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On the basis of the macroscopic-microscopic method we have performed a new calculation
of the nuclear potential energy of deformation for heavy and superheavy nuclei. Our primary
emphasis has been to develop techniques that permit more accurate extrapolations both to the
large deformations encountered in fission and heavy-ion reactions and to new regions of nu-
clei. With this purpose in mind, we specify the nuclear shape with five degrees of freedom,
in terms of smoothly joined portions of three quadratic surfaces of revolution (e.g., two
spheroids connected by a hyperboloidal neck). The single-particle potential is obtained by
folding a Yukawa function with a uniform sharp-surface generating potential of appropriate
shape. The parameters describing the potential are obtained from statistical (Thomas-Fer-
mi) calculations that reproduce correctly the average trends throughout the Periodic Table
of a variety of nuclear properties. To solve the Schrdinger equation for the single-particle
energies and wave functions, we have used mainly an expansion of the wave function in a set
of deformed harmonic-oscillator basis functions, but have also investigated a finite-differ-
ence method, Shell and pairing corrections are calculated from the single-particle energies
by means of the methods developed by Strutinsky and added to the surface and Coulomb ener-
gies of the liquid-drop model to obtain the total potential energy of deformation.

This approach is found to reproduce reasonably well the over-all trends of experimental
fission-barrier heights of nuclei ranging from rare earths to actinides. The calculated fis-
sion barriers of actinide nuclei contain two peaks separated by a secondary minimum. The
over-all variation in the relative heights of the two peaks agrees with experimental results,
but the calculated first peak is somewhat low for thorium isotopes and somewhat high for cu-
rium isotopes. For the actinides the first saddle point is found to be symmetric in shape and
the second saddle point asymmetric. The highest saddle point is asymmetric for 226Ra and
10py and symmetric for #80s. The fission barriers of superheavy nuclei near 28114 are
even higher than previously supposed. With respect to spontaneous fission, the island of su-
perheavy nuclei is a mountain ridge extending from 114 protons to about 124 protons. The de-
scent from the mountain down to the sea of instability is rather gentle for decreasing neutron
numbers below 184, but is more rapid on the other three sides.

I. INTRODUCTION numerous calculations have already been carried

out 3=74

Over the years, considerable effort has been de-
voted to calculating the potential energy of a nucle-
us as a function of its neutron and proton num-
bers and its shape. The over-all trends of the nu-
clear potential energy are described quantitative-
ly by the liquid-drop model, but there are regular
deviations from the liquid-drop energy. The most
striking deviation is associated with shell effects:
Closed-shell nuclei are more tightly bound than
an “average” nucleus, while midshell nuclei are
less tightly bound. The second most important de-
viation is associated with nuclear pairing, which
also leads to increased binding in some nuclei rela-
tive to others. These shell and pairing correc-
tions to the liquid-drop energy are both examples
of single-particle effects, and arise because of
fluctuations in the actual distribution of single-par-
ticle levels in the nucleus relative to a smooth dis-
tribution of levels. Recently, quantitative theories
of these corrections have been proposed,™? and

(K3,

Single-particle effects are responsible for many
familiar and important phenomena. These include
the occurrence of deformed rather than spherical
ground-state shapes for midshell nuclei, and the
occurrence of secondary minima in the fission
barriers of some actinide nuclei. These second-
ary minima may be responsible for the recently
discovered fission isomers and intermediate struc-
ture in fission cross sections. Also, the division
of heavy nuclei at low excitation energies into frag-
ments of unequal mass is believed to be caused by
single-particle effects. Finally, the possibility
that there may exist an island of relatively stable
superheavy nuclei near 114 protons and 184 neu-
trons is due to the extra stability arising from
shell closures in that region.

