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A convenient parametrization of experiments in which a polarized spin-1 particle bombards
a target and a polarized spin-1 particle emerges is given. The parameters defined are a gen-
eralization of the "Wolfenstein parameters" long used in the description of spin-2 polariza-
tion-transfer experiments. A specific M matrix for a spin-0 target is used to find the rela-
tions between the various observables in several coordinate systems. The formalism is valid
for the general 1+0 1'+0' problem, where 1 and 1 may indicate different spin-1 particles
and 0 and 0 may indicate different spin-0 particles, but where the product of initial channel
and final channel parities is unchanged. The constraints imposed by time-reversal invariance
when the reaction is specialized to elastic scattering are discussed. The prospects for a com-
plete determination of the M matrix and for possible time-reversal tests are briefly touched
upon.

I. INTRODUCTION

In this paper we will discuss the manner in
which polarization-transfer experiments with a
polarized spin-1 particle incoming and a polarized
spin-1 particle outgoing may be parametrized.
The parameters used have been given previously'
and are analogous to the Wolfenstein parameters, '
long used for the description of spin--,' to spin- —,

'
polarization transfer. We restrict ourselves to the
usual case where the product of initial intrinsic
parities is the same as the product of the final in-
trinsic parities, which includes, of course, elas-
tic scattering. We will then specialize to the case
of an elastic scattering of spin-1 particles from a
spin-0 target, as in d+'He or in g+d scattering.
This study was motivated by the experimental
studies of d-'He polarization-transfer phenomena
which are in progress at the Los Alamos Scientific
Laboratory (LASL), by the general applicability
of the formalism if target spin is neglected, as
is done in most spin-1 optical-model studies, and
by the intrinsic interest of this relatively simple

spin system. A brief treatment of the related 1+1
-0+0 problem has been given by Kobler and Pick. '

II. COORDINATE SYSTEMS

At the Third Polarization Symposium in 1970,
certain conventions were adopted' for the parame-
trization of the simpler types of experiments in-
volving spin-1 particles. The conventions did not
include the polarization-transfer phenomena of
interest in the present paper, but covered a spe-
cial case of the more complex situation. In par-
ticular, for the rectangular tensor description of
spin-1 polarization effects, which will be the basis
of the present description, it was agreed that A' s
should be used for analyzing tensors and p's for
polarizations of ensembles of particles. We will
follow this notation as far as possible. We will
use I"s to indicate the polarization functions, that
is, the polarization which would be produced by
an unpolarized incident beam, and E's to indicate
polarization-transfer coefficients of any rank.

The definition of the coordinate systems in
terms of which the reaction is to be described. is



OHLSEN, GAMM EL, AND KEA TON

very important. Five distinct coordinate frames
are of interest in this discussion.

First, we define the projectile helicity frame,
with its y axis along n=(k&xk, }/~k,„xk~,~, its
z axis along k =k~ j~k ~, and the x axis chosen to
make a right-handed system. k& and k~, are, of
course, the incident and outgoing particle momen-
tum vectors.

Second and third, we define the "ordinary" and
"laboratory" helicity frames for the outgoing par-
ticle, in which the y axis is again along n, but the
z axis is along the unit vector k, (c.m. ) or the unit
vector k, (lab), respectively. Clearly the system
using k, (lab) is the one with respect to which out-
going spin polarizations can be actually measured,
but the system with z along k, (c.m. ) has some
convenient formal properties with respect to time
reversal, as we shall see.

Fourth, consider the system with y still along
k,.„xk „but with x along k, —k. (we define a
unit vector k parallel to this direction), and with
z axis along k, (A x n}. This system is incon-
venient for the description of experiments, but
will be useful in our discussion of time reversal.
We refer to it as the "natural coordinate system, "
since nuclear-reaction models usually indicate a
dependence on the momentum transfer k, —k .
Note that this coordinate system is the same
whether we consider k,„, and kyoto be lab or c.m.
quantities.

Finally, we consider the coordinate system natu-
ral to a polarized beam from an ion source, where
we assume a z axis along the axis of spin symme-
try. We reserve the letters X, Y, Z for this system.
In this system the polarized beam is completely
characterized by its vector and tensor polariza-
tion, p~ and p«, where we use the Goldfarb nor-
malization of the Cartesian spin operators so that
-1 &pz &1 and -2 &pzz &1 (see Sec. IV and Appen-
dix I).

%'e wi11 need to describe such a polarized beam
in the projectile helicity frame. Referring to Fig.
1, let P be the angle between the quantization axis
and p~; i.e., cosp= S k~, where S is a unit vector
along the beam quantization axis. Next, consider
the projection of S on the x, y plane. The angle
p is defined to be the angle between this projection
and the y axis. This can be expressed as cosg
=(S&kg (n&kh). The sense of p is very impor-
tant; it is assumed to be positive in the sense of
a right-handed screw with x going into y (see Fig.
1). Thus, if the projection of S is parallel to the y
axis, /=0'; if it is parallel to the xaxis, p=-90';
if it is antiparallel to the y axis, faj) = 180; and if
it is antiparallel to the g axis, /=90'. Since in
our definition k, is always in the x, z half plane
with positive &, we summarize by saying that left,

right, up, and down scattering, with respect to
the vector S, correspond to $=0, 180, -90, and
90', respectively.

We can write the first-rank components of the
beam polarization in the projectile helicity frame
by resolving S into ~, Y, and z components and

multiplying by the polarization magnitude, p~:

p„=-p ~ sinP sin ft),

p, =p~ sinP cosf,

p, = p~cosP.

The second-rank components are found to be'

p„„=—~p«sin'P cos f sinft),

p„= ~p«sinPcosPcosp,

p„=—~p~~ sinP cosP sing,

p„=—,'p«(3 sin'p sin'g -1},
p„,=-,p«(3 sin'pcos'p- 1),
p„=-,'p«(3 cos'p- 1) .

(2)

In this section we make use of the fact that the
cross section, f(8), and polarization of a scattered

y(& )

PRO JECT ION OF
f IN xyPL (Axk;„)

Z tkI„)

FIG. 1. Relation between the polarized beam and
the projectile hehcity eooW~~te systems.

All possible components of beam polarization in
the projectile helicity frame may be prepared by
suitable selection of p~, p«, P, and p, although
one may not always isolate a particular single
component. Notice that p„,+p„+p„=0, so that
one quantity is redundant. The pair of components
—,'(p —p„„)and p„are often convenient, where in
terms of P and (t),

—,(p„-p„,) =-Q«sin'p cos2$ .

However, this redundancy of the Cartesian de-
scription offers considerable Qexibility which can
often be exploited to the experimentalist's advan-
tage.

III. FORM OF CROSS SECTIONS AND

OUTGOING POLARIZATION

EXPRESSIONS
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spin-1 particle cannot depend on particular choices
of coordinate systems, and therefore must have
the form of invariant contractions of tensors. One
set of tensors, denoted by pj and p», describe the
incident polarized beam, and the other set, de-
noted by P's, A' s, and K's as described below,
are functions of the energy and of the angle ebe-
tween k. and k, (the scattering angle} and are
characteristic of the nuclear interaction. We will

specialize to experimentally convenient coordi-
nate systems and deduce certain systematics as-
sociated with the observables for reflection of the
scattering angle, 8--8, for conservation of parity,
and for time-reversal invariance.

