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We investigate the effects of taking the two-nucleon scattering matrices off energy shell in
the first term of the nucleon-nucleus optical potential. In order to avoid Coulomb interfer-
ence, only neutron-nucleus elastic scattering is considered. We look both for the possibility:
of improving the fit to the elastic nucleon-nucleus scattering observables by varying off-shell
parametrization, as well as the possibility of extracting off-shell information on the nucleon-

nucleon force.

I. INTRODUCTION

In the Watson approach to the elastic scattering
of nucleons from the ground state of a nucleus,!
the optical-potential operator can be expanded to
any order in terms of the Watson modified scat-
tering operator,

TH(E%) = v; +v; G'(E°)7,(E°), (1)

where v, is the free two-body interaction between
the incident and ith target nucleon, and E° is the
kinetic energy in the nucleon-nucleus center of
mass. This scattering operator differs from the
free two-body scattering matrix in that its Green’s
function,

G'(E®) =Q,(E° +€,+1in - E —H,)™, 2)

contains the projection @, off the ground state

|0) (whose energy is €,) of the nuclear Hamilto-
nian Hy; these are all many-body operators de-
fined in the center of mass of the target nucleus.
In (2), and subsequently, a caret is used to de-
note the operator of a kinematic variable. In con-
trast, the free two-body scattering operator is

tile))=v;+v,8(e)) ti(ey), (3)
whose Green’s function,
gle))=(e;+in-2)™", 4)

contains only the kinetic energy e; of the inter-
acting pair of nucleons in their center of mass.
The free operator, being translationally invari-
ant, is intrinsically on its momentum shell; i.e.,
the initial and final total momenta are the same.

However, it can be extended off its energy shell.
This extension is necessary whenever the nucleon-
nucleon force occurs in processes involving more
than two bodies. In these processes, the energy
of the initial and final momentum states of the

two nucleons need not equal each other nor the
value of the energy parameter e;. Since only the
on-shell matrix elements are experimentally de-
termined in nucleon-nucleon scattering, there is
considerable interest in the study of processes
that are sensitive to differences between the off-
and on-shell matrix elements. There is also in-
terest in the possibility of selecting between elas-
tically equivalent potentials® which lead to differ-
ent off -shell extensions.

In this paper, elastic nucleon-nucleus scattering
is examined in an extension of the impulse approxi-
mation in order to find if there is a range of nu-
clei and incident energies for which off-shell ef-
fects may be discerned from effects due to multi-
ple scattering, target nucleon binding, etc. In
Sec. II, our approach for going from a many-body
to a two-body problem is presented. Section III
develops the kinematic relations between the many-
body and two-body relative momenta. The relation
between the many-body and two-body matrix ele-
ments is obtained in Sec. IV. In Sec. V, the first-
order potential is described, and our off-shell
parametrization and numerical procedures are
discussed in Sec. VI. Cross sections and polari-
zations for a variety of nuclei, energies, and off-
shell parameters are illustrated and discussed
in Sec. VII, and our conclusions are stated in
Sec. VIII.
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II. EXTENDED-IMPULSE-APPROXIMATION
APPROACH

The basic problem is to relate matrix elements
of the many-body modified scattering operators,
which are defined and evaluated in the barycentric
subspace of A +1 bodies and in terms of which the
optical potential is expanded, to the free two-body
scattering matrix elements, which are defined in
the barycentric subspace of two nucleons and whose
on-shell values have been determined via nucleon-
nucleon scattering experiments. For the usual
choices of a modified scattering operator this can-
not be done unambiguously, because they conserve
neither the total two-body momentum of the inter-
acting pair nor the individual momenta of the other
nucleons. In the Watson operator, this is due to
both @, and Hy in the Green’s function, since they
are diagonal in the nuclear states, for which in-
ternal momenta are not constant.

A direct relation between matrix elements is
possible if the potential is expanded in terms of
operators which do not contain @, and which re-
place Hy by some model-dependent operator H;
which is diagonal in the many-body momentum
space, the new operators being

Ti(E®) = v; + v, G,(E)7,(E°), (5)
with
Gi(E%) =(E°+e,+in-E -H;)™". (6)

The many-body operators of (5), which are con-
structed so as to conserve two-body momentum,
lead to an unambiguous extension of the impulse
approximation (EIA) for which kinematic rela-
tions between the nucleon-nucleus and nucleon-
nucleon variables are uniquely defined, as de-
scribed in the next section.

