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Three-body-correlation corrections to the saturation curves of two phase-shift-equivalent
potentials have been computed. The corrections for both curves are of the same sign. They
are very small at normal densities but increase rapidly with increasing density and defect
integral.

In an earlier paper' (hereafter cited as I) we
have shown that reasonable phase-shift-equivalent
potentials can produce substantially different sat-
uration curves in the Brueckner approximation.
The question remained to what extent the results
are affected by higher-order correlation correc-
tions. Rough estimates of the three-body corre-
lation effects by Wong and Sawada' indicate that
they should not change the qualitative picture. We
have recently computed the three-body-correla-
tion correction for two representative saturation
curves, namely, cases Nos. 1 and 10 of Fig. 2 in
I. The purpose of this note is to present the re-
sults of that computation.

The hole-line expansion of Bethe and Brandow'
for the binding energy per particle is equivalent
to the iterative solution of a coupled set of non-
linear integral equations. 4 The iteration proce-
dure linearizes the equations. To each order
(number of hole lines) the contribution to the po-

tential energy per particle is obtained by solving
a linear integral equation. ' We have solved the
integral equation for the three-body-correlation
corrections numerically.

In order to write the equations that we have
solved in a compact form, it is useful to intro-
duce the partially antisymmetrized three-body
wave functions

P(ql» q3» q3) 0(q3» qJ» 'q3)

with the scalar product

(d, )=-,'qJl qJdI d'q, f d, qldlq 'q„, q)l„*. (2)

The q's are momenta. Spin and isospin variables
are suppressed for the sake of brevity. Summa-
tion over these variables is implied whenever
there is a momentum integral. The kernel of the
unit operator is then

(q,', q,', q,'ll Iq„q,q, &=6(q, —q3')I6(q3 —q3')6(q, —q,') —6(q, —q,')6(q, —q3')]

The permutation operator X is defined by

&q,', q,'; q,'IXlq. ; q., q, & =(q,', q.'; q,'Illq„q„q. &+&q,', q.'; ql II Iq„q., q. &

The three-body correction to the energy is obtained by evaluating the expression

(4)

g d3pl t d3p»1—
( ) I„,, , J. . . I„, ,F

&lP, P lpl (G) —XF( )(I+X)IP.;P., p, &,

d'P d'P, d'P, 6(-.'(P,'-P,'-P, +P,))
~ 1&2I&&F

(5)

where (d is the sum of the self-consistent single-particle energies, i.e.,
~ = ~(P, )+~(p.)+~(P,),

and the operator I' is the solution of the integral equation

(6)

E((u) = G((u)X —G((u) —G((d)X —F((u) .
e e

The operators G(cu), Q, and e are defined by

QC(q„q3; q.) =
O(q. , q.; q.)

0 otherwise,
(6)
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e0(~„~„~,) = k(e, )+e(e,)+ ~(V, ) —~J 0(V„V„e,),

&~,', ~,'; ~' IG(~&1~3; ~., ~i &
= &(el - q) &~,', ~llG(~ -e(&)) l~., ~&,

where G is the two-body reaction matrix. The operator I is related to the operator 8; of Ref. 4 by

&~„~„I.l~lp. ,p„p,&=&~„~.; I3I+(I+&&Ip;,p., p, &.

(9)

(10)

The numerical procedures for solving Eg. (7)
and evaluating the expression (5) were first de-
veloped for the Reid soft-core potential and will
be described elsewhere in detail. The main fea-
tures of the approximation are as follows.

Momenta above the Fermi level are cut off at
8 fm '. We verified that the results are insensi-
tive to this cutoff by increasing it to 12 fm '.
Values of the orbital angular momentum I. of the

spectator are restricted to L, & 2. The decrease
of the contributions for I.=O, 1, 2 indicates that
cutoff creates an error of, at most, a few per-
cent. The angle-average approximation was used
for the projection operator Q. In order to keep
the size of the linear system manageable, we re-
duced the rank of the two-body reaction matrices
by truncating the spectral representation of the
operator

-10
G = g,e IP» 8&PI e, (12)
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FIG. 1. Saturation curves for potentials Nos. 1 and 10
of I. The dashed curves are the same as in I. The solid
curves include the three-body-correlation corrections.

where (P& and A8 are the eigenvalues and eigen-
vectors of the operator (1/e)G(1/e). In case No.
1, we retained the largest positive and the two
largest negative eigenvalues in this sum. In case
No. 10, one repulsive and three attractive eigen-
values were retained. The approximation was
tested both by comparing the truncated sum with
the full matrix and by sample calculations for in-
creased rank.

The results of the calculation are given in Fig.
1. The dashed curves are the same as in I; the
solid curves include the three-body corrections.
The corrections increase rapidly with the density
and the defect integral. ' They alter both satura-
tion curves in the same direction. We see that
the large difference in binding energies computed
from different phase-shift-equivalent potentials
is not reduced by the inclusion of the three-body
term.
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