The general form' of the final polarization (de-
scribed in the x', y', z' system) in terms of the
initial polarization (described in the x, y, z sys-
tem), for any pair of coordinate systems which

have their y axis along k,-„xk „may be written:

1(8) = lo(1+ zP, A„++3P„A„+sP„A„+sP, A„+ sPggA, g),

p, I=/(-,'p, E; + ',p, E*, + 3p-„E*„+~&p„,E"„},

(4)

where Ip ls the cross section for an initially un-
polarized beam. The general principles which
allow one to write this expression are discussed
in previous work. ' As noted, these equations are
of the nature of contractions of tensors and can be
written in the form

I=I,(1+ —,'P)A)+ gP), A),) ~

~ I I jtIP). = Io(P + zP) K) + sP)),K)a) ~

j'k 3 j k' 1 j'k
Ip) ), Io(P + 2p)K) + 3p)~K)g )

(5)

where here the repeated indices represent a sum-
mation over x, y, z.' The expression analogous to
the first of Eq. (5) in terms of spherical tensors
ls

k, a

this is clearly also an invariant contraction of ten-
sors.+" Similar expressions may be written for
the outgoing polarization components.

No assumption is built into Eq. (4) as to the
choice of the x, z axes or the x', z' axes. If z is
chosen along k and z' is chosen along k~, (lab),
e.g. , if the laboratory helicity frames are used,
we will refer to the K's as laboratory polarization-
transfer coefficients. These would be the quanti-

ties directly analogous to the Wolfenstein P, A, R',
and A' parameters. If z is along k,„and z' along
k~, (c.m. ), we will refer to the K's as center-of-
mass polarization-transfer coefficients, and for
other frames we will use enough words to make
the assumptions clear. Notice that conceptually
the transfer coefficients connect two coordinate
systems, and cannot properly be said to be '"in"
any coordinate system. Notice also that various
subsets of the K's form second-, third-, and
fourth-rank tensors, since the superscript quan-
tities, as well as the subscript quantities, are
tensor indices.

There are three helpful rules about the transfer
coefficients which we will state here without proof.
These rules are discussed in Ref. 5 and are ex-
tensions of the concepts put forth by Csonka and
Moravcsik. ' Let N„N„, and N, denote the number
of x's, y's, and z's (with or without primes), re-
spectively, that appear in a particular coefficient.
We have

(1}if N, + N„ is odd, the coefficient is an odd func-
tion of the scattering angle, 8;

(2) if N, + N, is odd, the transfer coefficient is
required to be zero by parity conservation.
Rules (1) and (2) apply for any of the coordinate-
system choices used in the present paper, and,
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in particular, we emphasize that they apply in the
laboratory helicity frames. Next, we have a rule
which holds only if certain coordinate-system
choices are made'":

(3) If N, is odd, the corresponding polarization-
transfer coefficient in the inverse reaction re-
verses sign. For example: K,";=-K,*,' (inverse re-
action). For elastic scattering only, the forward
and inverse reactions are identical, so this state-
ment would reduce to K"„,"= -K"„'„.
This type of relation holds in two coordinate sys-
tems as follows: (a) if both incoming and outgoing
particles are described in the natural (k, n, k, )
coordinate system, or (b) if each particle is de-
scribed in its own (c.m. ) helicity frame. (This
rule applies only to terms which are allowed by
parity conservation. A more general form of the
rule can be written for parity-violating terms. )

It is important to emphasize the generality of
Eq. (4). The only restriction in going from Eq. (5)
(which is more general) to Eq. (4) is that the two
coordinate systems (initial and final) have k xk
as their common y axis, and that parity is con-
served. The form of the expression for the cross
section, I(8), is the same for any nuclear reaction
with a polarized spin-1 particle in the entrance
channel, and is independent of the target spin, of
the spins of the particles appearing in the exit chan-
nel, and of the intrinsic parities of the various par-
ticles. Similarly, the form of the expressions for
the outgoing partic1. e polarizations, p,' a,nd p,'„.,
is independent of the target spin, the residual par-
ticle spin, and the intrinsic parities of the parti-
cles.

IV. FORM OF THE SCATTERING
MATRIX

The amplitude for scattering a particle with spin
from the direction k,.„through an angle 8 to the di-
rection k~, is a matrix in spin space and is re-
ferred to here as the scattering matrix, M, or as
the M matrix. We now consider the most general
form of the scattering matrix which describes the
1+0-1'+0' spin system. Since it must be a 3 x3
matrix, it can be expanded in terms of any com-
plete set of 3 x3 matrices. We will use two such
representations, the first of which is the set of
Cartesian tensors d', = S, and d'„= —,'(S~S, + S,S„)
—25», where the S, are the Cartesian components
of the spin operator S. The second representation
is in terms of products of "spin creation and anni-
hilation operators" which annihilate spin in the en-
trance channel and create spin in the exit channel.
The relations between the two representations
will be shown. Also, we give the relations be-
tween the M matrix elements which obtain when

the scattering is described in various coordinate
frames.

The scattering matrix is first expanded in terms
of 9 independent operators, with complex coef-
ficients, so that there are 17 independent real
numbers to be measured at each energy and angle
(the over-all phase is not considered). Conserva-
tion of parity eliminates four coefficients, so that
the number of independent numbers reduces to
nine. For elastic scattering, time-reversal in-
variance eliminates one more coefficient, so that
there are then only seven independent numbers to
be determined experimentally.

The M matrix can be expanded in terms of the
overcomplete set of 3 x3 matrices, I, 6', , 6'„.
(see Appendix I). Consider the three coordinate
directions along the unit vectors q, n, k, where
n=(k;„xk,)/)k;„xk, ( and (for the moment) q and

k are any two orthogonal vectors in the scattering
plane, which will be identified with x and z axes in
the following. We can then write

(8)

We have written the M matrix in this form so that
the effect of parity can be easily discussed. Under
the parity transformation, all vectors of the prob-
lem are changed into their negatives. That is k.
--k, k, --k,„„sothat k,.„xk, k. xk,„,. Note
that neither first- nor second-rank spin operators
change sign under the parity operation (because
they transform as r xp). Thus, since x (along q)
and z (along $) are directions defined by linear
combinations of k and k „ the parity operation
when applied to our M matrix causes x- -x, y- y,
and z- -z. Keeping only the terms which do not
change sign, and hence are allowed by parity, M
becomes

Note that the last three matrices in Eq. (7) satisfy
the equation

oo 0)
(P„„+iP„+d'„=~ 0 0 0"

(0 o 0)
(8)

Introducing some new letters for the coefficients
of the matrices, we may therefore write M in the
form

M=a+bdPy+cd +d(d' —d „„)+ed
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0-1 0
6', =~~ 1 0 -1

(0 i 0j'
(0 1 0)

(0 -I 0)
(0 0 3)000
(300)

1 0 0
gg= 0-2 0

(0 011
this becomes

(10}

a+e —(-ib+ -c)1
2 3d

1~ (ib+ -,'c) a- 2e

1—(ib —-'c)
2

1~ ( ib- -', c)

a+e

Inserting the explicit form of the spin-1 matrices, -k „-f), it must be excluded. That is, we re-
quire c =0 in Eq. (9). This result holds only for
this particular coordinate system; the form of
the constraint in other systems will be discussed
below.