To any order, the potential can be formally ex-
panded in terms of the 7 by using the operator
identity

T,(E%) = 7,(E°) + 7,(E°)[G"(E®) - G{(E°)]7:(E®) (7)

in the Watson expansion to replace 7; by 7;. Prac-
tically speaking, terms of third and higher order
have not been calculated, while second-order
terms have been only crudely evaluated using mod-
els of nuclear-correlation functions and making
further approximations to avoid integrating over
internal scattering angles and summing over inter-
mediate nuclear states.® Even the first-order
terms generally neglect exchange and internal mo-
mentum-distribution effects. In this paper, we
consider only the first term, reserving for a later
work binary expansions in the 7,.

To first order in these operators, the momen-
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tum-space matrix elements of the potential are
- - - A - -
(K| V(E®)|K) =(K[(0[|2;7:(E®)|0)|K", (8)
i=1

where the final and initial relative momenta be-
tween the incident nucleon and the nucleus obey
the nonrelativistic kinematic relations

E=K*/2p, E'=K'%/2u, 9

where 1 =[A/(A +1)]m (m is the average nucleon
mass) is the reduced mass. This nonlocal (be-
cause it is not just a function of ﬁ:i{ —E’), com-
plex potential is a matrix in spin space; for spin-
zero nuclei, it is 2X2 and consists of a central
and a spin-orbit part.

The potential matrix elements (8) are used in
the momentum-space scattering equation for the
reaction matrix to solve for the scattering am-
plitude of the neutron-nucleus elastic collision.
The numerical procedure is described in detail
elsewhere,*'® and is discussed further in Sec. VI.
Here, it is important to stress that although the
Born approximation fixes the magnitudes of K and
K’ at the value K° corresponding to the energy E°,
the magnitudes of these momenta range from 0 to
« in the exact partial-wave integral-scattering-
equation calculation that is used in this work.

III. KINEMATICS OF THE EIA

As a consequence of conserving two-body mo-
mentum, the momentum transfer § from the in-
cident nucleon to the nucleus is entirely trans-
ferred to the struck target nucleon, so that

K-K'=3=k-Fk, (10)

where K and K’ are the final and initial relative
momenta between the interacting nucleon pair,
and the subscript 7 is dropped. The definitions
of relative momenta imply

E+K +3(1+1)=c(®+K"), (11)

where 1and 1’ are the final and initial internal
momenta of the target nucleon relative to the nu-
clear center of mass, and c=(A +1)/2A is the
ratio between the energy ¢° for free scattering in
the two-body center of mass and the over-all en-
ergy E°.

If internal momentum is neglected, a simple
calculation starting from (10) and (11) gives the
relations®

2= +c)K2+3(c®-c)K'2+ (1 -c?) ¢?,
k=3 -c)K?+3(c2+c)K'2+3(1 -c*)q?, (12)
kk'cosf=3c*(K%+ K'?) - 4(1+¢?)¢?,

between the nucleon-nucleus kinematic variables
on the right-hand side and the two-body kinematic
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variables. For any fixed values of A, K, and K’,
the scattering angle 6 in the nucleon-nucleon cen-
ter of mass goes from 0 to 7 as the over-all cen-
ter-of-mass scattering angle 6 goes from 0 to 7.
In the usual approach, free two-body kinematics
is used with & and &’ fixed at their on-shell value
k°, which is given by €°=£°%/m. This is not con-
sistant with (12) and causes 6 to reach 7 before

© does, so that an arbitrary extension of the ma-
trix elements for ¢ greater than 2%° is necessary.’

The form of (12) illustrates two points. First,
the definitions of 2 and k2’ are symmetric under
the interchange of K and K’. This is consistent
with reciprocity,” which requires that the elastic
scattering potential be invariant under the trans-
formation K - —K’ and K’ ~ -K. Second, ¢ rather
than © is used as a nucleon-nucleus parameter,
since local potentials are functions of { only,
while potentials which depend on K and K’, as
well as q, are nonlocal. The optical potential
used in this work is nonlocal because it is con-
structed from two-body matrix elements whose
kinematic variables, %2, k’, and 6, depend upon
K and K’, as well as q.