Of course, the most fundamental approach for
calculating the nuclear potential energy would be
to start with a nucleon-nucleon interaction and
solve the resulting many-body equations in some
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approximation. However, such fundamental ap-
proaches have not yet achieved the accuracy of a
two-part approach based on adding shell and pair-
ing corrections to the liquid-drop energy. (We
omit throughout the paper bibliographic citations
to work based on more fundamental self-consistent
approaches.) In the macroscopic-microscopic
method,'~" which we use here, the total nuclear
potential energy E is given by

E(N,Z,shape)=E N, Z, shape) + AE (N, Z,, shape)
+AE (N, Z, shape), 1)

that is, by the sum of a liquid-drop energy E4, a
shell correction AE ., and a pairing correction
AE .. The liquid-drop term gives the smooth
trends of the potential energy, while the shell and
pairing corrections, which are calculated from
single-particle energies, give the fluctuations
about the smooth trends.

In addition to the polential energy given by Eq.
(1), a complete theory of phenomena associated
with shape changes would of course also require
that the kinetic energy be known. However, we
limit our discussion here to the potential energy.

The basic problem we consider is the computa-
tion of the nuclear potential energy as a function of
shapes appropriate to nuclei undergoing fission,
such as the shapes illustrated in Fig. 1. Figure 2
shows the general dependence of the potential en-
ergy on such shapes for a heavy nucleus like 2*°Pu,
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FIG. 1. Nuclear shapes involved in fission.

The smooth trends of the curve are described by
the liquid-drop term E.4, and the small wiggles
by the shell and pairing corrections AE,. and AE .

In addition to fission, the techniques developed
here are also applicable to calculating the poten-
tial energy for shapes involved in the collision of
two heavy ions, such as in attempts to produce su-
perheavy nuclei. However, we do not present here
any results concerning heavy-ion reactions.

In calculating the nuclear potential energy, we
take the liquid-drop part from previous work.* 73
Since the shell and pairing corrections depend
upon the single-particle levels near the Fermi sur-
face, our main emphasis is on the accurate calcu-
lation of these levels for large deformations and
in new regions of nuclei.

The procedure for determining the single-par-
ticle levels in general consists of three steps: (1)
specifying the over-all geometrical shape of the
nucleus, (2) generating single-neutron and single-
proton potentials related to this shape, and (3)
solving the Schrédinger equation with these poten-
tials for the single-particle levels. Various as-
pects of these steps have recently been considered
by several groups,??~7%76-95

In our work, we have tried at each step to devel-
op from the outset techniques suited to large de-
formations and to new regions of nuclei. With this
goal in mind, we have proceeded as follows:

(1) To describe adequately the deformed shapes of
interest in fission and in heavy-ion reactions, we
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FIG. 2. Dependence of potential energy on deformation
in the fission degree of freedom.
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specify the nuclear shape with five degrees of free-
dom, in terms of smoothly joined portions of three
quadratic surfaces of revolution (e.g., two spher-
oids connected by a hyperboloidal neck).™

(2) To obtain a single-particle potential that is
everywhere related physically to the given shape,
we fold a Yukawa function with a uniform sharp-
surface generating potential of appropriate
shape.%?~7®91-%5 The parameters of the potential
are obtained from statistical (Thomas-Fermi) cal-
culations that reproduce correctly average trends
throughout the Periodic Table of such nuclear prop-
erties as total binding energy, saturation density,
and surface diffuseness.®®

(3) To solve the Schridinger equation for the sin-
gle-particle energies we have used both an expan-
sion of the wave function in a set of deformed har-
monic-oscillator wave functions!” 2?2 8%9%91 apq a]s0
a finite-difference method.®»%*°® We had initially
thought that the finite-difference method would be
preferable for very large deformations, but this
turned out not to be the case. We have therefore
used the expansion method for most of our calcula-
tions.

Once the single-particle levels have been com-
puted for both neutrons and protons at a given de-
formation, the shell and pairing corrections are
calculated from them by means of the methods
suggested by Strutinsky.”~’® The total potential en-
ergy is then given by the sum of the liquid-drop
energy and the shell and pairing corrections.

As an outline of what is to follow, we discuss the
description of nuclear shapes in Sec. II, the gen-
eration of the single-particle potential in Sec. III,
and the calculation of the single-particle energies
and wave functions in Sec. IV. The various terms
in the potential energy of deformation are de-
scribed in Sec. V. Section VI contains the fission
barriers for heavy and superheavy nuclei that have
been calculated thus far with this approach. Sec-
tion VII summarizes and concludes this initial por-
tion of our study.

