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Effects of Two-Step Processes on the Ca(t, d) and (d, p) Ca(2, 2.02 Mev) Reactions*
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An investigation is made of the effects of two-step processes on both the (t, d) and (d, p) re-
actions on Ca, leading to the 2 2.02-MeV state in 4 Ca. The particular process considered
is that in which the 3 collective state in Ca is excited first and then the stripping follows.
The effects were found weak for both the (t,d) and (d, p) reactions.

The purpose of the present article is to discuss
the effects of multistep processes in the (t, d) and

(d, P) reactions on "Ca, leading to the —,
' 2.02-

MeV state of "Ca. Using analyses based on the
distorted-wave Born approximation (DWBA}, the
reactions were studied by many authors, "who ex-
tracted a spectroscopic factor for the neutron cap-
tured into the d„, orbit. With the usual separation-
energy prescription to obtain the bound-neutron
form factor, this spectroscopic factor was found
to be about 0.06, implying that the "Ca ground
state has -24/(/ admixture of a core excitation am-
plitude of the d„, ' f»2' type config-uration. This
is a significant departure from the closed-shell
configuration.

It was found later, however, that if use is made
of other prescriptions to obtain the form factor,
quite different values are obtained for the spectro-
scopic factor. Actually, Philpott, Pinkston, and
Satchler (PPS)' obtained form factors by solving
an inhomogeneous equation instead of the homoge-
neous one that appears in the usual separation-en-
ergy method. The spectroscopic factor obtained
in this way was found to be at least twice as large
as 0.06 and, moreover, very sensitive to the par-
ticular type of two-body interaction which was
needed in deriving the inhomogeneous term of the
equation. '4 The use of the inhomogeneous equa-
tion certainly improves the degree of approxima-
tion in calculating the form factor, at least in
principle, but the result's sensitivity to the two-
body interaction makes it difficult to determine
the spectroscopic factor unambiguously.

Besides this problem of the ambiguous form fac-
tor, it was suggested in Ref. 2 that a two-step pro-
cess, in which the 3 collective state of "Ca is ex-
cited first and then the stripping takes place, may
play an important role, and thus, that it is quite
desirable to make an estimate of this effect before
any further elaboration is made in the DWBA anal-
ysis. In the present article we make such an esti-
mate based on the coupled-channel Born app'roxi-
mation (CCBA}.'

The form factor for a specified set of transferred
orbital, spin, and total angular momentum, t,sj,
may be written as'

F„/(r) =N0B„,f„/(r). .

In (1), N, is the over-all normalization constant
Iwe use the values N, ' =1.5x 3.3'11x10' MeV'fm'
for the (t, d) reaction' and 1.98 x10' MeV' fm' for
the (d, p) reaction, ' respectively], while B„,is
the spectroscopic amplitude given by

13/ (2f + I )1/2f
where

l 4,.& and l 4'z& are the initial- and final-
state wave functions between which the stripping
process takes place, and a~» is the neutron crea-
tion operator in the single-particle state jL. Fi-
nally in (1), f„/(r) is the normalized radial part
of the captured-neutron wave function, and we
evaluate it by using the usual separation-energy
method. Since our main interest lies in the rela-
tive importance of the two-step process compared
with the one-step process, we want to avoid any
complication in obtaining the form factor.

In order to calculate the factor B (w1/e omit the
suffix s, since in our present analysis s = —,

' always)
for the stripping processes, we assume the follow-
ing wave functions for the "Ca ground and "Ca —,

'
states, respectively:

+ ~, l[(d„,) '„=,.8 (f„.)'„=,.]„=..&,

(3a}

l 'Ca, —', T = 2) =
l d„, 'CI "Ca g.s.&

I ll 3/2 (fT/2) T J=10&

t 2l d3/2 (P3/2} T J=10& 1

(3b)

where
l
0'& describes the doubly-closed-shell core.

