wave function ql(r„o „r,}
is expressed in Eq. (3.6) as a superposition (char-
acterized by the coefficients b~ }of products of
the spin-isospin functions 4~„~ &, (o, , 7,.) times
functions 4™-„(r,) of the space coordinates that
transform under permutation of these coordinates
according to the representation of the permutation
group of A particles conjugate to that charac-
terized by the indices ~ and p. . As usual, this
representation is indicated by the indices A. and P. .

All the functions are assumed to be normalized,
and the following orthogonality relations hold:
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AE„' ()T')= '
(lP, Q ))', C'}.

f &j=l
(3.12)

space characterized by the given values of S and

T [it is clearly independent of S, and T„ indeed,
degenerate with multiplicity (2S+ 1)(2T+1)].
Minimization over all the (allowed) values of S
and T can be subsequently performed to obtain
the ground-state energy for the whole Hilbert
space, i.e., without specifying the values of the
total spin and isospin.

In Eq. (3.11), W, ~
is the potential energy of Eqs.

(2.1) and T, is the kinetic-energy operator for the
ith nucleon. Since the kinetic energy is certainly
positive, Eq. (3.11) implies for E„the lower bound

(3.18)x"= ZD„"',„,(~ j),
~s

of the irreducible representation A.s. As is well

known, it is independent of the particular indices
i, j. Thus one can write

is the matrix element of the permutation operator
P,(i, j) in the irreducible representation charac-
terized by the index x~. To get Eq. (3.16) one must
use Eq. (3.8b) to sum over pr, Eq. (3.8d) to sum
over g' and X', and Eq. (3.9c) to sum first over p
and p, » and then over p.s and a'.

Note that only the diagonal elements D„~„(i,j)PsPs
enter in this expression. One can now introduce
the character

It is now convenient to use the notation (2.lb) for
the potential energy, which under the assumptions
introduced above reduces to

A

Z (e, P.(I, j)g)=-,'ag-1)Z Ib,.I' "
f &j=l s

(3.19)
w„.= v' + v', P.(f, j)- v', P, (i, j) v'„P.-(I, j)P,(i, j),

(3.13}
In a completely analogous fashion one obtains

with V~, V~, V„, V„constant. Inserting this ex-
pression in Eq. (3.12) we get

A

w=-,'xQ-1)v', + v', Z (4, P.(I, j)4) and

Z (e, P, (f, j)e)=-,'x(A-1)Z Ib,.I' "
f&j=l ~a X

(s.2o)

—v'„Z (e, P, (f, j)e)

—V„Z (4, P, (i, j)P, (i, j)4) . (s.14)

A 2XZ (+, P (I, j)P, (I,jH')=-,'&8 —1)Z Ib), I'
Nf&j=1 ge

(s.21)

where

Let us now evaluate the expectation value of the
operator of transposition of the spin coordinates
P,(i, j). Using Eq. (3.6) we get

()I', P~(i, j}g))=Zb+& alibi)~(N), iN&) ~
C&

xC~» (, I &i
x~))~, xr))r( A~))~) a ~ 7)'Px~))~)

x =Z(p), „,& z, p, (i,j)p, (i,j)y„„z ), ) (3.22)

is independent of u.
Inserting these expressions into Eq. (3.14) one

obtains finally

w =
& A(A- 1)Z I b, I' vc+ vc x '

9 xr))rt 0 )r))r I S

(3.15)
cX cX

N '"N ~
)i.z

the sum extending over n, u', a, a',

pr, pz, i),z [but not Xz, Xr, since clearly the total
wave function 4 is characterized by a fixed value
of the total spin S and isospin T, and therefore by
unique values of X~ and Xr (see above)].

Using the orthogonality relations given above,
this reduces to

where we have defined

Ib I'=Zlb. l',

and of course we have

Z lb, I'=1.

(3.23)

(3.24)

(3.25)

()II, P (i, j})p)= Z fb»I N~ 'ZD&~& (I,j),

where

D„;„(I,j)=(V'i, „, P.(I i)V'i, ),)

(3.16)

(s.17) (3.26)

The sum over X in this equation and in Eq. (3.23)
extends over all the Young tableaux A. that can be
formed with a spin Young tableau Xs and an iso-
spin Young tableau A.~; in symbolic notation,

[x.){x. )= Z [x].
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The characters appearing in Eq. (3.23}are
known':

p+-,'(n+y) & x,
p+min(n, y) ~ x-y.

(3.33d)

(3.33e)

—,'A(A —1) = S(S+ 1) + —,'A(A —4),
N),

(3.27a) Here we have introduced the two convenient vari-
ables

-;A(A —1) = T(T+1)+ ~A(A —4),
Ng

4

-'A(A-1) ~ =-'gX, (x, —2i +1).
(=1

(3.27b)

(3.28)

x=2S/A,

y = 2T/A,

that are obviously restricted in the range

(3.34a)

(3.34b)

A., &X, &A, ~A, ,

and the normalization condition

A., +A., +A,, +A =A,

(3.29)

(3.30)

characterize the length of the ith line of the spin-
isospin Young tableau:

The Young tableaux A, that are compatible with
a given total spin S and total isospin T are also
known. ' To characterize them it is convenient to
introduce the three independent coordinates

Here S and T are, respectively, the quantum num-

bers characterizing the total spin and total isospin
[specifically, h'S(S+1) equals the square of the
total spin); and the four indices a„ satisfying the
inequalities

0 cx(1,
0 &y &1.