II. NUCLEAR SHAPES

A general theory of the shape dependence of the
nuclear Hamiltonian should be capable of discuss-
ing within the same framework the related areas
of fission, nuclear ground-state masses and de-
formations, and heavy-ion reactions. In fission it
is necessary to be able to describe in a continuous
way the sequence of shapes of a fissioning nucleus
from its ground state, through its saddle and scis-
sion configurations, to the separated fragments at
infinity, including asymmetric shapes (see again
Fig. 1). In a study of ground-state shapes one
must be able to describe a sphere, oblate and pro-
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late spheroids, octupole deformations, and posi-
tive and negative hexadecapole deformations. In
the fusion of two heavy ions it is necessary in addi-
tion to be able to describe configurations such as
two tangent spherical nuclei. In all cases, the co-
ordinates used to describe the nuclear shapes
should be related to quantities of physical interest.
Since many phenomena of interest do not depend
sensitively upon deviations from axial symmetry,
we specialize immediately to shapes that are axi-
ally symmetric.

With the above in mind, we choose to consider
a total of five coordinates and specify the nuclear
shape in terms of smoothly joined portions of
three quadratic surfaces of revolution. (In differ-
ent terminology, the nuclear shape is defined in
terms of a second-degree spline function of revo-
lution). Figure 3 illustrates such a shape, formed
from two spheroids connected by a hyperboloidal
neck.” In terms of a cylindrical coordinate sys-
tem, the equation for the drop’s surface is written
explicitly as

a? - (alz/cxz)(z - l1)2 s
P? =1 @? - (a,%/c,*)z - L,
a® = (a?/c®)z - 1.,

As shown in Fig. 3, the quantity /; specifies the
position of the center of the ith quadratic surface,
c; its semisymmetry axis, and g, its transverse
semiaxis (i =1, 2, 3).

At this stage there are nine coordinates in the
specification of the nuclear shape. However, one
coordinate is eliminated by our assumption that
the volume remain constant, and two more by the
requirement that the middle surface join smoothly
with each of the two end surfaces (at the points de-
noted by z, and z,). This introduces three rela-
tionships between the original nine degrees of free-
dom, and reduces the number to six. Elimination
of the center-of-mass coordinate finally reduces

l,-c,szs2z,
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FIG. 3. Shape described by two spheroids connected
by a hyperboloidal neck.
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the number of shape coordinates to five. (In prac-
tice it is often better to retain the center-of-mass
coordinate at this point and eliminate it implicitly
later.)

Of these five coordinates, three describe sym-
metric deformations, and the remaining two asym-
metric deformations. The most important symmet-
ric coordinate is the over-all fission or separa-
tion coordinate, which describes the distortion of
the fissioning nucleus from its ground state,
through its saddle and scission configurations, to
the separated fragments at infinity. (The relevant
separation coordinate is somewhat different for the
the fusion of two heavy ions than for fission.) The
most important asymmetric coordinate is the
mass-asymmetry coordinate, which describes the
amount of mass in one side of the nucleus relative
to the other. The remaining coordinates describe
such quantities as the neck radius and the eccen-
tricities of the ends of the nucleus. (The actual
coordinates being used are defined in Ref. 75.)

The precise determination of the fission coordi-
nate would require performing a dynamical calcu-
lation. However, during the early stages of fis-
sion the symmetric-deformation coordinate y in-
troduced by Hill and Wheeler® provides a fair ap-
proximation to the fission coordinate. This coor-
dinate, which is the same as the coordinate ¢ used
by Swiatecki,®® is defined in terms of the saddle-
point shapes for an idealized uniformly charged
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FIG. 4. Shapes described by the symmetric-deforma-
tion coordinate y, and resulting equipotentials of the
folded Yukawa spin-independent nuclear potential V.
The equipotential curves shown are for 10, 30, 50, 70,
and 90% of the well depth V.

liquid drop; specifically, the saddle-point shape
corresponding to a given value of the fissility pa-
rameter x represents a deformation of

y=1-x.