The actual values we use for the amplitudes are:
a, = 0.89, n, = 0.46, P, = 0.93, and L3, = 0.20. This
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means that the "Ca ground-state wave function is
the same as that used by PPS, 4 while the ground-
state wave function of "Ca is that of a d3/p hole
coupled to the "Ca ground state. The "Ca ground-
state wave function is taken from Kuo and Brown. "
The use of these wave functions leads us to

B„=,'c/P, -=0.21. (4)

Of course it is understood that jL=d3/p.
To evaluate B„.for the 3 ——, stripping process,

we assume that the 3 wave function of "Ca con-
sists of p-h (particle-hole) states of (d», ' f», )
and (d„, p», ) configurations with a fifty-fifty
mixture:

I"Ca, 3 &=y, ld3/Q f/p& yp 3/Q p3/p&,
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FIG. 1. Cross sections for the reaction Ca(t, d)-
'Ca(~, 2.02 MeV) for E, =20 MeV. Experimental data

were taken from Ref. 2, while the solid and dotted lines
represent theoretical CCBA and DWBA cross sections,
respectively. The optical-model parameters used were
also taken from Ref. 2, the type AS1 being chosen for
the triton potential.

with y, = -y, = -v —,
' .

The phases of the amplitudes were chosen such
that the two components contribute coherently to
the E3 transition from this 3 to the ground state,
and also that the amplitude of that E3 transition
(and thus the value of P, in the sense of Tamura's
work") becomes positive. In the later CCBA cal-
culations, we use p3 =0.36, a value obtained from
the analysis of inelastic scattering data. "

With the wave functions (3b) and (5), the second
step of our two-step process occurs as a captur-
ing of a neutron into either the f„,or the p», or-
bit. The Is) j corresponding to these capturing pro-
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FIG. 2. Cross sections for the reaction OCa(d, p)-
Ca(g, 2.02 MeV) for E~=7 MeU. The data were taken

from Ref. 1, and the solid and dotted lines are 2.7 times
the theoretical CCBA and DWBA cross sections, respec-
tively. The optical parameters were taken from Ref. 4.
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FIG. 3. Same as the caption of Fig. 2 except that E~
=12 MeV, the data were taken from Ref, 13, the optical
parameters from Ref. 4, and the dot-dash line repre-
sents the CCBA result obtained with the assumption of
a pure two-step process. In the figure the CCBA and
DWBA cross sections have not been scaled.
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cesses are given as

7 1/2

4 2j+1

0 31~ l' 1 (I f»p)

-0.091, i =2 (l, =p», ).
(6)

Using these B„, CCBA (t, d) calculations were
performed for the incident energy E, =20 MeV, the
same as used in Ref. 2, and the results are com-
pared in Fig. 1 with DWBA calculations, as well
as with experiments. As is seen, the effect of the
two-step process is rather small; the CCBA cross
section is only slightly smaller, e.g. by 5-10%,
than the DWBA cross section.

In order to see whether this conclusion might be
changed if a different wave function is assumed for
the 3 state, we made a similar calculation as-
suming that the 3 state consists entirely of the

(d», 'P», ) configuration. This means putting B„
of (6) equal to zero for f„, and multiplying it by
u 2 for p„,. The change in B„values wa. s thus
rather large, but the resulting change in the CCBA
cross section was found to be very small —less
than 2/p.

Such CCBA calculations were also made for (d, p)
reactions at E, =7 and 12 MeV, where experimen-
tal data are available, ' "and the results are given
in Figs. 2 and 3, respectively. The corresponding
DWBA results, as well as experimental cross sec-
tions, are also given there. As is seen, the CCBA
results for both energies differ only very slightly
( 20%) from the DWBA results for angles between
20 and 40'. However, at larger angles the differ-
ence becomes larger, the CCBA cross section be-
ing nearly twice as large as the DWBA cross sec-
tion and at the same time fitting the experiment
somewhat better. "

In Fig. 3 another CCBA result (dot-dash curve)
is also given which was obtained by assuming that

there is no d„, hole in the ground state of "Ca,
and thus only the two-step process is contributing
the excitation of the ~ state of 4'Ca. As is seen,
the angular distribution thus obtained agrees rath-
er nicely with experiment for angles larger than
40'. However, the magnitude is about 3 times too
small, and, further, the angular distribution dif-
fers significantly from experiment at smaller an-
gles. It is thus seen that the pure two-step pro-
cess is very unlikely to explain the experimental
cross section completely. However, the flatness
of the pure two-step cross section allows us to un-
derstand why the CCBA result, with a nonvanish-
ing one-step contribution, is flatter than the
DWBA result.