It can also be seen from (12) that fixing K and
K’ at their ON-shell value of K° (upper case denot-
ing the nucleon-nucleus energy shell) does not fix
the values of the two-nucleon momentum variables,
since k and &’ still depend on ¢g. Thus, % and %/,
though equal to each other in this case, do not
necessarily correspond to the appropriate nucleon-
nucleon energy (derived in Sec. IV). This takes
the two-body ¢ matrix off shell in a local manner,
and results in what we call the “local off-shell
effect.” When K#K’, so that the nucleon-nucleus
matrix elements are OFF shell, it follows that
k #k', so that the two-body ¢ matrix is off shell
irrespective of the value of the appropriate nucle-
on-nucleon energy; and when K=K’ +K°, k=Fk’ is
still off shell, in general. Both these situations
shall be said to give rise to “nonlocal off-shell
effects.”

IV. MATRIX ELEMENTS OF THE EIA
SCATTERING OPERATOR

The matrix elements of 7;(E°) are now taken
between the momentum states |KT---T,) and
|K1}.+-1,), which are normalized to a & function
in all momenta. By the definition of internal mo-
menta, their sum is zero in any nuclear state,

A - -
»i=0=x1, (13)
i=1 i=1

and by the definition of 7;, the final and initial
values are related by (for j+i)

(3]

-

I -T;=-3/a
and (14)
I -1;=[(A-1)/A]§.

In the nonrelativistic approximation, l,, k,, and
K are Gallilean invariants,® as are the matrix
elements of the scattering operators. This means
that the two-body matrix elements are not affected
by the dependence of the two-body center of mass
on the internal momentum distribution of the
struck particle.

The relation between the matrix elements of
7; and ¢; is effected by inserting a complete inter-
mediate set of states, |K”17-- -17), between the
Green’s function and the right-hand 7; in (5),
which is being evaluated between final and initial
many -body momentum states. In this way, a
many -body Lippmann-Schwinger equation is writ-
ten in a momentum representation. Integration
over the complete set of states, appearing in the
Green’s function of 7;, is restricted by relations
(13) and (14) applied to the intermediate internal
momentum states. Thus, integrating over the
momentum space of A +1 nucleons is equivalent
to making the integration [d®p” over the momen-
tum space of the incident particle, which is la-
beled with the index 0. In the over-all center of
mass, this is equal to [d®K”, while in the two-
body center of mass this equals [d®k?.

The Green’s function of (5) is now evaluated in
the intermediate momentum state. The model
Hamiltonian f;, which is diagonal in all momenta,
is separated into a potential part U and the exact
kmetlc part which together with E gives the term

é’” where 8 is the kinetic energy operator
of the jth particle. Under the momentum-con-
serving assumption of the EIA, the single-particle
energy, g,-, j#0,7, and the total two-body energy
of the incident and struck particle, §,;, are ¢
numbers, so that

g
o
1]
On,

o
+
+
™
O
[
B
+
(S
k3
+
™
S

i=0 j#0,i i#0,i

- slei+e) + E 3(8;+8))

Nl

—_ A

e+E+ 3317/2m, (15)

]
o

where the last two lines are the average of the
two equal expressions of the second line, and the
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following definitions have been made:

;=32 m+ki?/m),

E=1(K?/2u +K'%/2y), (16)
12=3(12+1/7).

o

Thus, the energy denominator of G(E°) is
- A .
a+(E°-E)+(eo- Z;Tf/Zm-U,-)—éi. )
i1

The only kinematic operator explicitly appearing
in (16) is &;, so that (16) is formally identical to
the denominator of (4). To complete the identifi-
cation, the form of ¥; must be specified. It is
first noted that allowing U, to contain a function of
¢; is equivalent to letting the target nucleon go off
its mass shell.® Second, U; can be a function of

the form factor is written

F(q)=fd371--- daf,,o():j;lx

>

1, -

N

instead of the equivalent but more commonly written

‘11/_% T

Flg)= fdaz; IR, (1‘211,> <o

Since our model Hamiltonian conserves all momen-
ta, the kinetic energy part of €, is 37, [,%/2m.
An easy calculation shows that

A 1 A :J_z_ A q
; 2m 1=21 2m 2m ° (20)
This last expression can be interpreted as an ex-
citation of the nucleus in the kinetic energy part
of its Hamiltonian, since, for a given internal
momentum state, the first term of (20) is the
average internal kinetic energy during a collision
with momentum transfer ¢ and the second term
of (20) is the expected internal kinetic energy in
the ground state. Considering a harmonic-oscil-
lator model of the nucleus, it is reasonable to
assume that the potential energy part of the nu-
clear Hamiltonian is excited to the same order of
magnitude as the kinetic energy part. Thus, the
total excitation of the nucleus, €, -4, 72/2m -7,
is taken to be proportional to ¢2. This total exci-
tation is written as —c’q*/2m, where a compari-
son with (20) indicates that ¢’ is approximately
(A -1)/2A.
The denominator of the many-body Green’s func-
tion, G;, is now completely identified with that of
the free two-body Green’s function, g. Thus, the

momentum transfer and internal momenta, along
with their scalar products. Finally, the actual
choice should be made so as to minimize the size
of terms containing Hy — H;, which occur in sec-
ond- and higher- order terms in the expansion of
the optical potential. However, the generality in
the formalism introduced by the operator U; will
not be made use of in this paper, since here the
primary interest is the examination of off-energy-
shell effects in a first-order potential.