(3.35 )

(3.35b)

The inequalities (3.33) and (3.35) correspond,
for a given Young tableau, i.e., for a given val-
ues of n, P, and y, to the requirement that the
two variables x and y of Eq. (3.34) lie inside or
on the boundary of the heptagon OPER'Q'P' in
the xy plane, whose vertices have the coordinates

0: x=p, y=0,
P: x=0, y=p+min(u, y),

0: x=~2lo- pl, y p+=k(~+y),

R: x= ,'(n+p)-, y=p+-,'(n+y),

with the coordinates P', Q', R' obtained from P,
Q, R by exchanging x with y (see Fig. 1).

It is now convenient to write 8' in terms of these
variables. Using Eqs. (3.23}, (3.25}, (3.27), (3.28),
(3.31), and (3.34) we get

W= ,A F(x, y; o, -P, y) —~A[V:+(2-x}vcs
—(2 —y) V„——,'(8 —3u- 4P- 3y) V„], (3.36)

where

a=2(~, —X,)/A,

p=2(z, —z, )/A,

y = 2(x, —x,)/A,

(3.3 la)

(3.3 lb)

(3.31c) and

F(x, y, u, P, y) = V', + —,'(x'+1)V', ——,'(y'+1)V„'

——,'[1+f(u, p, y)]V, (3.37)

that must satisfy the inequalities (independent of
S and T)

f(~, P, y) = l[o'+ P'+y'+(o+ P)'

Qto p

po p,

y&0,

Q+2p+3y ~~2.

(3.32a)

(3.32b)

(3.32c)

(3.32d)

+ (p+y}'+ (u+ p+ y)'].

Q R

(3.38)

Then any Young tableau characterized by the four
indices A, , is compatible with total spin S and total
isospin T provided the following five inequalities
hold:

R

Q'

p+l(o+y) -y,
p+min(a, y) ~ y —x,
Q+ P+y &~ x+y )

(3.33a)

(3.33b)

(3.33c)

pl

FIG. 1. The heptagon OPQRR'Q' P' in the xy plane.
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Now a lower bound to the ground-state energy
E& of the many-nucleon system with given values
of S and T (or, equivalently, x and y) is given by

E»„r & min(W}, (3.39)
egg

the minimum being taken over all the values of
u, P, and y that are consistent with the inequali-
ties (3.32) and (3.33). A lower bound to the ground-
state energy E„without restrictions on S and T is
given by

Al-A. 2-A.3-A.4= 41A
y

S= T=oi

Eq. (3.42b) obtains from

(3.43a)

Eq. (3.42c), from

a, =z, =0, S=~A T= 0;
(3.43b)

A., =A, = —A, A. =Z =0, S=O, T= —'A;

from the most antisymmetrical Young tableau for
the spin-isospin wave function, characterized by

E„&min(E~» ) = min(W),
s T +Ryry

(3.40) (3.43c)

the minimum of 5' being now taken over all values
of a, P, y, x, and y consistent with the inequali-
ties (3.32), (3.33), and (3.35).

It may be recalled at this point that the system
under consideration is that of A nucleons inter-
acting via the (fictitious) interaction (3.13).
Clearly a sufficient condition for saturation for
this system is given by the inequality

(3.41)

4V~+ 2V~ —2VH —V

2V»+ 2V»- V» —V» & 0,
2V~+ V~- 2V~ —V~~ 0,
2V)(+ V~- V~ —2V„O,
V~+ V~- V~ —V~ & 0.

(3.42a)

(3.42b)

(3.42c)

(3.42d)

(3.42e)

The proof is accomplished by considering all the
possible values that E, Eq. (3.37), can take, as
u, P, y, x, and y vary in their allowed ranges
(3.32), (3.33), and (3.35), or equivalently, as the
many-nucleon system assumes all possible spin-
isospin configurations. It is of interest to note
the five configurations that correspond to the five
(extremal) conditions (3.42): Eq. (3.42a) obtains

min [J'(x, y; o., P, y) j & 0 .
apply

Indeed, for the (fictitious) system under considera-
tion, this condition" guarantees that, for large A,
the ground-state energy of the system diverges
quadratically to positive infinity. This anomalous
result is due to the assumed constancy of the po-
tentials, which do not vanish at large distances.
In fact, the physical meaning of the above result
(in the realistic case with nonconstant potential
functions, to which we shall return below) is that
if Eq. (3.41) holds, "a situation where all nucleons
are so close to each other that every nucleon is
within the interaction range of every other nu-
cleon is energetically unfavored; namely the con-
dition (3.41}implies that collapse is energetically
disadvantageous.

In Appendix I we prove that the condition (3.41)
is completely equivalent to the following set of
five inequalities:

Eq. (3.42d) from

X, =A, X, =X, =Z, =O, S= T=O;

and Eq. (3.42e) from

(3.43d)

X, =A, X, = z, = x, = 0, S= T = —,'A . (3.43e)

Using the connection between the potentials V~,
V», Vc», and V~» and the potentials U„, Eqs. (2.4),
one can rewrite the conditions (3.42) in the follow-
ing form:

3U33+ Uzi ~ Oy

3U33+ U 3 0,
3U33+ U„O
U33& 0.