From these calculations we may draw the follow-
ing conclusions. First of all, as far as the (t, d)
reaction at E, =20 MeV is concerned, the two-step
process may safely be ignored. As for the (d, p)
processes with E, = 7 and 12 MeV, it is advisable
to use the CCBA if one intends to fit the full angu-
lar distribution. However, if one intends to ex-
tract the spectroscopic factor by fitting the angu-
lar distribution only around the first maximum,
the DWBA is sufficient. In other words, problems
such as the ambiguities in the choice of the form
factors' can be discussed and should be solved
within the usual framework of the DWBA. The fail-
ure to fit the data assuming a pure two-step pro-
cess shows that the original conclusion, that there
must be a sizable amplitude of the d„, hole in the
ground state of ' Ca, is unchanged, even when the
calculation is extended from the DWBA to the
CCBA.

We are indebted to Dr. G. R. Satchler for useful
discussions and communications. We thank Pro-
fessor K. K. Seth for making available to us un-
published data which we quoted in the text. We
also thank Professor W. R. Coker for careful read-
ing of the manuscript.
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Microscopic expressions are obtained for the coefficients in the angular momentum expan-
sion Ez =a2(&I) +a4(&I) + ~ ~ ~ of the energies of quasirotational members of quadrupole vibra-
tional bands. Some limitations on the applicability of perturbation treatments of anharmonic
corrections to the random-phase approximation are noted.

Recently, several workers have independently
obtained explicit expressions for static quadrupole
moments of vibrational states of nuclei assumed
to have spherical ground states (in the Hartree-
Bogoliubov sense). ' ' Despite the wide variety of
formal techniques, the expressions are entirely
equivalent for a given choice of residual interac-
tion. As previously shown by the authors, ~' this
value of the quadrupole moment may be regarded
as arising from the lowest-order perturbation
treatment of anharmonic corrections to the har-
monic or random-phase approximation (RPA) as
provided by the Beliaev-Zelevinsky (BZ) boson
expansion. ' Included are not only effects of
collective bosons but also all relevant couplings
of the collective states to quasiparticle excita-
tions. The purpose of this note is to briefly dis-
cuss some problems with perturbation treatments
of nuclear anharmonicities previously hinted at. '
We emphasize one difficulty, but also remove
another ostensible one.

The problems are most easily seen using the
semiclassical technique of either Meyer' or of the
authors, ~ ' the relation being as follows. Meyer
solves the nonlinear time-dependent Hartree-Fock
(or, more generally, Hartree-Bogoliubov) equa-
tions of motion perturbatively, obtaining the den-
sity matrix as a multiply periodic series. Be-
cause of the degeneracy of a vibrational mode car-
rying nonzero angular momentum, one can find
superpositions corresponding to simply periodic
motion; in particular, rotations with constant an-
gular velocity about some axis. ' Such solutions
are most conveniently studied as stationary ones
by transforming to a rotating frame, and this just

z, =a~, (.'f)+a, (,'I)'+ o-(f3)+ ~ ~-~,

and likewise for the static quadrupole moments:

(SR(E2, 0)) =q(il)+O(12}+ (2)

where ken, is the RPA energy and q is the afore-
mentioned value of the quadrupole moment of the
2+ state. Perturbation theory applied to the an-
harmonicities in the BZ method also generates the
forms (1) and (2), but ones in which each coeffi-
cient is an expansion in powers of the boson-ex-
pansion parameter. ' It is important to note that
the semiclassical expansion picks up the leading
term in each coefficient, i.e., the only error lies
in dropping small quantum-fluctuation terms [of
order (2j+1) '].

There are two problems with (1}and (2) and re-
lated expansions, which concern us here. First,
the coefficients beyond the lowest order are given
by microscopic expressions having poles where a
two-quasiparticle excitation energy is an integral
multiple of h~, . Second, if the usual Hartree-

gives the cranking model for spherical nuclei used
by the authors. In both approaches, the concern
has been with the "stretched quasirotational sub-
space, " i.e., the set of levels having maximum an-
gular momentum for a given number of phonons.
For definiteness, we shall limit ourselves to quad-
rupole phonons, although everything applies to
vibrations of any multipolarity.

Both methods give for the energies of the quad-
rupole quasirotational band an expansion in powers
of the angular momentum I:


