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The statistic A(n), previously defined for the purpose of comparing empirical distributions
of energy-level spacings with theoretical distributions, is applied to the recently published
series of neutron-capture levels observed in the even-A erbium isotopes. When the empiri-
cal values of A(n) in the energy range of the highest experimental resolution were averaged
over all possible sets of n successive spacings, the resulting value A*(n) is found to de-
crease sharply with increasing values of n, This decrease is consistent with that of the ex-
pectation value (A(n)) calculated for Wigner's Gaussian orthogonal ensemble of real symmet-
ric matrices.

I. INTRODUCTION

This study is a continuation of a previous effort'
to analyze empirical spacing distributions of nu-
clear energy levels in terms of Wigner's Gaussian
orthogonal ensemble (GOE) by means of the A sta-
tistic introduced in Ref. 1. We were prompted to
look into the matter again by the appearance of
data of superior quality, namely the neutron-cap-
ture levels observed in the erbium isotopes by the
Columbia University group' at the Nevis synchro-
cyclotron.

Although quantitative tests of Wigner's random-
matrix model' ' are still very limited in number,
the situation is appreciably better than it was two
years ago. The same erbium data, and other data'
as well, have been subjected to a variety of tests
including the Dyson-Mehta' ~ statistic and the
Dyson F statistic. ' These quantitative tests are
particularly timely in view of the studies in which
refinements of the statistical model arising from
the Pauli principle and assumptions about the two-
body nature of the nuclear force are being inves-
tigated. ' ' It is hoped that studies such as this one
and the others referred to above might reveal any
systematic deviations from the simplest form of
the random-matrix model.

In Sec. II some theoretical properties of the A

statistic are summarized and a new expression
for A(n) has been derived. This expression is
particularly useful for computing the empirical
values of A(n} as a function of n for a set of mea-
sured energy values. In Sec. III the empirical
values of A(n) obtained from the s-wave resonances
observed in the even-A isotopes of erbium are

compared with the expectation values of A(n) in
Wigner's Gaussian orthogonal ensemble. Mis-
cellaneous concluding remarks are contained in
Sec. IV.

II. THEORETICAL PROPER fIES OF A(n)

A. Definitions and Analytical Properties

A(t„ t„.. . , t„)=n t [F*(x,n) -F(x)]~dx. (2.1}
0

Qur analysis will be based on the assumption that
the relevant F(x) is the single spa, cing distribution
implied by the GOE, namely the Gaudin-Mehta'
distribution. However, throughout this work we
shall use the simple Wigner' ' distribution

F(x) =1 —e" (2.2)

which is an excellent approximation to F(x} An.
exact form for A(t„ f„.. . , f„)=—A(n) which is con-
venient both for computing the empirical values

The reader is referred to Ref. 1, hereafter re-
ferred to as I, for a more complete discussion of
the terminology than will be given here. The values
of successive level spacings s,. divided by the mean
value D will be denoted by t, = s, /D (i = 1, 2, . . . , n)
Let F*(x; n) denote the cumulative distribution of
the n observed spacings t, and let F(x) denote the
expectation value of F~(x; n) in the GOE. The A

statistic measures the deviation of the empirical
F* from the theoretical expectation F and is de-
fined by the expression
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and for theoretical work is

A(n) = —Q t, +—Q min(t„ t, )
1 2

g&f

tg Oo- 2g ~t [1 —F(x)]dx+ n [1 F(-x)]'dx,
40 0

(2.3)
where

x if x&y
min(x, y) =

y if y&x.

From Eqs. (2.1}and (2.3}it is clear that A(n} is a
positive symmetric function of the variables t, (i
=1, 2, . . . , I). Keeping n fixed, A(s) has a unique
minimum for the set of spacings

(2.4)

The corresponding value of the minimum, plotted
as a function of n, is shown as curve (d) in Fig. 1.
Actually, of course, the values of A(n) have a

0.4

meaning only for integral values of n, and the
result is presented as a continuous curve merely
as an aid to visualization.

B. Statistical Properties of A(n)

Some statistical properties of A(n) were re-
ported in I. For the most part these were ob-
tained with the help of a Monte Carlo calculation
on the basis of the GOE. The most important
results are recapitulated in the form of several
curves shown in Fig. 1. Curve (b) is a plot of the
expectation value of A(n) in the GOE as a function
of n. It should be noted that curve (b) is actually
a smoothed version of the Monte Carlo results.
(For more details, see the discussion pertaining
to Fig. 1 of 1.) The broken line (c) similarly
marks the most probable value of A(n) in the GOE.

On the other hand, curve (a} is not based on the
GOE. It is a plot of the exact expectation value
of A(n) based on the assumption that successive
spacings are statistically independent but follow
the Wigner distribution. Thus, the appreciable
difference between curves (a) and (b) is the direct
consequence of the correlations between the spac-
ings that are implied by the GOE.

In Sec. III we shall examine the degree to which
the A(n) for the erbium data exhibits the n depen-
dence that is predicted by the GOE.
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III. ANALYSIS OF NEUTRON&APTURE
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FIG. 1. Plots illustrating various theoretical proper-
ties of A(n) as a function of n: (a) expectation value
(A(n)) vs n on the assumption thatn successive spacings
are statistically independent and follow the Wigner distri-
bution; (b) (A(n)) vs n on the assumption that the statis-
tics of n successive spacings are determined by the GOE;
(c) estimate of the most probable value of A(n) in the
GOE; (d) the n dependence of the smallest possible val-
ue of A(n), obtained by substituting the values of t& given
by formula (2.4) into expression (2.3).

A. Empirical Values of A(n)

The experimental data on which the discussion
is based were taken from the recently published
work of the Columbia group. ' We refer the reader
to Ref. 2 for a description of the experiment, quo-
tation of results, and analyses of the data. Some
of these analyses, it should be noted, serve the
same purpose as our present considerations,
namely, to ascertain whether or not the series
of s-wave resonances observed in targets of the
separated isotopes '~Er, "'Er, and '"Er are in
agreement with some of the predictions of the
GOE.

To begin with, the empirical values of A(n) were
computed by means of expression (2.3) for the sets
of successive spacings ty t2 . , t„, with n
=1, 2, . . . . It should be recalled that t, = (E, —E,)/D,
f, =(E, -E,)/D, etc. , where E„E„.. . represent
the successive resonant energies reported in Ref.
2 with El denoting the value of the loosest energy
level. The value of D used in the computation of
A(s) is the one that is cited by the authors of Ref.
2. Values of A(n) were obtained, as described,
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for the three isotopes and are plotted as the solid
circles in the left halves of Figs. 2-4. The follow-
ing comments apply to all three cases: (1) The
solid circles lie, generally speaking, within 1
standard deviation o(A(n)) of the mean value (A(n))
obtained from the GOE up to a certain value n = no.
The values of n, are approximately 109, 49, and
31 for '"Er, '"Er, and '"Er, respectively. Al-
though the scatter of the points about the mean is
fairly large, it is nevertheless clear that the em-
pirical values are in disagreement with curves (a)
and (d) but may be compatible with curve (b),
which is based on the GOE. (2) For n & n„ the em-
pirical values of A(n) rise steeply and monotoni-
cally to very large (off-scale) values with increas-
ing values of n. This behavior is a result of the
systematic deterioration of the experimental reso-
lution with increasing energy. The value of n„
beyond which there is a marked deterioration of
the quality of the data, agrees with the conclusions
reached by the authors of Ref. 2 by other means.

B. Averaging with Respect to all Sets
of n Successive Spacings

The values of A(n) plotted in the left halves of
Figs. 2-4 are based on the n successive spacings
(n = 1, 2, . . . ) that are formed from the n+1 en-
ergy levels beginning with the resonance observed
at Lowest energy. Clearly the analysis of Sec.
III A did not make full use of the available data,

since there exist many other sets of n successive
spacings based on the second, thi~d, etc. , Lowest
energy levels. If altogether N successive energy
levels are observed (with a reasonably good pre-
sumption that very few, if any, levels have been
missed and very few, if any, spurious levels have
been included) there will be N l-nearest-neighbor
energy-level spacings and N-n distinct sets of n
successive spacings. These N- n sets may be
used to define A*(n), the average value of A(n),
by means of the relation

(3 1)

where

Aq(n) =A(tg+gi tg+2t ~ ~ ~ t a+n) y

k=0, 1, . . . , N n —1. (3.-2)

In this notation A, (n) is the Iluantity that is plotted
in the left halves of Figs. 2-4.

The average values A*(n) for the three targets
'"Er, '"Er, and '"Er are plotted as solid circles
on the right halves of Figs. 2-4, respectively. In
carrying out the averaging, the lowest N= no levels
of each spectrum were used, i.e., the averaging
was confined to the levels lying in the energy in-
terval of highest experimental resolution (as ex-
plained in Sec. III A). The following conclusion
applies to all three cases. The empirically ob-
served variation of A*(n) is definitely in disagree-
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FIG. 4. Plots iQustrating the application of the A statistic to the s-wave resonance observed in ~~ Er. The plots have
the same meaning as in Fig. 2. The values of A~(n) plotted in the right half are based on the lowest 31 resonance ener-
gies and the value D = 149.0 eV reported in Ref. 2.
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which are somewhat greater than Do. The differ-
ence D, -D, decreases and the minima become
sharper with increasing values of n. It would
seem that, for sufficiently large values of n, the
value of D for which A*(n) is minimized may ap-
proach the arithmetic mean. However, a detailed
theory is lacking

IV. CONCLUDING REMARKS

In order to appreciate the implications of the
preceding results, it must be realized that all
three sets of spacings leading, respectively, to
curves (a}, (b), and (d) of Figs. 1-4 follow the
Wigner probability distribution of spacings, Eq.
(2.2). The three sets of spacings differ, however,
in the distribution of the quantity A(n) that mea-
sures the deviation of the empirical distribution
of n successive spacings from the Wigner distri-
bution. As may be seen by comparing curves (a)
and (b}, the correlations between successive spac-
ings implied by the GOE result in a significant re-
duction in the values of A(n}.

The considerations contained in this work would
be rendered more precise by a reliable calcula-
tion of the standard deviation of A*(n) in the GOE.

Such a calculation could have been carried out as
part of the Monte Carlo calculations reported in I,
but unfortunately the introduction of the averaged
quantity A*(n} was not forseen at that time.

Within the limits of our analysis, as noted above,
the data for ' 'Er, ' 'Er, and ' Er seem to be
compatible with the GOE. Needless to say, analy-
ses such as ours cannot establish the validity of a
particular statistical model beyond doubt; at best
it is possible to eliminate theories, for example
the models leading to curves (a) and (d) of Figs.
1-4. On the other hand, the two-body matrix
ensembles studied by French and Wong' and by
Bohigas and Flores' cannot be evaluated from our
analyses, because the statistical properties of
A(n} have not yet been calculated within the frame-
work of these models.
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