(3.44a)

(3.44b)

(3.44c)

(3.44d)

(3.44e)

To complete the proof of the generalized Wigner
theorem for central potentials one must now ob-
tain, from the above result valid for constant po-
tentials, a similar result valid for potentials of
type (3.1)-(3.3). The procedure is identical to
that given by Wigner, ' and need not be repeated
here.

The second extension required to complete the
proof of the generalized Wigner's theorem, as
stated at the beginning of this section, is to inter-
actions containing a tensor component. This is
quite trivial; indeed the result of Eqs. (3.4)-(3.5)
obtains immediately from the above result and the
remarks that the tensor potential operates only
between nucleons in a triplet spin state, and that
the extremal values of the tensor operator S~ are
2 and -1.

As the method of proof indicates, if no tensor
potentials are present, validity of the five in-
equalities (3.4) is not only sufficient, but also
necessary for saturation. This can be proved as
follows. Suppose that one of the five conditions
(3.4) is violated, say the inequality (3.4x). Assum-
ing this, use the Raleigh-Ritz principle to obtain
an upper bound for the ground-state energy of the
many-nucleon system, employing a trial wave
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function whose spin-isospin structure is charac-
terized by the Young tableau of Eq. (3.43x}, and

whose space structure represents A free nucleons
all enclosed within a sphere whose radius is very
small relative to the range of the forces. Then
effectively in place of u(r) in Eq. (3.1) we can sub-
stitute the constant n(o) (note that this quantity can-
not vanish, except in the trivial case of free nu-

cleons), and therefore the evaluation of the expec-
tation value of the potential energy, as performed
in the proof of the generalized Wigner theorem, is
now applicable, and yields a result that, at large
A, tends to negative infinity proportionally to A'.
As for the expectation value of the kinetic energy,
it cannot balance this behavior, because it grows
only proportionally to A'". We may therefore con-
clude that, in the case without tensor forces, if
any one of the five inequalities (3.4) is violated,
an upper bound to the ground-state energy E~ of
the many-nucleon system can be established which
at large A diverges quadratically to negative in-
finity; and this implies, of course, no saturation.

The fact that, if no tensor forces are present,
the conditions (3.4) are both necessary and suf-
ficient for saturation, indicates that for the class
of potentials (3.1)-(3.3}these are the best con-
ditions that can be given.

It is interesting to note that the set of "condi-
tions for saturation" given in the literature (for
the case without tensor forces)' differs from that
given above. The difference consists in the re-
placement of Eq. (3.4d) with the inequality

5U33+ 3,+,3+ U„O. (3.45}

The resulting set of conditions is less stringent
than that obtained here, Eqs. (3.44), since the in-
equality (3.45) is implied by (3.44a) and (3.44d).
Thus, the assertion that the set (3.44a), (3.44b),
(3.44c), (3.45), (3.44e) provides necessary condi-
tions for saturation is correct, although these
conditions are not the most stringent that can be
given"; the assertion that it provides sufficient
conditions for saturation is incorrect, "as demon-
strated by the existence of a stronger set of nec-
essary conditions.

In the more general case with tensor forces, the
14 inequalities (3.4) have been obtained assuming
that the tensor interaction can yield maximal at-
traction for every nucleon pair occuring in the trip-
let spin state. While this assumption is certainly
adequate to provide sufficient conditions for satura-
tion, it is not likely to yield the best possible con-
ditions. Indeed, one might conjecture that a less
stringent, but still sufficient, set of conditions
would obtain performing the substitution (3.5) only
in the inequalities (3.4b) and (3.4e), setting U„
= U„ in the other three inequalities [that origi-

nate from configurations with vanishing total spin;
see Eqs. (3.43)], and moreover restricting the
two constants g33 and g» to coincide, i.e., to both
take either the value 2 or the value -1. The proof
or disproof of this conjecture does not appear to
be an entirely trivial exercise.

The conditions for saturation provided by the
generalized Wigner's theorem refer only to the
very special class of nuclear interactions char-
acterized by the potentials (3.1)-(3.3}. Although
the very special character of this interaction cor-
responding to the existence of one and the same
potential functions for all the spin-isospin states
can be relaxed using the Remark of Sec. 2, the
fact that the function u(r) of Eqs. (3.1)-(3.2) is
positive semidefinite is a major limitation, and

in particular it excludes the possibility of treating
the case of nuclear interactions that saturate main-

ly because of the presence of repulsion at short
range, rather than because of the exchange na-
ture of the forces. In the following section a dif-
ferent set of sufficient conditions for saturation
is derived that are especially suited to test inter-
actions where the repulsive nature of the forces
at short range plays an important role in securing
saturation. As discussed in Sec. 5, these condi-
tions are complementary to those proved here,
and can be used in conjunction with them.

4. RESULTS YIELDED BY THE
FISHER-RUELLE APPROACH

We return now to the consideration of the most
general (static) nuclear interaction, Eqs. (2.1).We
assume, however, that the potential functions
U, ', (y) are finite (nondivergent} at r =0, and that
their Fourier transforms,

(4.1a)

(4.1b)

are also finite for all nonnegative values of p. The
extent to which these restrictions can be relaxed
is discussed at the end of this section.