We now turn to a second representation of the
M matrix (following Csonka, Moravcsik, and
Scadron"). This form has a number of computa-
tional advantages over the more usual form given
above, as follows: (a) The calculation of the rele-
vant traces which define polarization-transfer
coefficients (observables) will be somewhat sim-
plified; (b) we may choose a representation in
which the initial and final particle polarizations
are referred to different axes; and (c}the result-
ing expressions for observables will be simpler.

The idea of this representation is to build 3 x 3
matrices out of the spin-1 spinors. %e will use a
purely formal construction and turn to the more
conventional representation to identify the condi-
tions imposed by time-reversal and parity invari-
ance. Consider the spherical vectors which are
proportional to rank-1 spherical harmonics, in
terms of Cartesian components of a vector R:

which may be written in the form,

( a' c' e'
}

b
e' -c' a'

R, =-—(R, +iR„),
I

RO=R»,

R =—(R, -IR„).1

(14)

where

a'=a+ e,
b'=o —2e,

c'= ~(-ib+ ,'c), - (13)

(%'e choose the Condon-Shortley phase convention~
on the spherical harmonics. ) These can be solved
for g„R„g,:

1
R, =-~(R, —R ),

d' = (-ib ——,c),
1 . 3 R, = (R, +R ),I

B,=HO.

(15)

This is the form which is obtained in derivations
ofIsuitable for phase-shift analysis.

%e now consider the effect of time-reversal in-
variance on the form of the Imatrix for the spe-
cial case of elastic scattering, i.e., where the re-
action is its own inverse. It is convenient to use
the choice (so far arbitrary} q= (k, —kJj
(k~, -k )—= k and k=gxn-=k, . Notice that k,
=(k, +kg/)k, +k~( if nonrelativistic. kinemat-
ics is assumed. In the center of mass, the time-
reversal transformation is kh- -k, , k, —-k-,
so that q-q, k--k, n- n, and 0--P. Th-us,
the term in „changes sign under time reversal,
and because we require M(k „k., @ M(-k&.,

We identify the spin-1 spinors }t„}t„}twith R„
R„B,where

so that we can dedece the three Cartesian compo-
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nents of a vector operator X'. products of these quantities:

1 1
x.=-~(x.-x )=~l

1-i =z
X, = ~(X++X-}= ~I

1

fo
x.=xo=

0

(17)

X, = ~(-1 0 1),

Xt=-—(1 0 1)
2

Xt=(0 1 0).

(18)

The quantity (X R)t, where R is a general vector
with complex components, would be

(x R)t=x R=~(-1 0 1)R,—~(1 0 1)R

+(0 1 0}R,

1 . 1
(R, + iR „)R, — (R, - zR, )

=(R,ROR ),

The X~ operators are defined to be the transpose
conjugate of the X's, having Cartesian components:

, (-1)(-1 O 1), tt' 1 O - )
x.x.'= 2I

1) 5-1 0 1

1(1)(1 O 1) (1 O 1)
x,x,'=21 o

I
=2l oool,

1 101
fo)(0 1 o) (0 o 0)

X.X. =I 1 010
(0) (0 o of

-1 010 0-10
X,X.'= ~

1 0 1 0

1(0')(101) 1(000
xxt= ~ 1 =~l -1 o 1

1n ( i) ) n ( 0 0 0 )
. It-1)(1 0 1) . ( 1 0 1)

x.x", =
2

1 -1 0 -1

. (1)(-1 0 1) . t
-1 0 1)

x,x.'=2 o
I

&-1 O 1)'

. /1)(0 1 o) . (0 1 0)
X3,Xg

= ~ 000
kl) (0 1 0)

(0)(101) . (00 0)

(21)

and similarly, X Q, where Q is a general vector
with complex components, would be

. (1) (0)
Q=~ 0 Q +~I 0 IQ+ 1 IQ,

(1) (0)
1—~(Q —iQ,)

These matrices span the 3 0&3 space, so that an
arbitrary matrix can be expanded in terms of
them. %'e may therefore write the most general
18 matrix as follows:

kf = C X @X q)' + C„X n(X n) + C„X ' k(X ' k)

+ c..x k(x 0)' + c,.x 4(x k)' + c,.x 0(x it)'

+ C„X it(X 0)' + C.,X n(X k)' + C,.X k(X n)' .

(22)

~(Q.+ iQ, )
1

(Qg)

(20}

Again, parity excludes the last four terms for any
definition of g and k, so long as both are in the
scattering plane. The M matrix then simplifies to

~=& XgXg +& X3X3 +& XgXg+ XgXg+& XgXg ~

(23)

In practice, the vectors R and Q of interest will
always be real.

We can form nine 3 x3 matrices by forming outer

(So far we are not making use of the possibility of
using separate coordinate systems for the initial
and final particles )The M m.atrix can now be
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written with the aid of Eq. (21), as

~(A' —B'} ~E' -g(A'+B'

now be shown. The M matrix in terms of the k,
n, k, vectors is, as previously stated in Eq. (23),

M=A'X k (X k ) +B'X.n(X n) +C'X $, (X.$,)

1 D/ C' 1 DI (24)
+D'X k, (X ~ k )t+E'X k (X k, )

(28)
1—E' where D'=-E' for elastic scattering. We can ex-

press k and k, in terms of either q, k or q', k':
Thus, if Eqs. (9) and (23) are expressed in the
same coordinate system,

A'= a+ e —3d,
B'= -a —e —3d,
C'=a- 2e,
D' = -ib —~c,

(25)

or

k =icos~8- ksin~8,

k =tg sln20+kcosp 8

k = q 'cos —,'8+ k' sin —,'8,
k, =-q'sin-,'8+k'cos-,'8,

(30)

fa) (O I 0)(s)
(x.') b I= b =b.

(cf
(28)

When this one-component object is operated on by
the X„a three-component (spin-1) object is gen-
erated, as required:

x,b= ~ 0 (b) = ~ ~
0

vYI ] vY(
(27)

i.e., g acts as a spin creation operator. Thus,
the g~ quantities should be expressed in terms of
the initial coordinate system (to annihilate inci-
dent spin-1 particles), and the x quantities in the
outgoing particle system (to create spin-1 parti-
cles). We therefore write M in the form

M=AX g'(X q) +BX n'(X ~ n)t+CX k'(X. k)t

+Dx k'(x 8)'+Ex 4'(x k)t. (28)

E'= ib - —,'c.
If the natural (k, n, k, ) coordinate system is
chosen, as noted above, time-reversal invariance
implies (for elastic scattering) c=0. Thus, for
this special coordinate system, D'=-E' is the
time- rever sal condition.

We now generalize the M matrix to allow dif-
ferent coordinate systems for the initial and final
particles. Consider the typical term of the M ma-
trix, E'X g~. Notice that the y~ plays the role of
a spin annihilation operator. That is, when y,
operates on a spin-1 spinor, a one-component ob-
ject (spin 0) is generated. For example, we have

where 8 is the center-of-mass scattering angle.
These relations are evident from Fig. 2. Substi-
tution of Eq. (31) into the first factor and of Eq.
(30) into the second factor of each term of Eq. (28)
as appropriate, we find

A =A ' cos'( —,
' 8}—C ' sin'( —,

' 8}+( D'+ E ') si-n 2 8 cos 2 8,
B=B'

C=-A'sin'(~8)+ C'cos (~8)+ (-D'+E') sin28cos28,

(32)

D = (A '+ C') sin —,'8 cos-,'8+ D' cos'(-,' 8}+E' sin'(-,' 8),

E =-(A'+ C') sin-,'8cos-,'8+D'sin'( —,'8)+E'cos'(-,'8).