A simple form for U; can be inferred from the
requirement of reciprocity, which dictates that
the internal momentum distribution of the nuclear
ground state be interpreted in a reciprocally in-
variant way. Thus, the ground- state wave function
is written as (T, - -T,]0), where T, is the vector
average of final and initial momenta; moreover,

g--1,-3\f.,8..3_A-1. 7.4

q---1, 2A><1,+2A L-57 1A+ﬂo>
(18)

T;-%><1’; L 1400) (19)

unambiguous relation

(R, - 1, (7,(E) BT -« - 1) = (K, | £,600) | K1)

(21)

between the many-body and twu-body matrix ele-
ments is at last obtained. In (21), the kinematic
variables, k;, k;, and 6, are related to the optical-
potential variables, K, K’, and ¢q, via (12), while
the energy parameter of the two-body matrix is
found from (17) and the discussion in the previous
paragraph to be given by

w;=€; +(E°—E) -c'q*/2m. (22)

Using the relations (12) and the definitions (16) arnd
K2=3(K?+K'?), w; can be expressed as
KZ K°:-K?

w,-=c-2—u+ 20

q2
+(3-3-cgn- (23)
When K®=K°2 and ¢=0, w, takes the value e°= cE®
corresponding to scattering of two free particles.
From (23), it can be seen that w; decreases (in-
creases) as K? increases (decreases) On the
other hand, it follows from (12) that ;% = (k2 + k%)
equals

=K%+ 31 -c?) . (24)
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It is clear from (24) that %;? decreases (increases)
as K? decreases (increases). The result of this
opposite behavior of w; and %, with respect to
changes in KZ is that the distance off energy shell
in the ¢ matrix (21) is enlarged by a factor of 1/c
over the value that would be obtained if w; were
fixed at e°.

found to be

-

(K]V]K'>=fdﬁl---dﬁ,,a(f;zl,)wlf,--- TA)<K11-

i=1

We have already neglected the internal momentum
distribution in deriving k;, k;, 6, and w;, so that

in this approximation the two-body matrix elements
can be written as an average over the spin-isospin
part of the nuclear ground-state wave function, de-
noted as |0).,Thus, using (21) in (25) and moving
the matrix outside of the integration, gives

<E|V|f<'>=(o

O)F(q), (26)

é(ﬁilti(wi)l-l;;)

where F(q) is the elastic form factor obtained in
electron-nucleus scattering and defined by (18).
Note that both (25) and (26) are reciprocally in-
variant.

When the averaging over spin and isospin is
performed, (26) takes the form (particle index
is dropped)

(KR|VIR")=At (k, k" 0;w)F(g), (27

where [ is a linear combination of the two-body
partial-wave matrix elements, which include the
singlet, ¢;,, uncoupled triplet, ¢,,, and the coupled
triplet, the last written as a 2xX2 matrix:

t.i+1,j t;
( 51 . (28)

i=1,i

Here, ! and j are the orbital and total angular
momenta of the two nucleons in their center of
mass. The coefficients'® of the linear combina-
tion depend only on the properties of the nuclear
state and two-nucleon interaction under rotational
symmetry; these coefficients are the same off as
well as on shell. On shell, ¢]=¢;, while off shell,
for k+#k’, the matrix (28) need not be symmetric.
For this reason it is noted that for the spin-zero-
isospin-zero nuclei considered in this work, the
nondiagonal matrix elements ¢; and ¢; do not ap-
pear in the first-order potential, because the co-
efficient of each is separately equal to zero.!*
The extension to off the energy shell can be
made in several ways. For the problem consid-
ered here, we have found it convenient to use

1,

|

V. FIRST-ORDER OPTICAL POTENTIAL

Inserting complete sets of internal momentum
states into (8) results in the integration [d®l,: - -d®],
Xd®l]-+ +d3l,, which is equal to [d3L, -~ - d®l,

Xd®), + -+ d°),, with the definition X, =1, 1. From
(14), the integrals over the X, are removed by &
functions so that the first-order EIA potential is

f;‘f,.(Ef’)lﬁ'*l;---’1;><12--°Tg|0>. (25)

i=1

r

Fredholm reduction in the partial-wave matrix
elements, which for the uncoupled case (with an-
gular momentum indices omitted) gives!?:

t(k, k' ;w)=h(k,w)h(R',w)t(w)+r(k,k';w), (29)
where % is the half-off-shell factor defined by

vk, k) [~ k2R’

h(k’w)_v(x, KN ), P-k?