Thus, as y ranges from 0 to 1, the sequence of
shapes ranges from a single sphere through sym-
metric dumbbell-like shapes to two tangent
spheres. For values of y between 0 and 0.4 these
deformations are illustrated in Fig. 4 by the
shapes on the left-hand side.®™%*%2 To first order,
y is related to the coordinates that describe pro-
late spheroidal and Legendre-polynomial P, dis-
tortions by

3/5 \Y?
y=tet-Ze =%a=;a2=7<5) 5~0.2708.

The advantage of the coordinate y over other
one-parameter fission coordinates is that it in-
cludes automatically the liquid-drop-model saddle-
point shape for all nuclei, which is fairly close to
the actual equilibrium configurations of interest.
However, it should be stressed that this coordi-
nate represents approximate distortions in the fis-
sion direction only for moderate values of y <0.4,
and we will be using it in this region only. (Aty
=0.437, which is the point where the derivatives
of the relative surface and Coulomb energies with
respect to y change sign,” the liquid-drop poten-
tial energy plotted vs y has a spurious equilibrium
configuration.”® For larger values of y this coor-
dinate therefore does not describe motion in the
fission direction.) Although most of the results
presented here are in terms of the coordinate y,
we have also considered other deformations, es-
pecially mass-asymmetric deformations.

It should be emphasized from the outset that the
present parametrization is deficient in two impor-
tant respects. First, it is not particularly well

Op— e
I

e S

208,
; —— Folded Yukawa
B Woods -Saxon

,506_4,4,,,,* e T_L;_I__.J, s
r o (fm)

FIG. 5. Comparison of folded Yukawa spin-independent
nuclear potential with Woods-Saxon potential for neu-
trons in a spherical 2%Pb nucleus.
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suited for describing small deviations from a
spherical or a spheroidal shape,’” which makes it
difficult to use in a detailed discussion of nuclear
ground-state masses and equilibrium deformations.
(For example, in order to describe positive hexa-
decapole or diamond-like deformations, one of the
coordinates of Ref. 75 must assume an imaginary
value, and the corresponding formulas must be
generalized. This has not yet been done, but is
planned for the near future.) Second, the parame-
trization is unable to describe shapes with more
than one neck or to describe division into more
than two bodies, which makes it impossible to dis-
cuss ternary fission.

III. SINGLE-PARTICLE POTENTIAL

A. General Features

Once the nuclear shape has been specified, the
next step is to generate single-neutron and single-
proton potentials related to that shape. If the pro-
cedure is to be useful in a general theory of fis-
sion, it must be capable of handling very deformed
shapes, and in particular the transition from one
original nucleus to {wo (or more) final fragments.

For the initial ground-state nucleus we know that
the nuclear spin-independent part of the single-
particle potential (for either neutrons or protons)
is roughly constant in the nuclear interior and
rises to zero in a small distance near the nuclear
surface. After fission has occurred, the potential
has similar features concentrated in each of the
separated fragments. This means that during the
intermediate stages the potential must remain
nearly constant in the interiors of the nascent frag-
ments and approach zero in the neck region. The
over-all geometrical shape of the potential is ex-
pected to change in roughly the same manner as
that of the nucleus.

To guarantee in a simple way that the potential
has these properties, we generate it by means of
the following two steps: (1) We start with a uni-
form sharp-surface “generating potential” whose
shape corresponds to the given nuclear shape. In
other words, the generating potential has the val-
ue -V, inside the specified surface and 0 outside.
(2) A potential with a diffuse surface is then ob-
tained by folding a Yukawa function over the sharp
generating potential. The Yukawa function is nor-
malized so that its volume integral is unity, and
its range is chosen to reproduce the desired sur-
face diffuseness in the final potential. In this way
the volume integral of the final potential remains
equal to that of the sharp generating potential.
This volume integral is assumed to remain con-
stant as the shape is changed.

(In our earlier publications,®”~"®92 we have de-

scribed this method of generating the potential in
terms of folding a Yukawa effective two-nucleon
interaction with a uniform sharp-surface “pseudo-
density” appropriate to the given shape. This ter-
minology unfortunately causes many people to try
to identify the pseudodensity with the true nuclear
density, and has therefore been abandoned.)

Figure 5 shows that for a spherical shape the po-
tential generated by this folding procedure is very
close to a Woods-Saxon potential.’”®° For a
spherical shape these two potentials are about
equally satisfactory, but for deformed shapes the
folded Yukawa potential generalizes in a more
natural way than does the Woods-Saxon potential.
With the folding procedure it is easy to generate
a potential for all the conceivable shapes of inter-
est in fission, including the transition at the scis-
sion point to a potential concentrated in each of
the two (or more) fission fragments. In this re-
spect our potential serves the same purpose as a
generalized two-center harmonic-oscillator poten-
tial,55-5%59-6583-88 gnq in addition is far more re-
alistic. As shown on the right-hand side of Fig. 4,
the folded Yukawa potentials for deformed shapes
are well behaved in the entire surface region; the
potentials remain well behaved even for shapes
with small or zero necks. This is to be compared
with the difficulties encountered in generalizing a
Woods-Saxon potential to shapes with small
necks,%°

Besides the spin-independent part of the poten-
tial, there is an additional potential arising from
the interaction between the nucleon spin and orbit-
al angular momentum. The simplest form for the
spin-orbit interaction that has the right symmetry
properties for deformed nuclei is G+ VV’XP,
where V' is any local spin-independent scalar func-
tion. In spherical nuclei this reduces to the famil-
iar 1+3 spin-orbit coupling. For V'’ we have used
the spin-independent potential described above.

Finally, protons feel an additional Coulomb in-
teraction; this is calculated by assuming that the
protons are distributed uniformly over the same
shape and volume as the generating potential.

B. Detailed Formulation

To be more specific, the complete potential felt
by a nucleon is given by

v =V1 +VSO +Vc.
The spin-independent nuclear part is

v, e-IT="/a

v, (F)= ki @)

“@md ), 7=
where V is the well depth felt by either a neutron
or a proton, and a is the range of the Yukawa fold-
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ing function. The integration is over the volume
of the shape, whose magnitude is kept fixed as the
shape is deformed. The volume integral of the po-
tential is given by

f V,(P)d% = -V, 4R ?,

where R, is the radius of the spherical sharp-sur-
face generating potential. This result is obtained
by substituting Eq. (2) for V,(¥) and interchanging
the order of integrations.

The spin-orbit term is

Vo(F)==X(r/2mc)?5 vV, XP/h,

where X is the spin-orbit interaction strength, and
m is the mass of either a neutron or a proton.
Finally, the Coulomb potential for protons is

V) =573 f —m 3)

These volume integrals are easily transformed
into surface integrals by use of Gauss’s diver-
gence theorem. Equations (2) and (3) become

V1(F)="4KT?'L[ - <1 +lr;ar—|>e-|’f-.;'l/a]d91 ,

and

V o(F) =; fr; fl’ 7 |2a9",
where dQ’ denotes an element of solid angle; the
integration is over the surface of the generating
potential., In practice we have evaluated these two-
dimensional integrals numerically by use of Gauss-
ian quadrature rules. (The result for the Coulomb
potential can be further reduced to a one-dimen-
sional integral whose integrand involves complete
elliptic integrals of the first and second kinds,” %"
but we have found it convenient to retain analogous
expressions for V, and V.)

For a spherical shape, the integrations in Egs.
(2) and (3) can be performed explicitly to give®* 9

V,(r)= -Vo[ - <1 +%Q>e"‘0/“§m] , TYSR,

r/a
==V, [&cosh&— s1nh—1-z-‘l]e—-rfi ¥=2R
a r/a’ 0
and
Velr)= %ZE—— [3 —(;—0)2} , <R,
=Z—:f-, Y¥=R,,

The potentials V| and V - generated in this way

are continuous in their values and first derivatives
at the surface of the generating potential, but are
discontinuous in their second and higher derivatives.

C. Parameters

The single-particle potentials generated by our
folding procedure contain a total of five parame-
ters: the neutron well depth V,, the proton well
depth V,, the radius R, of the spherical generating
potential, the Yukawa range @, and the spin-orbit
interaction strength A. (For both neutrons and
protons we use the same radius R, the same
range a, and the same spin-orbit strength 2A.)

We attempted originally to determine these pa-
rameters by calculating the single-particle ener-
gies for the four doubly-closed-shell nuclei, 2*Pb,
*8Ca, “°Ca, and '°0, and adjusting the parameters
to optimally reproduce the experimental single-
particle energies. However, these attempts sug-
gested that parameters obtained by adjusting to
single-particle levels cannot be extrapolated in a
physical way. This is because experimental sin-
gle-particle levels are influenced by many effects
not explicitly taken into account in a static single-
particle potential. In an attempt to compensate for
these effects, the available parameters adjust
themselves to values that differ from known experi-
mental information. For example, the neglect of
momentum dependence in the potential is partially
absorbed by the radius parameter taking on a val-
ue that is spuriously small for light nuclei and
large for heavy nuclei. Extrapolating a radius pa-
rameter obtained in this way to the region of su-
perheavy nuclei would then lead to a value that is
substantially larger than the expected value,

In addition, we are mainly interested in calcu-
lating the nuclear potential energy of deformation,
with applications to nuclear ground-state masses
and deformations, to fission barriers of heavy and
superheavy nuclei, and to heavy-ion reactions,
rather than in nuclear spectroscopy. It is there-
fore more consistent to use single-particle poten-
tials that are related to these quantities rather
than to experimental single-particle levels. Such
potentials (apart from the spin-orbit interaction)
have recently been determined by Myers on the
basis of statistical (Thomas-Fermi) calculations
that reproduce correctly the average trends
throughout the Periodic Table of a variety of nucle-
ar properties, such as total binding energy, satur-
ation density, and surface diffuseness.’® The use
of these potentials should allow the extrapolations
to large deformations and to new regions of nuclei
to be made with more confidence than with those
obtained by adjusting to single-particle levels.

The potentials determined by Myers are related
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by means of an effective two-nucleon force to the
macroscopic (liquid-drop) portion of the nuclear
energy. Therefore, the number of independent pa-
rameters should ultimately be reduced by taking
advantage of this relationship. However, the pa-
rameters describing the single-particle potential
have not yet been made completely consistent with
those describing the macroscopic part of the ener-
gy, and should therefore be regarded as indepen-
dent parameters at this stage.

We have decided to use the single-particle poten-
tials determined by Myers, but to increase slight-
ly the neutron and proton well depths to better re-
produce the over-all positions of the experimental
single-particle levels in 2°®Pb, Effects associated
with the presence of a small neutron skin are ne-
glected. The value of the spin-orbit interaction
strength is taken from the work of Blomqvist and
Wahlborn.®

In using the results of Myers, it is convenient
to compute first the auxiliary quantities

(N -2Z)/A+0.0112 2%/4%°
- 1+3.15/AY3 ’

|

0.147 _, 0.00248 272
= _Wi—+0'33062 +—-—A4/fz y

m|

and
R,=1.16 A'3(1 +€) fm;
the physical significance of these quantities is ex-

plained in Ref. 96. Then, the five single-particle
potential parameters are given by

V,=(52.5-48.75) MeV ,
V,=(52.5+48.756) MeV ,
R,=R,+0.82 fm - 0.56 fm®/R ,,
a=0.90 fm,

A=32.

For the benefit of those accustomed to working
with Woods-Saxon potentials, we comment that the
spherical half-value radius R,,, is related to the
radius R of the spherical generating potential by

Ry =Ro[1 - (a/Ro)2+' o],

Also, the diffuseness parameter a,g of a Woods-
Saxon potential having the same 10-90% surface
thickness is given by

4ws=4119

(In determining the value of ¢ from Myers’s re-
sults we have not used this relation, but have in-

stead minimized the square of the deviations be-
tween Myers’s Thomas-Fermi and our folded
Yukawa potentials for a semi-infinite distribution.)