If D'=-E', inspection of the above equations
shows that D= -E; that is, the time-reversal con-
dition in the (c.m. ) helicity frames is D=-E, as
was to be shown.

We may also deduce the time-reversal condition
which holds if both the incident and final particle
spins are expressed in the projectile helicity
frame. In that case, we use only Eq. (30) in re-

(c.m.)

This form will apply for any choice of q', 5', and
in particular for k' along either the outgoing labo-
ratory or outgoing center-of-mass direction. If
k' is chosen along the center-of-mass direction,
time-reversal invariance implies D=-E, as will

A
k

FIG. 2. Relation between coordinate systems.
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writing Eq. (29). Writing

M =A "X ' qh ' q) + B X
' R(X '») + C X

' k(X ' k)

TABLE I. 4He(d, d)4He cross section and polarization
for a polarized beam.

+D"X k(X q)'+E"X q(X k)' (33)
/B /'

Class 1
J
cf' IDP IEI'

we find

A" A 'cos'(-,'8)+ C' sin'( —,'8)+ (D'+ E') sin-,' Hcos —,
' 8,

BI/ —B/

C"=A'sin'(-, '8)+ C'cos'(-,'8) —(D'+E') sin-,'Hcos28,

(34)

D" = (-A '+ C') sin —,'8cos2 8+ D'cos (28) —E' sin'(28),

E"= (-A'+ C') sin-,'8cos-,'8- D' sin'(-,'8)+E'cos'( —,'8),

whence, if E'=-D', we find

3Ip

3IpA
3IpA~
3IpA»»

3I P""
srpP~
Sr,p»»

3Ip

3IpK
SrpK

3IpK~
3IpK g~g

«2
1
1

-2
1
1

«2
«2

«2
1
1

1
-2

1

1
-2

1

1
-2

1

1
1

-2

1
1

-2

«2
1
1

-2
1
1

-2
1
1

1
1

-2

«2
1
1

-2
-2

4

1
1

«2

(D"+E")=(-A" + C")tan8. (35) sr pK»»

3IpK»

«2
1
1

1
-2

1

-2
«2

4

4
-2
«2

1
1

«2

V. CALCULATION OF THE OBSERVABLES
Class 2

ReAE* Re CD *
Techniques for calculating the cross section and

polarization are discussed in detail in Appendixes
I and II. These observables will involve bilinear
products of M matrix elements, such as ReAB*,
ImBC*, etc. The results of these calculations ap-
pear in Tables I and II. It is through these rela-
tions that the independence of experiments and ef-
fects of time-reversal invariance will be studied.

The observables are given by

srpK~
srpK»»

srpP
3IpK~~»

3IpIPy~y

3IpIP

«3
6

ReAD *
-3

6
«3
«3

«3
«3
«3

6

ReCE*
«3
«3
«3

6

3IpA~
3IpK~~

3IpK~
3I,K~

3IpP"
3I K"
3IpK~
3IpK~~

«2

«2
«2

ImAD *
2
4
2

2

2
2

2
—4

ImCE*
-2
«2
«2

4

I, = —Tr3$lf ~

A = TrM(P M /TrMMt

(cross section),

(analyzing tensors), Class 3
ReAC~ ReDE~ ImAC* ICE*

P = TrMM"(PjTrMM

(36}

(polarization tensors),

3IpK„"

3IpE"„»»

3rpK"„3 3

srpK~ «3 3

K~ = TrM6' M (P8/ TrllSIt (polarization-transfer
tensors),

where a or P may even mean any of the quantities
x, y, z, xy, xz, yz, xx, yy, or zz. Many of these
quantities vanish because of parity conservation,
as previously noted.

Evaluation of these traces in terms of an M ma-
trix of the form of Eq. (7) is straightforward.
However, in the g representation, we can carry
out the trace operations in an even simpler man-
ner. If we let the initial and final operators be
denoted by 0, and Qz, respectively, the most gen-
eral quantities we need to evaluate are of the form

3IpK»

srpK"„»

3IpK~~~

srpK~»

3IpK

3IgIPg"

Class 4
ImBC*

3IpI "~»

3IpK"

srpK

3IpKP„

3IpK»»

3IpKx

SIpK"

3IpK„"„

3IpK~»~

ReBD *

2

ImAB *

3IpIP" «3
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TrMII pI Ilz. M has the form of Eq. (28),

M =AX q'(X q) +BX ~ n(X ~ n) + CX .k'(X k)

+DX k'(X q)'++X q'(X k)' (37)

(38)

(n, )/ ft, * (II,)( ftg [,

where the unprimed unit vectors (q, k) are x and z
axes in terms of which the initial particle spin is
described; the primed unit vectors (q', k') are the
g' and z' axes in terms of which the final particle
spin is described, and n is the y axis, along k.
~k „which is common to both systems. The
Hermitian conjugate of )If is given by

M =A*X q(X q') +B*X ~ n(X n) + C*X k(X k')

+D*X 'q(X 'k') + E*X 'k(X q')

where we have used the fact that [X R(X Q)t]
Q(X R) (see Appendix II). Thus the trace

consists of 25 terms, most of which will vanish
when 0,. and Qz are chosen from any reasonably
defined basis set. A typical term would be AE*
x TrX q'(X ~ q)tD& X q(X k')tft& We c.an write the
general trace of interest, then, as TrX R'(X ~ R)
x A, X Q(X .Q') tII~, where R and Q are any of the
initial system unit vectors q, n, k; where R' and
Q' are any of the final system unit vectors, q',
n, k'; and where 0, and QI are any of the opera-
tors from the set I, 6', (i= x, y, z), 6',&(i,j =x, y, z).
We can apply the cyclic property of traces to re-
write this as Tr(X Q')tQJX R'(X.Q)tQ, X R.
Notice that the trace permutation rule is appli-
cable even though nonsquare matrices are in-
volved (see Appendix 11). This new form can be
written

sponds to a row. For convenience the factors
which multiply each term of the cross section or
outgoing polarization component of interest [see
Eq. (4)] are given in the last row.

It is important to reemphasize that the initial
particle and final particle may be described in
individual frames, with only the restriction that
the y axis is chosen along k &&V, for both systems.
In particular, the forms apply if the initial parti-
cle is described in a frame with z along k,.„and
the final particle with z along k, (lab), so that the
relations between observables implied in Tables
I and II apply in the experimentally convenient
laboratory helicity coordinate systems.

As noted in Sec. IV, time reversal implies a
certain relation bwtween A, B, C, D, and E. In
the c.m. helicity frames, or in the natural (k, n,
k, ) system where both particle z axes are along
k„ this relation assumes the simple form D=-E.
Applying this rule to Tables I or II, we note that
each of the transfer coefficients indeed obeys the
general elastic scattering time- reversal rule
quoted earlier (rule 3}.