It is actually more convenient, in this section,
to work with the potentials of Eq. (2.1c). We ac-
cordingly introduce their Fourier transforms
writing

V. ( )=(2 ) 'f dp "'V„' (l), (4.2)

where v stands for d, o, 7, or o7 in the central
case, and for d or v in the tensor case. Of course,
the functions V„(p) are related to the functions
U,', (P) by Eqs. (2.5). It is also convenient to in-
troduce the modified Fourier transforms I)'r(p)
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through

r 'V„Iv)=(sv)''f dpe'p' V (p).„ (4.3)

These modified Fourier transforms are more
convenient for expressing the tensor operator,
since clearly

v '()s„„(s ) ='Js-pv" v 's .v„'(p.). . (4.,4)

we can rewrite this inequality in the form
dpi'

4 V +4'4' 5 V +6 V~p

+ (4.', 4:)v', (p)+ (4.;, 4 „,')
x [5 „V,(p}+g „Vr(p)])~ 0,

(4.12)

having introduced the 16 wave functions

where

8 84 „=-3
ap. ap„

+ &~n &I (4.5)

A

4,d g eip' r )lp

A4'= pe')' r, c
i=1

(4.138)

(4.13b)

~,v„'(p}= -v,'(p) . (4.6}

We now apply the Fisher-Ruelle technique. Let
4 be the ground-state wave function of the A-nu-
cleon system, so that

A A

Z„=~ e, PT, +P W„. e I,
j=l j&f =1

(4.7)

with W, ~ defined by Eqs. (2.1). Using the positivi-
ty of the kinetic energy we obtain from this formu-
la the inequality

A

EA & 4, WjjC
j&f =l

(4.8}

This can be rewritten in the form"

A A

EA ~ O', Wjj+ —~A 4'y Wjj+ y
j=1 j=1

(4 9)

Here and in the following equations the indices m
and n are used to label the three Cartesian co-
ordinates of a vector, and the sum over these in-
dices is understood whenever they are repeated.
To obtain Eq. (4.4) an integration by parts has
been performed. b~ is the Laplace operator acting
in p space. Clearly the relation between the usual
Fourier transforms of Eq. (4.2) and the modified
Fourier transforms of Eq. (4.3) is

A

4'= pe' )' (r, 4,
t=1

(4.13c)

(4.13d)

These wave functions depend on the (space, spin,
and isospin) coordinates of all the nucleons, and
on the vector p; the scalar products (4), 4) depend,
of course, only on the vector p.

Clearly a sufficient condition for nonnegativity
of the left-hand side of Eq. (4.12) is that, for all
(nonnegative) values of p,

v,'(p) - o, (4.14a)

v', (p) 0, (4.14c)

5.„V:(p)+ ~.„V,'(p),

5.„v:,(p}+~.„v', (p},

(4.15a)

(4.15b}

be nonnegative, i.e., that their three eigenvalues
be nonnegative. These last two conditions are
most easily displayed noting that, since they must
be independent of the orientation of the Cartesian
frame, this can be chosen so that p be parallel to
one coordinate axis. Then these matrices diago-
nalize, and the conditions that they be positive
correspond to the inequalities

and that the two symmetric and real 3 &3 matrices

where we have used the fact that the diagonal
terms,

V'. (P) —)7~,vr(P) O,

v'. ,(p) —q~, v', (p) o,

(4.16a)

(4.16b)

W„=Vc(0)+ 3V, (0)+ 3vc(0)+ 9V„(0), (4.10)

&o. (4.11)

Using the Fourier transforms (4.2) and (4.4),

are independent of the particle index i. It is there-
fore clear that a sufficient condition for satura-
tion is"

where g can take the values 2 and -l. Using final-
ly the relationship (4.6) these can be rewritten in
the form

v'. (p)+ qv;(p) o,
v'. ,(p)+)7v', (p) o.

(4.14b)

(4.14d)

The inequalities (4.14a)-(4.14d) are the final set,
of sufficient conditions for saturation. In terms of
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3~:.(P) -».',(P) + U'„(P) —~;,(P).-0,
(P) —II. (P) —~'(P)+~;,(P)

(4.17c)

4n[~:.(P) I:I—,( P)j =0,
(4.17(1)

the constant q taking the values 2 and -1.
The theorem we have just proved asserts that

validity of all these inequalities for all (nonnega-
tive) values of p is a sufficient condition for satura-
tion for any nuclear interaction of type (2.1), such
that the functions Uc;r(r) are finite at r =0 and that
their Fourier transforms (4.1) are defined (non-
divergent) for all nonnegative values of p.

The results can be extended to functions that are
not finite at the origin and/or that vanish at infin-
ity more slowly than r ', so that their Fourier
transforms do not exist (the integrals defining
them diverge). We refer to the literature for a
more precise treatment of this point, "limiting
here our discussion to a qualitative analysis and
a statement of the results more relevant to the
nuclear case.

If the potential functions vanish faster than r '
at infinity, then validity of the conditions (4.17) is
sufficient for saturation. This statement refers
both to the case of potentials that are less diver-
gent at the origin than r ', so that their Fourier
transforms are well defined and finite for all val-
ues of p, and to the case of potentials that diverge
at the origin faster than r ', so that the corre-
sponding Fourier transforms are divergent. In
the latter case the condition to be verified is that
the left-hand sides of Eqs. (4.17), if unbounded,
diverge to positive infinity.