AR, R w)h (R, w),

(30)

with k being the on-shell momentum value corre-
sponding to w, i.e., w=k*/m, and where A(k,%’)
is given by

v(k, K)v(k, k')

Ak, k', w) = ok, BY) =20

(31)

The so-called residual term, », is found from

r(k, k' ;w)=A(k, k', w)

©pnn2 ”
. k _d:,,z Ak, k", w)r(k”, k' w)
)

(32)

so that it is real, symmetric in # and k’, and
vanishes when either & or 2’ equals . In (29), #(w)
is proportional to the experimentally determined
on-shell scattering amplitude at the two-body en-
ergy w. On the other hand, the functions % and »
depend on the choice of nucleon-nucleon potential
v(k, k’). These potentials are restricted to fit the
elastic nucleon-nucleon phase parameters in ad-
dition to certain assumptions on analytic, assymp-
totic, and bound-state behavior.!® For different
models, there can be considerably different be-
havior in the half -off-shell factors for a given par-
tial wave, although Mongan'? has shown that the
essential shape of these factors for the singlet
case is similar for a variety of separable, as well
as local potentials. He has also derived the more
involved expresssions for the coupled case.!®
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VI. NUMERICAL ASPECTS
AND PROCEDURE

Our purpose is to estimate the size and deter-
mine the direction of the changes in calculated
values of the ercss section and polarization in
elastic nucleon-nucleus scattering due to the fact
that the two-body matrices go off their energy
shell when correct kinematics are used. Thus,
we make rather crude approximations which we
believe are justified at this time for this problem.
All residual terms are ignored; this is consistent
with the models used here and with estimates'? of
this term based on the fact that it vanishes when
either momentum variable is on shell. Coupling
between the spin-triplet partial waves with /=j+1
is also ignored, since the coupling parameters
are usually small compared to the phase shifts.!®
Furthermore, the half-off-shell factors are ap-
proximated as

h(k,w)=1+h'(k)(k = k) +h"(k)(k = k)2 + h*(k)(k - k)®
(33)

=1+ 1/ (k%) (k = k) + h"(R°)(k = k)2+ h*(R°)(k = K)?,
(34)

where h'(k°) =dh(k,w)/dk evaluated at £ =k° and
h"(k°) and h*(k°) are determined by fitting the ex-
pression (34) to the values of i(k, ¢°) calculated
from models for k equal to 1k° and 2k°.

The approximations are justified by the numeri-
cal aspects of this problem at intermediate and
higher energies. Reduced matrix elements
YEJ(KZ.K ’) are computed by quadrature from
(K|V|K’) in a partial-wave decomposition, with
L and J being nucleon-nucleus orbital and total
angular momenta. For spin-zero nuclei, there
is no coupling between different L, and J=Lxz .
These reduced matrix elements are used in an
integral scattering equation for the reaction ma-
trix R;;(K,K ), whose half-OFF -shell vector
R ;(K) is obtained for a discrete set of values of
K #K°. The fully ON-shell matrix elements of
the reaction and scattering matrices are then ob-
tained by performing the principal-value integra-
tion

L 2
M=o [ Gy e BB ), (39)

as a sum for the above discrete set using a suit-
able quadrature rule,* and then substituting IT L7
into the relations!’