VI. RELATIONS BETWEEN THE
TRANSFER COEFFICIENTS

As mentioned earlier, there are only nine inde-
pendent quantities involved in the general 1+0
-1'+0' matrix, that is, the real and imaginary
parts of A, B, C, D, and E, where one relative
phase may be chosen arbitrarily. For elastic scat-
tering, time-reversal invariance reduces this num-
ber to seven. Since there are 52 observables al-
together, there evidently must exist many rela-
tions between them. We discuss in this section
both linear relations and quadratic relations be-
tween the observables.

A. Linear Relations

which is seen to be a product of two 1 X1 matrices
so that the trace operation actually becomes un-
necessary. Notice also that the vectors R and Q
are associated with the projectile frame, while
the vectors R' and Q' are associated with the out-
going particle frame, so that we are, in fact, free
in this formulation to choose these coordinate sys-
tems differently.

Each of the traces may be easily evaluated ac-
cording to the rules presented in Eq. (AII5} of
Appendix II. The observables are given in Table
I in a form which facilitates discussion of the re-
lationships between the various observables. The
same results are displayed in Table II in a differ-
ent format. In this second format each of the beam
polarization components corresponds to a column
and each outgoing polarization component corre-

We will discuss the linear relations one class at
a time, where we define four classes which are
distinguished by the set of products of A, B, C, D,
and E that are involved. (The classes defined here
are for convenience in the present discussion and
do not correspond to the classes defined by
Csonka, Moravcsik, and Scadron. "}We will al-
ways discuss the general 1+0- 1'+0' (even-parity)
situation, and then specialize to el.astic scattering
by setting D= -E. Thus, the results quoted for
elastic scattering that go beyond the relations gen-
erally true for 1+0-1'+0' will be valid only in
one of the (two) coordinate systems for which the
time-reversal condition is D = -E; the coordinate-
system restrictions will not be explicitly stated
each time we specialize to this case. Notice that
since there are 52 observables (41 plus 11 due to
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"overcompleteness") and 25 amplitude products,
there must exist 27 linear relations.

Class I. Products i A [',
i
Bi',

i C i',
i
D i', and

i
Ei'. References to Table I show that there are

16 observables which involve the products i Ai',
i
Bi',

i
Ci', iDi', and iEi'. There are eight trivial

relations, of which seven are independent, which
follow from the overcompleteness of our basis set:

A +Ayy +A g 0

iAi = pID(1 —A„—P**+K,""„)——,'Io(1 —2A„, +K )&

i
Bi' = ,'I.(3-—3A„„),

i C i
' = BIO(1 + 2A„+2P **+3A,„+K"„*)

——',Io(1+4A„+3A~„+K*,"„), (42)

Finally, the products IAI', I
BI',

I
Cl', IDI',

and
i
Ei' can be expressed in terms of the five ob-

servables of our basic set:

pxx+ pyy+ pgg 0

K x+Kyy+Kgg = 0 )xx xx XX

K'x+Kyy+Kgg = 0,yy yy yy

K "+K y+K =0gg gg gg

K"+Kxx+Kx =0
XX yy gg

Zyy+Kyy+Kyy =0xx yy gg

(40}

~

Di' = —,'I,(2 —2A„+P**—K*,,*)- —,'Io(2 -A„-K,*,"),

i
Ei~ = 3IO(2+A —2P"* K;*,)--3IO(2 -A„K*,*,)-,

where again the elastic scattering specialization
is to the right of the arrows.

Class 2. Real and imaginary parts of AE, AD,
CD, CE. In this case there are four trivial rela-
tions which follow from the overcompleteness of
our basis set:

Kgg+Kgg+Kgg = 0 .xx yy gg

These particular eight relations hold for any pro-
cess in which a spin-1 particle is incident and a
spin-1 particle emerges, regardless of the spins
of the other particles.

We will choose five observables from class 1

which we will call the basic set: I„A„„Ayy, Px',
and K"„„". This choice is somewhat arbitrary, of
course; we have been guided by requiring as many
of the coefficients as possible to be related to the
simpler experiments. We have arbitrarily chosen
to eliminate observables involving zz components.
For elastic scattering, this set of five reduces to
four through the relation Pxx =A,x. As can be eas-
ily verified with the aid of Table I, at least one
observable of the polarization-transfer type must
be included in the basic set.

We give the specific expressions for each of the
11 quantities not included in our basic set in terms
of the basic set. When the relation simplifies for
elastic scattering, this is indicated by the addition-
al expression to the right of the arrow. We have

Kxx+Ky'+Kgg = 0xy xy xy

Kxx+Kyy+Kgg = 0 ~
y

(43)

Kxx
Xg

Ay

K~g =Axg

K„",= -A„-K„',
Kyy =A

y

These particular relations, like those of Eq. (40),
are true whether or not the target and recoil par-
ticle have spin 0.

As may be seen from Table I, four observables
correspond to each set of two amplitude products.
In each case, the four observables consist of (1)
a polarization or an analyzing power, and (2} three
polarization-transfer coefficients. We choose our
basic set of eight observables, and find the rela-
tions to the remaining observables, as follows:

Basic set Relations

A„= -A -Ayy,

yy'

Kxx
y K '=-A -Kxx

(44}

K„",y = -1+A„+Ayy

Kyy= -1+Ayy+Px -1+Ayy+Axxy

K",= -1 —Pxx- -1-Axxp

K,",y= -1 -A„p

(41)

Kxx- -K,""g

Py-Ay

K,"x-K'„x

Kxg Kxg p xg Kxx
gg XX Xg Xg

In the case of elastic scattering, only four of
these are independent; in that case, we choose
A„, A„, K'„*, and K*,*, for the basic set. [We are
guided in this choice by our planned experimental
measurements of outgoing second-rank moments
via the reaction 'He(Z, p)'He. ] The expressions to
the right of the arrows again indicate the speciali-
zation which takes place for this case.
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We can express each of the amplitude products
in terms of the basic set:

ReAE" = ,'I,(—A„-K*,;},

1mAE* = ',I,(--', A„+——,'K*,*),
ImAD* =-,'I, (—,P' ——,'K„",)- ',I,( ',-A, ———,'K*,*),

45
Re CE» = ,'I,( 2-P *'--K*„'}- ,'I, (2—A„+K,*,"),

We have

ReAB» = ,'1,-(2K,""„)= ,'I,—(,'K;-),

ImA B» = —,
' Io(-3K*,") = -'Io(3K', „),

lmBC* = —,'I,(-3K,")= ,'I,(3—K"„)~

ReBD» = ,' I,(2—K„"„)= -,
' I,(--,'K*,),

ImBD» = —,
' l,(3K/) = -,'I, (3K;,) ~

(49)

ReCD' =-,'I,(-2A„-K,"',),
lmCE* = ,'I,(3P-'+ 2K,',}-,'I,(3A,—+—,K*„*),

lmCD* = ,'I, (3A—,+ ,' EP„*}.—

Class 8. Real and imaginary parts of AC, DE.
For these observables, there is no redundancy in
the general case; that is, there are four observ-
ables and four amplitude products. We can write
the relations:

ReBE» = 'I, (2K-*„")= —,'I,(-TK;),
ImBE» = —,'I,(-3K„"")= —,'I,(-3K*„).

If the time-reversal condition D = -E is applied,
one new type of relation results:

(50)

In addition, of course, all of the usual (time-re-
versal) rules about interchanging superscripts
and subscripts hold.

Re A C*= -'I,(,' K„"+K*„')

lmAC»=-, 'I,(-',K„'-K,',),

lmDE» = 'Io(y»K*' +--'K„',) .

(46)
B. Quadratic Rehtions

Relations of a quadratic nature between the ob-
servables are also simple to derive. Consider
the identity,

ImDE* = 0 = -'K" + -'K"
2

ReDE» = -
~

D~'= —,'I,(--,'K„"+K;*,) .
(47)

The first of these conditions yields the usual type
of result, which follows from general arguments
(rule 3), but the second result is of a new type.
Using the expression for

~
D(' from Eq. (42), we

have the relation

(48)

Thus, K"„need not be measured, in principle, if
time reversal is assumed. This is an interesting
point because it turns out that aIl of the amplitude
products in classes 1, 2, and'4 can be determined
from the experimentally favorable measurement
of outgoing-particle second-rank tensors, even
without the time-reversal constraint. With the
present result, we can extend this to say that,
for elastic scattering, all of the amplitude pro-
ducts may be determined with only second-rank
outgoing-particle measurements.

Class 4. Real and imaginary parts of AB, BC,
BD, BE. In this case there are always precisely
two observables which determine the same ampli-
tude product. Again we will prefer the quantities
which refer to second-rank outgoing polarizations.

If the time-reversal condition, D= -E, is imposed,
it follows that

(ReAB )'+(ImAB )'= (A('[ B[', (51)

A similar relation can be rewritten for each pair
selected from A, B, C, D, E, so that there are
ten relations of this type. The number reduces to
six for elastic scattering.

A second type of relation relates three of the
amplitudes. For example, consider the identity,

ReAB*ReAC»+lmAB»lmAC» = ~A~'ReBC»,

(53}

which becomes, using Eqs. (42), (46), and (49),

(2K","„)(gK„'+K,",') + ( 3K,*')(-,'K*„'-— K,",)-
= (1-A„-P*'+K*,,*)(2K~) .

(54}

There are 30 relations of this type, reducing to 12
for elastic scattering.

The third type of relation, which also relates
three amplitudes, is illustrated by the example,

ReAB» ImAC» -ImAB»ReAC» = ~A('ImBC»,

(55)

which, using Eqs. (42} and (49), can be rewritten
in terms of observables,

(2K,""„)'+(3K",")'= (1 -A„—P'*+K*,*,)(3 - 3A„„).
(52)
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C. Applications

The most important application of the above dis-
cussion is to the problem of the selection of inde-
pendent, or relatively independent, observables
for measurement. However, certain other inter-
esting observations can be made with the aid of
Tables I and II. For example, the p„, polariza-
tion of the outgoing spin-1 particle is completely
determined by the analyzing tensors. That is,
from Eqs. (4) and (AI4), we can write

I=I,[1+-,'P„A„+-,'P„A„
+-,'(P„-P„„)(A,„-A„,)+ -,'P„A,.], (57)

+-,'(P..—P„)(K."." -K„"," )].
Equations (41) and (43) give expressions for each
of the polarization-transfer coefficients which oc-
cur in Eq. (58) in terms of analyzing tensors

(58)

K"" =A ry

3tI yI yl yI

(59)

I I
K"„„"= 2 -A„„.

From Eqs. (57)-(59) one obtains

f(I —p„, ) =f,(I -A„)(1-p„,) . (60)

Equation (60) is a nondynamical result, indepen-
dent of nuclear models, and may be used to con-
nect polarizations of different particles. For ex-
ample, measurements of the analyzing tensors
for the reaction "C(d, o,)"Bwould completely spe-
cify the P„„component of the "Bpolarization in
the "C(d, a)"B experiment; notice that this com-
ponent would be unity if p„„for the incident deuter-
on is unity.

One can also show with the aid of Eq. (60) that
one can "pump up"" the tensor polarization to
nearly unity if A„„is sufficiently large. For ex-
ample, for 'He(B, d)4He elastic scattering at 12
MeV and 8»b=38', "A„„~0.97. For scattering to

which becomes, again using Eqs. (42), (46), and

(49),

(2K*„„")(-', K*,' —-,'K„'g) —(-3K'') (-,'K„'+K,*,')

= (1 —A„-P*'+K*,,")(-3K,"') .
(56)

Again, there are 30 relations of this type, reduc-
ing to 12 for elastic scattering.

the right (P = 180'), I/I, = 1.46, so that a polarized
beam with p„=p„„=0.85 would, in that case, lead
to the value p, „=0.997 for the scattered deuteron.

VII. COMPLETE SET OF MEASUREMENTS

D" +E"= (C" -A ")tang, (61)

where $= 8, —8„b. It will be convenient not to
invoke this condition immediately, but rather to
keep A", B", C", D", and E" as separate (but re-
lated) variables. There are various data sets
which do what we require; here we will proceed
by choosing the experiments in order of increasing
difficulty.

We first measure the cross section, I„and the
analyzing tensors, A„, A „A„, and A„„. Referring
to Eq. (42) we see that we need, in addition to these
quantities, (P* * )„band (K»* )»b to completely
determine the absolute magnitudes ef A", B", C",

Since, for elastic scattering, one knows there
are only seven parameters which characterize the
M matrix at a given energy and angle (assuming
time-reversal invariance}, it is interesting to find
the minimum set of experiments which could be
used for a complete and unambiguous determina-
tion. We conclude in the arguments to be given
that this number is eight. The number of experi-
ments is larger than the number of parameters
because of a discrete ambiguity which must be re-
solved. In practice one would prefer to measure
more than eight observables because of finite er-
rors, and because one might fortuitously have
very low sensitivity to a particular quantity with a
pa, rticular choice for the set of experiments.

We consider the M matrix in the laboratory sys-
tems; that is, the initial particle is described in
the projectile helicity frame and the final particle
is described in the outgoing-particle laboratory
helicity frame. The discussions are presented in
these frames because we want to count the number
of actual laboratory measurements which are re-
quired for a unique determination of M. If, in-
stead, we had elected to use the center-of-mass
helicity frames, knowledge of a quantity such as
K,"„" would actually invol. ve measurement of three
laboratory transfer coefficients followed by a suit-
able rotation of the laboratory quantities. We wish
to regard the determination of K' ' as a single
measurement, and this is permissible only if we
use the laboratory axes.

The M matrix is given in Eq. (28). We will use
A", B", C", D", and E'" for the expansion coeffi-
cients in the present frame [these symbols had a
different meaning in Eq. (33}]. The condition im-
posed by time reversal in this frame is easily
shown to be
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( 'I A ) = 1m-(A "E"*+D"C"*)
(63)

= Im[-A "D"'+ D "C"*+(A"C"a —
I
A" Ia) tang],

where in the second form E" has been eliminated
by means of Eq. (61). That is, both the real and
imaginary part of a particular combination of
quantities is known, and all of the absolute mag-
nitudes are known. If we put A"D"a =

I
A" IID" Ie' &~

where 8» = 8„—8» and similarly treat the other
quantities, we can represent the situation geome-
trically in the complex plane as shown in Fig. 3,
Notice that the quantity -I AIatang is a real num-
ber and does not contribute to the argument about

IA" I
C"

I I

ALT ERNATE
$OL U T ION

I~ /
SOLU T ION -& &

l /

OR IG IN

-IA"l~ tan P
lo" llc" I

FIG. 3. Geometrical construction showing the twofold
degeneracy of the phases of the amplitudes.