If instead the Fourier transforms diverge due to
an asymptotic vanishing of the potential functions
that is slower than r ', then even if the left-hand
sides of Eqs. (4.17) diverge to positive infinity,
saturation is not guaranteed (as is physically
clear, since an interaction repulsive at long range
and attractive at short range generally does not
saturate). In such a case significant conditions
can be recovered eliminating the long-range slow-
ly-vanishing repulsion by means of the Remark of
Sec. 2.

Attention should be called to the special role
played by the central potential U33 acting in the
triplet odd state. This is, of course, due to the
fact that this is the potential that acts between

the potential Uc;~ they can be rewritten in the form

9IIss(p) +3IIs&(p) +3U(3(p) + U))(p) ~ o (4 17a)

3II.',(P) + &;,(P) —3II;.(P) —&'„(P)

+ 41[»;.(P) + U: (P)) - o,
(4.17b)

identical particles. For instance, it is clear that
if this potential is altogether missing, the suffi-
cient conditions (4.17) cannot be satisfied. This
is as it should be, for it can be proved that in this
case saturation is indeed essentially unattainable. "

The fact that in some of the inequalities (4.17)
some potentials enter with a negative sign is sur-
prising, since it might appear to imply that the
addition of a purely repulsive potential makes the
fulfillment of the conditions (4.17) more difficult.
But it should not be forgotten that positivity of a
function does not necessarily imply positivity of
its Fourier transform. It is, however, true that
the method used to obtain Eqs. (4.17) does not nec-
essarily imply that these are the best conditions
of this kind that could be obtained. In fact, in the
step leading from Eq. (4.12) to Eqs. (4.14), the
implicit assumption has been used that the 16
wave functions (4.13) can be varied independently.
Thus, Eqs. (4.14) certainly imply Eqs. (4.12) (and
are therefore sufficient for saturation), but the
converse need not be true. It is clear that the con-
ditions of Eqs. (4.17) are not necessary for satura-
tion; it is easy to invent a model of the nuclear
interaction that violates them and yet saturates
(see below). However, for special classes of nu-
clear interactions (see below), validity of the in-
equalities (4.17) is indeed both sufficient and nec-
essary for saturation.

S. SUMMARY OF RESULTS
AND DISCUSSION

In this section we summarize and combine" the
results of the previous sections, and make the fol-
lowing statement:

Theorem: Consider a (two-body static local)
nuclear interaction that may be decomposed in the

following u)ay:

w ='"w+"'w+"'w,

u)i th

() gr P(+&~&+& (i)Uc ( ) I)(+)P(-)(oIIc ( )a T 33 a 7 Sl

(5 1)

Sr =-o, ~ (x, +3(r ~ o,)(r o,)/r', (5 3)

that vanishes identically in the singlet spin state
and uhose expectation value ranges between -l
and +Z.

+/( )I&&+) (OIIc (y) +/( )/( ) (CII (/)

+ [P&+ (()IIr(z) +P& & ((&Ur(r)]$ (5.2)

uhere r is the internucleon distance, P"' and P',"
are, respectively, the projection operators over
the spin and isospin states of the interacting nucle-
on pair (+=triplet, —=singlet), and S~is the usu-
al tensor operator,
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Let the potential functions '"Uc;T(r) satisfy, for
all (nonnegative) values of r, the inequalities

'"U'., (r) +q.,("U.', (r) 0, (5.4)

zohere each of the constants g» and g» can take
the values -1 or +2, u)bile q13 f11 p.

Let the Potential functions (3)Uc,T(r) have the

sPecial form,
($)Uc, T(r) (3)UcP'u(r) (5.5)

the constants e)U, ;~ satisfying the 14 inequalities

9(2)UC + 3 (2)UC + 3 (2)UC +(2)UC
33 31 13 11

(2) T (2) T )
f83 33 ~31 31

(5.6a)

3 (2)UC +(2)UC + 3q (2)UT +q (2)UT ) 0

3 (2)pC +(2)UC + 3q (2)pT ) 033 13 33 33

3 (2)UC +(2)UC + 3q (2)pT ) P

(2)p C +~
(2) U. T ) 083 38 33

(5.6b}

(5.6c}

(5.6d}

(5.6e)

cohere each of the constants q» and g» can take
the values -1 or 2, and the function u(r) being
expressible by the integral representation

( )=f dog&a)l( /r&),
A(2

where g(p) is nonnegative and integrable,

(5 7)

g(P) & 0, dP g(P)(~,
0

(5 6)

lim [r +'Uc, (r)] =0, e &0
r~ ()o

(5.10)

and be finite valued for r&0. Let their Fourier
transform s,

"'()"())=f a '~' "'u' '{r) (5.11a)

=4(( dr r' "'U ' (r) (5.11b)
sin(pr)

0

satisfy for all (nonnegative) values of p the six
inequalities

9 "Ugp(p)+3"'U3)(p)+3"'U (p)+ 'U (p) &0

(5.12a)

but otherwise arbitrary, and f(x) is the common
volume of theo spheres of unit radius &chose centers
are at a distance x,

f(x) = ~)((16 —12x+ x') e(2 —x) . (5.9)

[Note that the integral representation (5.7), (5.8)
imPlies that u(r) is Positive definite and that it
vanishes asymptotically. ]

Let the potential functions o'Uc T(r) vanish asymp
totically faster than r ',

cohere the constant g takes the values -1 and +Z.