Ry, =V, +1, (36)
and

T, =RLJ/(1+iRLJ)' (37

OFF-SHELL TWO-BODY ¢ MATRIX... 1185

Because the form factor is very peaked in g, the
V,;(K,K')~0 rapidly as K and/or K’ -=. Also,
because these matrix elements are determined by
an integration over Legendre functions, they ap-
proach zero as (KK')* as K and/or K’'~0. Noting
this behavior of the reduced matrix elements and
noting the Jacobian weight of K and the pole at

K =K® in (36), it can be concluded that matrix
elements V, ;(K,K’) with both K and K’ near K°
make the most significant contributions to the
values of I, ;, R, ;, or T,,, and, hence, to the
elastic scattering observables, which depend only
on the fully ON-shell matrix element, R;; (or T.,).
For energies above 142 MeV and A = 12, our cal-
culations have shown that ignoring matrix ele-
ments of V, (K, K’) with momentum variables
greater than 2K° or less than 3K° changes the
magnitude of I, ; by less than 2%. The effect on
cross section and polarization is even smaller

at lab angles less than 43°, Because the poten-
tial before reduction is also a very peaked func-
tion of ¢, the range of £/k° and &’/E° is also from
about 3 to 2 [see (12)], with the most significant
contributions coming from a smaller range of
nearly on-shell values of these momentum vari-
ables.

An examination of Mongan’s case-I and case-IV
separable potentials, which are fitted to the Liver-
more phase parameter set,'® has shown that (34)
is an excellent approximation for all phases, at
positive energies not very near zeros of the phase
shifts, when % <k/k°<2, while a linear approxima-
tion is adequate for most phases when 0.8 <k/k°
<1.2. Even for the larger range, the residual term
of (29) is generally less than 10% of ¢(w) for two-
term separable models, while it is identically zero
for the single-term models. The approximation
h(k,w)=h(k, %), i.e., (34), is poor when ¢° is near
a zero of the phase shift, in which case, the slope
h'(w), instead of varying slowing with w, rapidly
passes from large negative to large positive val-
ues. Thus, near the zero of a phase shift, the con-
tribution from the off-shell part of its partial wave
is likely to be exaggerated and may possibly have
the wrong sign. Since there are zeros in the 'S,,
%S,, and 3P, phases at about 250-300, 205, and
295 MeV, respectively, our calculations and con-
clusions at 210 MeV are less definite than calcu-
lations at other energies.

In our approach, there is a weak dependence of
the energy parameter on the value of ¢’. For %
<c¢’<1, the change in the observables is insignifi-
cant for the energies and angles considered in this
paper. For convenience in programming, this
constant was given the value 3 — 32, thereby elim-
inating the term of (23) that depends on ¢ and,
hence, making the energy-parameter variation a



1186 M. L. ADELBERG AND A. M. SAPERSTEIN

wholly nonlocal effect, i.e., dependent on K and
K’, but not on q.

VII. RESULTS

All of the results discussed in this section make
use of the kinematic relations described by (12).
Using this modification of the kinematics for the
nucleon-nucleon momentum and angle variables
instead of the previously used approximation k =k’
=k%%18 changes the observables very little when
the nucleon-nucleus angle is small. The change
becomes noticeable on a log plot only after the
cross section has dropped several decades; even
at a lab energy of 95 MeV, the change in small-
angle observables is less than 2%.

On the other hand, the effects of the energy vari-
ation (23) are more pronounced. In Table I, the
zero-angle lab cross sections are presented for
neutrons incident on C*? at lab energies of 45, 95,
137, 210, and 350 MeV. The first row neglects
both the energy-parameter and energy-shell vari-
ations in the two-body ¢ matrix, so that the approx-
imation t(k, 2’;w) = t(e®) is made, while the third
row neglects only the energy-shell variation,
making the approximation ¢(k, 2’;w) = t(w), where
w varies according to (23) with ¢’ =% - 3¢?; at the
above energies, respectively, the relative changes
in cross section are about 14, 18, 3, 9, and 6%.
The second row fixes w at ¢° in the ¢ matrix so
that t(k, 2’;w)=h(k, ®)n(k’, e®)t(e®), where h is de-
termined from Mongan’s case-IV model and is ap-
proximated as described in Sec. VI. These three
rows show that at every energy considered the
effect of varying w is opposite that due to taking
the two-body matrix off its energy shell. The par-
tial cancellation when both variations are included
(see the fourth row of Table I) can be explained by
noting that the magnitude of the off-shell matrix
in the uncoupled case is given by

[k, k" w) | =[1+2h'(E - x)] | sinsw)/k|,  (38)

where E=3(k+%’). As noted in Sec. IV, 22 (and
hence %) increases as x decreases. It has also
been observed in our calculations that k’(e°) is usu-
ally negative or positive according to whether

the magnitude of 5(e°) is decreasing or increasing.
In particular, the phase shifts of the S waves be-
low 250 MeV rapidly decrease in magnitude as ¢°
increases, while the slopes of their half-off-shell
factors are positive; thus, as k increases, the
first factor in (38) increases while the second de-
creases.