D", E" N. ow (P* * )l,b can be calculated from the
values of A„, A„(= -A,„-A„},and A„as follows.
In the outgoing center-of-mass system, we have
P"" =A„„, P' ' =A„, and P" ' =-A„. We have
only to rotate these second-rank polarizations so
that they are referred to the outgoing laboratory
axis. Thus, if Q= 8, —H„b (a positive number),
we have [see Appendix III, Eq. (AIII1)],

(P' ' )»b=A„, cosa/+A„sinai} -A„sin2l}l. (62)

W'e therefore need to measure only one polariza-
tion-transfer coefficient, (K„",* )„b, to complete
our knowledge of the absolute magnitudes. [Any
of the coefficients from the set (K*,,' )„b, (K'„' )l,b,
(K„*„'}»b, or (K*„*)„b would have sufficed here,
but we have adopted (K;,* ) „b as a "standard" one
for the discussion. ] Up to the present, then, we
have used six measurements.

%'e now consider the phases between the ampli-
tudes. From the quantities A, and A„, we can
form

(-I,A„,) = Re(A "E"*+D"C'a)

= Re[-A" D"*+D"C"*+(A"C"*—~A" I')tanl}],

I =Io(1+ a P,„A„,),
P, I =Io[ a Px(Kx )lab] ~

px I =I [(P' )1 b+ a p„,(K„;)l„],
pg.I=Io[ a p, (K,' )l,b],

P, , I= Io [ a P, (K', '
) l ab]

Px'g'I Io[(P }lab+ aPxx+xx }lab],

Px g I= Io [ a P*( ) l*b]

P...,I=Io[(P * )„,+-.P„(K*„,* )„,],
px'x'I =Io[(P }lab+ a pxx(Kxx }Iabl ~

Pg'g'I o[(P }lab+ aPxx( xx }lab] '

(64)

We see that the sets (K,*„*)l,b, (K," ' }„b, and
(K' ' )„bare readily separable from the observ-
able outgoing beam polarizations, provided that
the polarization functions (P' ' )„b and (P' * )„b
have been previously determined.

phase angles. In the geometrical construction
there are actually only two independent angles,
since O~c = 8»+ OD~. Since the lengths of the vec-
tors are fixed, the angles are fixed uniquely ex-
cept for the ambiguity shown in Fig. 3 ~ To fix this
ambiguity, we must turn to the measurement of
another polarization-transfer coefficient. This
can be either any additional one from class 2,
with the exception of those proportional to A„, A„„
(P' )„b, or (P' ' )„b, or it could come from class
3. Favorable choices here, if (1) one prefers sim-
ple beam spin directions (i.e. , if the beam quan-
tization axis is to be along the x, y, or z direction),
and (2) second-rank output moments are to be mea-
sured, are (K", * )l,b, (K', ' )l,b, (K*„,' )l,b, or
(K*„*}„bfrom class 2, or (K", *

) „b from class 3.
So far, we have used seven experimental quanti-

ties and have determined all of the parameters of
the M matrix except the phase of B. We note that
only observables in class 4 (and all observables in
class 4) involve this phase. Therefore, the mea-
surement of any of the class-4 variables would suf-
fice for this determination, and there is no a priori
reason for preferring one over another. A choice
which would best meet the experimental require-
ments mentioned above is any one of the set
(K )lab (Kg )lab (K )lab and (K* ) lab'

Finally, then, we find that M is completely de-
termined by eight measurements: The cross sec-
tion, four analyzing tensors, and three polariza-
tion-transfer coefficients are required. Particu-
larly convenient triads of transfer coefficients
would be (K,*„' }»b, (K', * )»» and (K*,„' )»b, or
(K'„' )»b, (K",,' )»b, and (K; ' }„b. To illustrate,
if the beam quantization axis is along the x axis,
the outgoing beam intensity and polarizations are:
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VIll. TIME-REVERSAL TESTS

If the outgoing particle is referred to its center-
of-mass direction, we have all of the time-rever-
sal relations of the forms K„' " =K"„, K„' ' = -K"„,
etc. In addition, for the 1+0- 1+0 elastic scatter-
ing problem only, we have the relations

-K~ =2+K"„,' -A»-K»",
(65)

Neither of these relations appears to be particular-
ly easy to check experimentally. A relation of the
type,

(66)

offers more promise. Unfortunately, we have to
contend with measurements in the laboratory sys-
tem. The center-of-mass quantities expressed in
terms of the laboratory quantities are

K*„' = —;(K;„*-K„'„' )&,b sin2$+(K*„,' )„bcos2$,

K„*," = (IP„* )»b cos'P+ (K,',' )»b sin'g (67)
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APPENDIX I: SPIN-1 MATRICES

The spin-1 matrices used in this paper are as
follows:

(100)
I= 010

OO1

(0 10)
e, =S, =

~(0 1 0[

O-1 O

(P,=s„=~l 1 0 -1
(0 1 oj

/10 0)
6, =s, =lo o o

~

0 0 -11
—(K*„,' )„bsin2$,

where the rotation properties given in Appendix
III have been used. (Although the relations given
in Appendix III are written in terms of a beam of
particles, they are, of course, applicable to any
second-rank tensor quantities. ) All of the outgoing
polarization components would normally be mea-
sured simultaneously. Two different beam quan-
tization directions could be used, although there
exist certain choices for this direction which
would simultaneously give a large p„and p„[see
Eq. (2)]. Thus a check of Eq. (67) by a relatively
accurate "ratio" technique may be possible. A
similar test involving the zz components would be
equally favorable.

00-1
4'„,= -', (S„S„+S„S,) = —,

'
i~ 0 0 0
(10 0$

(0 1 0)
d'~g= ~z(s*sg+Sgsg)= ~ 1 0 -1

(0 -1 01

. Jfo -I 0)6„=—,'(s, s, +s, s,)= ~l 1 o 1
0 -10)

(-I 0 3
d' =3(S )' —2I=-,

~
0 2 0

0 -1

(AI1)

IX. SUMMARY

%e have developed a suitable description for
1+0- 1'+0' polarization-transfer phenomena.
Emphasis has been placed on the use of different
and convenient frames of reference for the initial
and final particles. Linear relations between the
observables have been listed, and a method for
writing down the 70 quadratic relations has been
given. The simplest set of experiments necessary
to unambiguously determine the scattering matrix
at a given energy and angle has been discussed,
and the number of required experiments is found
to be eight. A feasible comparison of polarization-
transfer coefficients which would test time-rever-
sal invariance was described.

-1 0 -3
6'„,=3(S„)'—2I= ~ 0 2 0

(-3 0 -lj

(0 o 0)
(p +4',„+6',.=I 0 0 0 ~.

o o 0$
(AI2)

so that we need only two of these three matrices.