IV. SINGLE-PARTICLE ENERGIES
AND WAVE FUNCTIONS

Once the potential appropriate to a given shape
has been generated, the next step is to solve the
two-dimensional Schrddinger equation for the sin-
gle-particle energies. There are two general
methods for doing this: expansion in basis func-
tions and finite-difference methods. We have
studied and implemented procedures based upon
each of these general methods.

We had originally thought that for very large de-
formations encountered in the later stages of fis-
sion and in heavy-ion reactions, expansion in a
limited set of basis functions would lead to large
truncation errors and that a finite-difference meth-
od would be preferable. We therefore implemented
an improved version of the implicit finite -differ-
ence method outlined by Dickmann.?"%%°% Although
the procedure works satisfactorily, it turns out
that for comparable accuracy in the single-parti-
cle energies the finite-difference method requires
approximately 25 times as much computing time
as the expansion method (for a general reflection-
asymmetric axially symmetric shape). We have
therefore used the latter method for most of our
calculations, including all of those reported here.

In our expansion method, the wave function is
expanded in a set of axially symmetric harmonic-
oscillator wave functions.'™?2% 859091 1 the for-
mulas of Ref. 22, the minus sign in Eq. (19), the
factor 3 in Eq. (42), and the square root in Eq.
(52) should all be deleted. In addition, Eqs. (52)
and (53) both need normalization constants, and
parentheses should be inserted around the combina-
tion A’ +A -1 in Eq. (55).] In calculating the ma-
trix elements, the single-particle potential V(p, z)
is first written as a sum of potentials separable in
p and z.°1%° The matrix elements are then calcu-
lated numerically by use of Gaussian-Laguerre
and Gaussian-Hermite quadrature rules. The ma-
trix elements of the spin-orbit interaction are
simplified by using relations between orthogonal
polynomials and partial integrations to eliminate
derivatives of the potential. For speed and flexi-
bility the matrices are diagonalized by the Givens-
Householder method.!°!

For a given shape the deformation of the basis
functions is chosen so that the ratio of axes of the
spheroid equals the ratio of the half length of the
shape to its maximum perpendicular radius (or
suitably defined generalizations for asymmetric
shapes). The over-all curvature of the basis func-
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tions'®? is chosen to yield Zw,=41 MeV/A'Y3, For
a given shape we include all basis functions that
have an energy less than or equal to (N, +3)iw,,
where N, denotes the equivalent number of quanta
used. [This procedure for determining which ba-
sis states are included is identical to that of Refs.
17 and 22, but differs from the traditional method
of using (deformed) basis functions corresponding
to a definite number of spherical shells,?% 9% %]
For single-particle potentials as smooth as our
folded Yukawa potential, the convergence of the
results as a function of N, is much faster than we
originally thought, even for large deformations.
For calculating the single-particle energies shown
later in Figs. T and 8, we have used N,=14, but
the remainder of the calculations have been per-
formed with N;=12, Some comments are made in
Appendix A on the numerical accuracy of the cal-

culated single-particle energies and wave functions.

For a spherical shape the Schridinger equation
reduces to one dimension, and its solution be-
comes much easier. For this case we have again
implemented both an expansion in a one-dimen-
sional spherical harmonic-oscillator basis and
also a standard explicit finite-difference method
(the so-called “shooting” method).% 193197 Ag in
the case of two dimensions, the expansion method
is several times as fast as the finite-difference
method for calculating the single-particle energies
with comparable accuracy.

V. POTENTIAL ENERGY OF DEFORMATION

As indicated in Eq. (1), the total potential energy
is given in the macroscopic-microscopic method
by the sum of the liquid-drop energy, the shell
correction, and the pairing correction. In this
section we discuss the calculation of these three
terms.