At larger angles, the effect due to energy varia-
tion alone is such that the shape of the cross sec-
tion is not significantly changed. The relative
change in the polarization at small angles is near-

|

ly equal and opposite the relative change of the
cross section. Since polarization is inversely pro-
portional to cross section but directly proportion-
al to the difference between spin-flip and nonflip
cross sections, we conclude that this difference
is not affected by (23) at small angles. This con-
clusion is maintained also at larger angles except
near cross-section diffraction minima, where the
polarization dips markedly. However, computa-
tions clearly show that, when its value is nearly
zero, the calculated polarization is sensitive to
small changes in the potential.

The remainder of the rows of Table I illustrate
that the size (but not direction) of the net off-ener-
gy-shell effect is strongly model-dependent. Here
and subsequently, w is varied according to (23)
with ¢’=% - 3c%. Inrows 4, 5, and 6, the { ma-
trices are taken off shell by Mongan’s case-IV
half-off-shell factors; in these rows, respectively,
all phases are taken off shell; only the S waves
are taken off shell; and only !S,, °S,, and °P,
(whose phase shifts pass through zero in the inter-
mediate-energy region and whose £’ thus become
large) are left on shell. A comparison of these
rows indicates that there is some cancellation be-
tween the off-shell contributions of the S waves
and the others - particularly at 137 MeV. Also,
it can be seen that the off-shell contribution of
the 3P, phase at 210 MeV dominates all others,
strongly indicating that this contribution is exag-
gerated. The off-shell calculation with case-I pa-
rameters, illustrated in row 7, did not show the
cancellation that occurred in case IV. For the two
cases, the S-wave parameters are nearly identi-
cal, while some higher partial waves have 7’ that
even differ in sign.

In Table II, zero-angle cross sections in the lab
for He* and Ca*® are presented. These nuclei are

TABLE I. Zero-angle n-C!? elastic cross sections in
millibarns at energies indicated in MeV by column head-
ings. FIX and VAR refer to w fixed and varied accord-
ing to (23). ON and OFF refer to leaving the ¢ matrix
on shell and taking it off shell, as described in Sec. VI,
with case-I and case-IV potential models. For the
case-IV model only, S-OFF takes only the S waves off
shell, while —3-OFF leaves only 1S,, %S, and °R, on shell.

45 95 137 210 350
FIX, ON 976 1411 1286 945 791
FIX, OFF IV 1526 1668 1208 869 781
VAR, ON 838 1164 1317 1025 839
VAR, OFF IV 1239 1509 1253 702 778
VAR, S-OFF 971 1276 1250 928 803
VAR, -3-OFF 1090 1467 1388 1016 828
VAR, OFF1 1305 1600 1197 666 788
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the smallest and largest spin-zero-—isospin-zero
nuclei with equal number of protons and neutrons.
Assuming symmetry under charge exchange, the
incident-proton potential differs from the incident-
neutron potential only by inclusion of an extended-
charge Coulomb potential. Thus, outside the Cou-
lomb peak, observables calculated from the neu-
tron potential could be compared with incident-
proton data. It was hoped that low-energy helium
and high-energy calcium calculations would indi-
cate effects large enough to be discerned from
those of multiple scattering, binding, exchange,
etc. Table II clearly shows that these hopes are
not realized for our models of off-energy-shell ex-
trapolation. In particular, multiple scattering
alone has been shown to lead to larger changes
than those observed here.%:18

In Fig. 1, n-C' cross sections are presented for
lab energies of 95, 137, and 350 MeV, and they
are compared, respectively, with experimental
results of Salmon,'® Harding,?® and Ashmore,
Mather, and Sen.?’ The experimental data are in-
cluded only for the purpose of a rough comparison;
the differences between different single scattering
calculations, though large, are smaller than those
due to binary terms in the potential. However, it
is noted that the off-shell curves (dashed for case
IV, dotted for case I) lie below their correspond-
ing on-shell curves (solid lines) at large angles,
so that inclusion of the off-shell parametrization
used here does not improve agreement with ex-
periment for large-angle cross sections, as-
suming (erroneously) that such fitting should be
possible without binary (and higher?) terms.