(I 0 0)
6'„=3(S,)'-2f=~ O -2 O

LO O lj
Note that the S operators are the standard Carte-
sian spin-1 set given in, for example, Schiff's
Quantum Mechanics. " Notice also that we have
the operator identity,
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p = k(I+ —,'(6', )6', + k(d'») 6',4), (AI5)

where repeated indices indicate a sum. We have
Tr p = 1, Tr (pd'J ) = ((P,}, and Tr(pP») = (5'»). In a
scattering experiment, the initial density matrix,
p„has the polarized beam components p, and p»
as expectation values ((P,), and (6'»)„respectively.
The final density matrix, p&, is related to p, by

p&=Mp&M, where M is the scattering matrix.
The cross section for an unpolarized beam is

I qTorMM, since p, = )I for (tP&)=(6'») =0. For
a polarized beam, the cross section is

I= )TrM(1+ —,'P, d'&+ —,
' P»6'») M

=Io(1+ 4 pJAl + $ pl4A)4), (AI6)

where

TrM6'~ M
TrMMt

It is often convenient to work with the pairs
-', (6' „-(Poo), 6'&1 where n, P, and y are s, y, and

z in any order. The explicit matrices are

(O O I)
—,'(6'„-d'„„)=-,'I 0 0 0

(I oo)
(-1 0 1

4(6'„-6'„)=-',
~

0 2 0
1 0 -1)

(-1 0
4(d'„, -6'„)= -'

(10-1)
This operator identity allows us to deduce the iden-
tity,

3P„„B,~+ 3P„„B„„+gag Bgg

=
o (p«-p8o)(B« —Ble) + 4 ply B11,

(AI4}

where n, P, y are again x, y, z in any order.
This relation applies if both the p's and B's satis-
fy the identity of Eq. (AI2), and thus is true if the
B's represent any of the polarization-transfer
quantities or the analyzing tensors.

The density matrix, p, for an ensemble of po-
larized particles can be expanded in terms of
these operators, in the form

Therefore, the final polarizations are p& =(64& )l
and p& 4

= (5'~ioi)l, so that

gl 3 )l glle =Io(P' + of JK'I +~PI4 'J4) ~

~ ly I

Ipltoi =Io(p + opyKy +spy4Ky4 ) y

where K&
~= Tr (M6'& M 6'& )/TrMM, etc

Since these matrices are Hermitian conjugates of
each other, the statement is proved.
(2) Proof of the cyclic trace rule: TrnX R(X @}
=»(x 4)'nx R.

TrnX R(X ~ Q)

Tr (nil nlo n13) (R;Q, R.*Qo R;Q-)
n44 noo noo Ro Q+ Ro Qo Ro Q-

(no, noo noo) (Roq, R"Qo R*q )

+ Qg y R+ Qp+ Q22 Rp Qp + Ag3 R*-Qp

+Q3j R+Q + Q32Rp Q +Q33R Q

(A112)

Also,

Tr(X'4) nX'R

= T (q, q, q ) (n„n„n„i (R;)
I n44 n44 noo I Ro

A3, A32 A33 R~

APPENDIX II: PROPERTIES OF THE

x REPRESENTATION

We define

(Ro)
x.%=I Ro

ER'-)

and (X ~ Q) = (Q, Q,Q ) [see Egs. (18) and (20}].
(1) Proof that [X %(X Q) ] =X Q(X %)t:

(R,"Q, R+oqo R, Q )
(R*Q, Roqo Roq )

(AI11)

(QoR, QoRo Q,*R )
QoR+ QoRo QooR

TrM6'gp M
TrMMt

After scattering, the polarizations are given by

=»(Q Qoq )(n Ro+n„Ro+n„R )
A~, R, +Q22Rp +Q23R*
n»R;+n»Roo+n»Ro)

(A118)
T1pl (Pg

Trp~
(64 )

Trpyd'»
» T which is seen to be the trace of a 1x1 matrix with
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the value

+ Q2g R4. Qp + Q22 Rp @p + Q2g R Qp

+ Q3, R,*Q + Q32 Rp Q + Q33 R*Q (AII4)

For example,

Tr(X %)'5'„(X Q)

=(R,R, R ) (0 0 --,'i) (Q~)
lo o o lqgl
kl 0 0) (~'-1

Equation (AII2) is identical to Eq. (AII4), which
proves the statement.
(3) The trace rules are

Tr(X ~ R) X
~ Q=R Q,

Tr(X ~ R) (P~ X
~ Q = i R xQ,

Tr(X R) d )q X Q p(Ri Q~+ Q) Rq) i

»(X'H) 6'ggX'4=R 4-RgQg

(AII5)

These follow readily from explicit construction.

=--,'i(R, Q*-R q+)

(-R, —iR„)(Q,+i@„) (R, —iR„)(-Q,+i@,)

=--', (R, Q, +R„Q,).
(AH6)

We need these traces only when R and Q are real
unit vectors along the x, y, z axes. The specific
results are given in Table III, where n, P = x, y,
or z, and Q is one of the basis operators I, (P„or
6'„ in the expression Trx Qya.

TABLE III, Traces of the Cartesian operators.

P Trace 0 p Trace p Trace

x I
x (p„
x 6'„
x
x 6'„„

x 6'„
x
x 6'
x 6'„

1
0
0
0
0
0
0

-2
1
1

y 1
y 0

y 0

y 0
y 0

y 0
y 0

y 1
2

y 1

z
z (p„
z
z (p

6xy
z
z g„

6'
z g~
z (p

z 1
z 0
z 0
z 0
z 0
z 0
z 0
z 1
z 1
z -2

x I
x 6'„
x (p„
x 6',
x 6'„
z 6'g
x 6'~
x (p

x

y I
y 6',
y 6'„
y 6',
y 6',„
y 6'„,
y e„,
y 6'~
y
y 4'~

0
0
t'

0
0

0
0
0
0

0
0
0
t

0
0
0
0
0

I x
6', x

x
x6'„x

6',g x
6'„g x
6' x

x

I z
6', z

z
6'g z
6',„z
6'„g z
6'~ z
6' z
6' z
6'~ z

0
0
t
0
0

2
0
0
0
0

0
0
0
0

0
0
0

I
6'„
6'„
6',
6',„
6'„

6'

6'~

0
0
0

0
0
0
0
0

y 0

y 0
y 0
y 0

y 0
y
y 0
y 0
y 0
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APPENDIX III: ROTATION OF THE VECTOR

AND TENSOR POLARIZATION

COMPONENTS

We give for convenience the expressions needed for rotation of the vector and tensor components of po-
larization about the y axis. The sense of g is such that /=8, —(9», a positive number, should be used

if the single-primed quantities are referred to the k,„,(lab) and the double-primed quantities to k,„,(c.m. ):

p„=p„.cosg —p, sing,

py» py' &

p, = p, sing+ p, cosg,

p„„.= p„„cos'g +p, , sin'g —p„...sin2$,

py»y» pyf yl

p, „,„=p„,, sin'g+p, , cos'g+p„i, sin2$,

p„.,„=-,'p„,, sin2$--,'p, ., sin2$+p„...cos2$,

p„n rr = p„i i cosg —pyigi sing,

p„, = p„.„.sing+p. ..cosf,

(p, „.-p„, )= (p, „-p...)x 2(cos'tip+1)+p, , (2sin'g) —p. .. sin2&.

(AIII 1)

*Work performed under the auspices of the U. S. Atom-
ic Energy Commission.
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