[Note that the Fourier transforms are not required
to be finite; they can diverge, so long as their di-
vergence does not violate the inequalities (5.12).]

Then there is saturation, i.e. , the ground-state
energy E„ofan assembly of A nucleons interact
ing via (5.1) satisfies the inequality

E~) -cA, (5.13)

where c is a finite constant (independent of A).
This conclusion remains valid even if the inter-

action "'W does not satisfy the conditions stated
above, but another interaction'"W' exists, that
satisfies the conditions stated above and such that,
for all (nonnegative) values of r,

(()Uc (r) ) (')Uc (r) i(' U )(rT)
i
(

i

(')UT (r) i

(5.14)

This theorem states that a nuclear interaction
saturates if it can be decomposed into three parts,
each of which saturates: the first one trivially,
as it corresponds to a purely repulsive interaction;
the second, because of the generalized Wigner the-
orem (proved in Sec. 3); the third, because of the
results obtained using the Fisher-Ruelle method'
of Sec. 4." It should be emphasized that these
three criteria are not completely overlapping, as
is demonstrated by the existence of (saturating)
models of the nuclear force that satisfy one cri-
terion, but violate the other two. We give below
three such examples.

The interaction characterized by

U,', (r) =U,',(r) = e(1 r), -
U3c,(r}= U3,(r) = 28(2 —r),

(5.15)

all the other potentials being zero, belongs to the
class '"W, but does not belong to either ' W or
(3)W 17

The interaction characterized by

(r) = -U„(r) = ()(1 —r)
Uc (r}= 1006(1—r),

(5.16)

all the other potentials being zero, belongs to the

3 ($)Uc (p) + ($)Uc (p) 3 (3)Uc ( p} (3)Uc (p)

+ 4Ti[3(3)UT (p) +"'UT (p)] o 0,
(5.12b)

3 ( )Uc (p) 3( Uc (p) +( )Uc (p) (3)Uc (p) ) 0

(5.12c)
(3)UC ( p) (3)UC ( p) (3)UC ( p) +(3)UC ( p).4n["'U'( p) -"'U'( p)1- o

(5.12d)
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class "'W, but does not belong to either '"W or
(3)gr 17

The interaction characterized by

Uc(r) =2e ' —e ", (5.17)

all the other potentials being zero, belongs to the
class "'W, but does not belong to either '"W or
(2+ 1V

It is interesting to compare these sufficient con-
ditions for saturation with an equally rigorous set
of necessary conditions. """~'"" Considering for
simplicity the case with central forces only, such
a set is provided by the five inequalities""

U33 + Usl+ U13+ ll y

3Uss + Usl 0,
3Uss + Uls 0

3Uss + U, l 0,
U»&0,

where

(5.18a)

(5.18b)

(5.18c)

(5.18d}

(5.18e)

U = dlldr2~ rl ~ r2 U T rl r2
(5.19)

the function p, (r) being nonnegative, but otherwise
arbitrary. For instance, the especially simple
choice

(5.20)

yields

(5.21a)

(5.21b)

tions such that U~~, (0) ~ 0 implies U~~~(p) ~ 0 for all
values of p," it can be asserted that the condition
that the volume integral of the potential U»(0) be
nonnegative is Necessary and sufficient for satura-
tion.

The conditions for saturation of nuclear forces
summarized by the Theorem given above require
some ingenuity in any practical test of the satura-
tion properties of the static part of a given nuclear-
force model. This follows because of the arbitrari-
ness of the decomposition (5.1), and also because
of the flexibility afforded by the last paragraph of
the statementof the Theorem given above. General
prescriptions cannot be given, but a useful rule of
thumb is to begin by testing the validity of Eq.
(5.12a), with '"W =W, obtaining in the process an
estimate of the relative importance of the contri-
butions of the four central potentials acting in the
four spin-isospin states. It should be emphasized
that the conditions of the Theorem, although they
are not necessary for saturation in the case of the
most general model of a (static) nuclear interac-
tion, are by and large rather realistic, so that if
a given model of the nuclear interaction cannot be
made to comply with them, the most likely guess
is that this happens because the interaction in ques-
tion just does not saturate. To settle the matter,
turning this conjecture into a proof, one must re-
sort to the necessary conditions for saturation,
Eqs. (5.18), trying to show that the interaction in
question violates (at least one of) them. Here a
certain amount of ingenuity is again called for, in
view of the flexibility afforded by the arbitrariness
in the choice of the (nonnegative) function p(r) in
Eq. (5.19).

Since validity of each of the five inequalities
(5.18) is a necessary condition for saturation, this
set of conditions can never be more stringent than
the conditions, stated in the theorem given above,
that are sufficient to guarantee saturation. How-
ever, for certain classes of interactions, the two
sets of conditions coincide, and provide therefore
a set of necessary and sufficient conditions for
saturation. One such example (as already noted in
Sec. 3) is an interaction of the type &'W. Another
such example, belonging to the class &3%, obtains
noting that, for p =0, both Uc„(p) of Eq. (5.21b)
and U~„r(p) of Eqs. (5.11) reduce to the volume
integral of the corresponding potential:

(5.22)

Thus, for instance, for the special class of nucle-
ar interactions containing only the (central) triplet
odd potential Umc, (r),"with the additional restric-
tion that this potential belong to the class of func-
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APPENDIX

In this Appendix we prove that validity of the five
inequalities (3.42) is a. necessary and sufficient
condition for validity of the inequality (3.41), with
the function F defined by Eqs. (3.37), (3.38) and
with the five variables e, P, y, x, and y con-
strained by the inequalities (3.32), (3.33}, and
(3.35).
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It is clearly convenient to define

F(x, y; n, P, y) = Vv+ ~ Vs —2 Vs —~ V„
+G(x, y; n, P, y),

with

(A1)

G~c =-,V„-f(n, p, y) —— c c[p+min(n, y)],c
8 H

G(» X'n P, r) = V2s»-' —2V;X' 4V-xf(n, P, r),
(A2)

and to search for the minimum of G.
We begin minimizing x and y for fixed n, P, and

y. The variables x and y are then constrained to
lie inside or on the boundary of the heptagon of
Fig. 1. Since everything is symmetrical in x and

y (i.e. , in spin and isospin), we need only consid-
er the pentagon OPQRS, and then at the end sym-
metrize the results in S and T.

The simple dependence of the function G on x
and y immediately implies that its minima cannot
occur inside the pentagon OPUS, but only on its
boundary, and specifically only at the points 0,
R, Q or on the line PQ. These (possible) minima
are (with obvious notation)

Vc
0 — c c [l3™n(n,y)] 2) n-y). (A3d)

Va VH

The minima of these four functions must now be
investigated, as e, P, and y vary in the ranges
(3.32), i.e. , in the nPy space, inside or on the
surface of the tetrahedron OINK (see Fig. 2).
Since these are quadratic forms in n, P, y, the
minima can occur only at a =P =y =0 or on the
triangle IJK.

Using these remarks and some geometrical con-
siderations (and/or straightforward, if tedious,
algebra), one can show that validity of the follow-
ing 16 conditions is sufficient to insure that the
function F(x, y; n, P, y) be nonnegative (to simplify
the writing, we replace here V~~ with W, V~ with

8, etc.):
Go= kV-~f(n~8 r) ~ (A3a)

Gz =-,'V xf(n, P,—y)+ s Vs(n+2P+y) —8 VH(n+y)

(A3b)

Ge
—— ,'V „f(n, P,—y—)+—,

' Vs(n+2P+y) —8 Vs(n —y) ~

(A3c)

W+ ~B —~H —«M» 0,1 1 j.

W+ qB —2H —M &0,

W+B-H -M ~0,
W+B--,'H ——,'M & 0,
W+ 2B -H —2M

(A4a)

(A4b)

(A4c)

(A4d}

(A4e)

1 (8-H —M)M 0 . , M
4 B-H —3M B-H —3M

1 (2H+M)(B-M) . 2H+M
4 B—4H —3M B—4H —3M

1 (28-M)(H-M) . 28-M
4 4B -H —3M 4B -H —3M

(ASa)

(A5b)

(A5c)

C+~~(28 —2K —3M)(n +y )+ 4(28-M)P(n+P+y)+ &(28 —2H -M)ny & 0

2H(28 -M) 2 M(H + 8) 2(28 M)(H +M)—
D (A5d)

C + ~~(28 —2H —3 M)(n +y ) + ~ (28 M)P(n+ P+—y) + ~ (28+ 2H —M) ny ~ 0

2H(28 -M) 28(2H +M) 2(28 -M)(H +M)
D 7 (A5e)

C —-'M[n +y + —,'(n+y)'] —— [min(n y}] ~0

28H . 0 2M(8-H) 8-H
(A5f)

C f';M[n +—2p +2(n+p) ] —— p ~0
2 B-H

with n=- and if 0 P=
D~ D~ B (Asg)
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(ASa) reads

c, =C+-2X(B H-- M) ~0 if —' &X & &, (A9)

and it is easily seen that this holds necessarily if
Eqs. (A4) hold, since, if we indicate with c„ i =1,
2, 3, 4, 5 their left-hand sides, clearly

a &e=
i=l

(Alo)

with

g~ =1 —2X, g~ =xs =0, x'4=x5 =X, (A11)

FIG. 2. The tetrahedron OIJK in the npy space.

In Eqs. (A5),

C =W+ 2B —2H —4M.1 I 1

In Eqs. (ASd) and (A5e),

D = 3M —4BM + 4HM —4BH ~

In Eqs. (A5f) and (A5g),

D, = 3M(FI —B) —BH,

D2 =M(H —B) —BH .

(A6)

(AV)

(A8a)

(A8b)

Finally, four more conditions, hereafter referred
to as Eqs. (A5h)-(A5m), obtain exchanging B and

Hin Eqs. (A-5d)-(A5g).
The next step is to prove that the 11 inequalities

(A5) are implied by the 5 inequalities (A4). The
canonical technique to achieve this end is to find
a linear combination with nonnegative coefficients
of the left-hand sides of Eqs. (A4), that minorates
or coincides with the left-hand sides of the Eq.
(A5) under consideration. For instance, one may
note that a restriction that is stronger than Eq.

and these coefficients are all nonnegative for all
values of X in its allowed range.

Similar proofs of dependence can be performed
for all the other inequalities (A5}, although for the
last ones they are not as elementary as the exam-
ple given here. In any case the labor involved in
this task is considerably less than that required to
obtain the 16 inequalities (A4) and (A5).