In Fig. 2, the experimental polarization data for
n-C!2 at 137 MeV (Harding?®) and at 350 MeV
(Siegel??) and p-C'? at 210 MeV (Hafner®3) are com-
pared with the neutron calculations at 137, 350,
and 210 MeV, respectively. The solid lines are
on shell, the dashed are off-shell, case-IV, and
the dotted are off-shell, case-I. The off-shell
factors produce a definite dip in the polarization
at 137 MeV, which is not observed in the on-shell

TABLE II. Zero-angle n-He! and n-Ca%’ elastic cross
sections in millibarns at energies indicated in MeV by
column headings. Notation is the same as in Table I.

45 95 137 210 350
Helium
VAR, ON 189 239 206 143 115
VAR, OFF IV 259 256 186 94 110
VAR, OFF1 295 305 168 85 108
Calcium
VAR, ON 4355 6786 84170 7573 6558

VAR, OFFIV 6386 8989 8933 4306 6222
VAR, OFF 1 6690 9105 8060 4151 6106
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FIG. 1. Elastic n-C!? cross sections in barns. Solid
curves are on shell; dashed curves use Mongan'’s case-
IV models to go off shell; dotted curves are off shell
via case-I models. All curves are calculated with w
given by (23) and ¢’ =3 - ic?. (a) The experimental 95-
MeV data are from Ref. 19. (b) The 137-MeV data are
from Ref. 20. (c) The 350-MeV data are from Ref. 21.
All experimental data points are illustrated by circles.

curve and was previously considered due only to
multiple scattering.® At 210 MeV, the dip is even
more pronounced (but is possibly exaggerated be-
cause the 3P, phase is nearly zero and its »’ is
very large) and is even made negative. Also,
there seems to be some improvement (i.e., a re-
duction) in the polarization calculated before the
dip at 350 MeV.

VIII. CONCLUSIONS

Our most definite conclusion is that, for elastic
scattering of nucleons off nuclei at intermediate

(a) 137 MeV (b) 210 MeV

(c) 350 Mev
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FIG. 2. Elastic n-C!? polarization. Solid, dashed, and
dotted curves are used, experimental data illustrated,
and w is varied as in Fig. 1. (a) The 137-MeV data are
from Ref. 20. (b) Proton incident 210-MeV data from
Ref. 23 are used. (c) The 350-MeV data are from Ref.22.
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energies, off-energy-shell effects are, like the
energy-parameter effects, almost wholly nonlocal
(in the sense of Sec. III). The ON-shell matrix el-
ements of the potential, (K |V | K’), with K=K°
=K’, change very little when the two-body ¢ ma-
trix elements are taken off their energy shell, un-
less q is very large. On the other hand, the half-
OFF-shell angularly reduced vectors, V,(K,K°)
are so sensitive to going off the two-body shell
that the principal values calculated from (31)
change by over 50% for the lower values of L. Un-
fortunately, these IT,, are typically an order of
magnitude smaller than the V,;, so that the Born
approximation in the form R,, =V,; is accurate for
cross section as well as polarization. Thus, our
situation is such that the potential — due to rapid
variation of the form factor with ¢ —is almost lo-
cal, but the effects that we wish to investigate are
essentially nonlocal. This situation for a nonlocal,
real Gaussian potential was examined by Monahan
and Thaler,?* who concluded, as we do, that dis-
tinguishing off-shell effects, given reasonable non-
locality, would be extraordinarily difficult for the
case of C'? at intermediate energies. However,

we stress that purely local considerations'® defi-
nitely underestimate the size of off-energy-shell
contributions.

Our results are certainly model -dependent.
Other models of the nucleon-nucleon interaction
can lead to more rapidly varying off-shell behav-
ior, i.e., larger i’, as well as to fewer cancella-
tions between energy-parameter and off-shell ef-
fects or amongst off-shell parts of different
phases. Inclusion of coupling and residual terms
might enlarge the net size of the effect of going
off the energy shell. Finally, other means?®s of
extending the two-body ¢t matrices off their energy
shell should be investigated.

It appears doubtful that intermediate-energy
elastic nucleon-nucleus scattering can be used to
extract information on the off-energy-shell char-
acter of the nucleon-nucleon interaction. There
does not appear to be a range of A or E° for which
off-shell effects in the first-order potential are
likely to dominate the on-shell contribution of
second-order terms. On the other hand, our work
shows that off-shell effects are not negligible in
the first-order term and leaves open the possibil -
ity that they significantly alter the second-order
terms. It would seem that off-energy-shell con-
siderations are a necessary ingredient in a multi-
ple-scattering approach that attempts to fit the
elastic nucleon-nucleus observables with precision.

*Work supported in part by the National Science Foun-
dation under Grant No. NSF GP-7853.
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