It remains to check that the five conditions (A4),
which have now been shown to be sufficient to guar-
antee nonnegativity of the function F(x, y; n, P, y)
when the variables are in the allowed region, are
indeed independent. The most straightforward way
to achieve this aim is to provide five set of values
of the four potentials V~, V~, VH, and V„such
that for each value one and only one of the five
inequalities (A5) is violated. Such sets of values
are, for instance, (-2, 1, -1, -2), (1, 2, -2, 4),
(I, -4, 4, 0}, (5, -8, 0, -4), (5, 0, 8, -4).

The inequalities (3.42) coincide" with the condi-
tions (A4). As for the identification of the Young
tableau that corresponds to each inequality, it
obtains from the values of the variables x, y, ~,
P, and y for which the function F(x, y; n, P, y) takes
the five extremal values that provide the left-hand
sides of the five inequalities (A4) or, equivalently,
(3.42) or (3.44).
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ginal case in which the equality sign holds in Eq. (3.41) .
' An explanation of why a less stringent set of necessary

conditions was previously obtained is given in Ref. 3(e),
where the more stringent set is proved.

The assertion in the treatise by Blatt and Weisskopf
[Ref. 2, p. 150, after Eq. (4.40)) is actually incorrect
on two accounts. The Wigner proof (Ref. 1) does not
consider the most general mixture of exchange forces,
and therefore it does not purport to provide any informa-
tion for that case. Further, the set of conditions given
is not sufficient for saturation.

~3Here we use the assumption that the potential func-
tions are finite (nondivergent) at zero separation.

~4The discussion given in preceding papers (Ref. 6)
can be extended without change to our case.

~5Even if all the other potentials were characterized by
hard cores, in this case there would be no saturation
(unless all the potentials are everywhere attractive, in

which case of course there is no binding whatsoever).
This conclusion is implied by Theorem 1 of Ref. 3(a) [see
also Ref. 3(e)].

The possibility of combining the different conditions
follows trivially from their proofs.

TEven if these classes are:enlarged according to the
prescription mentioned in the last part of the statement
of the Theorem. .

This is. of course by no means a realistic potential.
In this connection, however, the possible usefulness of
testing separate pieces of the nuclear force as regards
their compatibility with saturation should be reemphasized
[see Sec. 1 of this paper, and Refs. 3(c)-3(e)).

~ Many potentials belong to this class, for instance the
sum of two Yukawa or of two Gaussian functions (if the
longer-range term is attractive).

Except for their ordering, which in Eq. (3.42) has
been chosen to correspond to the "traditional" one(Ref. 2).
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Angular distributions of neutrons elastically scattered from natural carbon have been mea-
sured at 32 neutron energies between 3 and 7 MeV with energy spreads ranging from 37 to
165 keV. The angular distributions of neutrons inelastically scattered from C have also
been measured at the nine highest neutron energies. A phase-shift analysis of the elastic
scattering cross sections yields the following spin and parity assignments for the excited
states of C (E„,J): 8.3 MeV, 2, 8.88 MeV, 2; 9.50 MeV, (2, 2); 9.90 MeV, 2; 10.75
MeV, 2,. 11.00 MeV, (2 ) ~ Neutron polarizations calculated from the extracted phase shifts
agree fairly well with most of the available polarization measurements. A polarization con-
tour map is given showing that carbon may be useful as a polarization analyzer between 4.5
and 7 MeV.

I. INTRODUCTION

Measurements at many laboratories' ' of the
"C+n total cross section in the energy range from
3.0 to 7.0 MeV reveal resonances at neutron bom-
barding energies of 3.5, 4.23, 4.93, 5.37, 6.29,
and 6.6 MeV. These resonances correspond to ex-
cited states of "C with excitation energies E, of
8.3, 8.86, 9.50, 9.90, 10.75, and 11.0 MeV, re-
spectively. Differential cross sections for the
elastic scattering of neutrons from "C have been
measured and analyzed in the energy range from
2.4 to 3.65 MeV by Meier, Scherrer, and Trumpy
(MST)'; from 1.5 to 4.1 MeV by Wills et al. '; and
from 3.0 to 4.7 MeV by Lister and Sayres. '

Since the ground-state spin of "C is 0', the chan-
nel spin has only the value S=-„which simplifies
the problem of performing the phase-shift analysis
of differential cross sections. Analyses of these

cross sections by the above three groups' ' show
reasonable agreement with each other in the re-
gions of overlap of bombarding energy and give a
relatively consistent set of phase shifts for the
whole energy range of the measurements. It is
found from these analyses that the very broad lev-
el at E„=8.3 MeV in "C has a spin and parity of

An assignment of & for the level at 8.9 MeV
is given by Lister and Sayres. ' From the total-
cross-section measurements of Fossan et aE. ,

'
spin limitations have been placed on the excited
states between 9- and 11-MeV excitation as fol-
lows: E„=9.50 MeV, J--,'; E„=9.90 MeV, J~ &,

E, = 10.75 MeV, Jo ~.
Very recently Percy and Kinney' have reported

"C(n, n) "C angular distributions measured at
eight bombarding energies between 4.6 and 7.0
MeV. Angular distributions of "C(n, n) "C have
also been measured with good energy resolution