A. Liquid-Drop Contribution

For calculating the liquid-drop energy we adopt
the smooth part of the mass formula presented by
Myers and Swiatecki to the 1966 Lysekil confer-
ence.* The main reason for this choice is that the
ratio of the surface-energy constant to the Cou-
lomb-energy constant is more accurately deter-
mined than in other currently available mass for-
mulas. However, recent work by Pauli and Leder-
gerber?® suggests that for actinide nuclei this ratio
possibly should be about 2% smaller than the value
given by Myers and Swiatecki. Since this ratio af-
fects strongly the liquid-drop contribution to the
fission barrier, such a decrease would systemat-
ically lower our calculated barriers for actinide
nuclei by up to 1 MeV.

It is convenient to express the potential energy
relative to the energy of a sphevical liquid drop,

which is given by the results of Ref. 4. The two
shape-dependent terms that must be considered

in the liquid-drop model are the surface energy,
which teuds to hold the nucleus together, and the
Coulomb energy, which tends to pull it apart.

This portion of the liquid-drop energy can be writ-
ten as

E,4(N, Z, shape) ={[ B (shape) - 1]
+2x[B(shape) = 1]} E( |

where the relative surface and Coulomb energies
B; and B are functions only of the shape of the
nucleus. The dependence on neutron and proton
numbers is contained in the spherical surface en-
ergy E{? and the fissility parameter «x.

Since the nuclear surface is specified in terms
of portions of quadratic surfaces of revolution, the
relative surface energy B, can be expressed ex-
actly in terms of elementary transcendental func-
tions. However, the relative Coulomb energy B
can be reduced at most to a double integral (whose
integrand involves complete elliptic integrals of
the first and second kinds), which is evaluated
numerically by use of Gaussian quadrature rules.
The formulas used for computing B, and B are
given in Ref. 75.

When the constants of Ref. 4 are used, the sur-
face energy of the spherical drop is given by

- 2
E(® =17.9439 [1 -1.7826 (N—AZ> ]Am MeV .

The fissility parameter, which is defined as the
ratio of the Coulomb energy of a spherical sharp-
surface drop to twice the spherical surface en-
ergy,® % can then be written as

Z%/A

50.88[1—1.7826(% '

In the results reported here, higher-order terms
in the expression for the macroscopic energy, such
as compressibility and curvature effects,34: 108-113
are neglected. We plan to take account of such
effects in future calculations, when a consistent
set of nuclear mass-formula constants are avail-
able for specifying their magnitudes.

X =

B. Shell Correction

The shell correction arises because of fluctua-
tions in the actual distribution of single-particle
levels relative to a smooth distribution of levels.
It is calculated from the single-particle energies
at a given deformation by means of the method de-
veloped in 1966 by Strutinsky.? The basic idea
behind such a calculation was first discussed in
1963 by Swiatecki.!
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Because neutrons and protons independently fill
their own set of single-particle orbits, both the
shell correction and the pairing correction are
given as independent sums of a term for neutrons
and an analogous term for protons.

Strutinsky’s method for calculating the shell cor-
rection seems to work well in practice, but there
are still some difficulties justifying it from basic
principles. Several quasiderivations of the meth-
od!2 30, 114-116 and 3 number of different descrip-
tions?' 7~ have been given previously. Here we
would like to follow a somewhat different, but
equivalent, exposition that allows a more intuitive,
geometric interpretation of the method, as well as
establishes its relationship to some other propos-
als for calculating shell corrections. Our empha-
sis is on the single-particle energies'* *' * them-
selves rather than on the single-particle level
density.

We illustrate the method with the aid of Fig. 6.
For a spherical 2°°Pb nucleus the solid points give
the dependence of the calculated single-neutron
energies €, upon the single-particle number .
(Since we increase n by 1 for each particle, each
doubly degenerate state should in principle be

IO!'""" T T T S Sa e s g o —

or

Ai26)

€stair(n)

-20F

Single- particle energy e (MeV)

208py,

Spherical neutron levels

PP TN

I 126
-40

0 50 100 150 200 250 300
Single-particle number n

FIG. 6. Dependence of single-neutron energies upon
single-particle number for a spherical 2%Pb nucleus.
The discrete energies are shown by solid points and
define a “staircase” function €, (2). The smooth curve
€(n) removes the local fluctuations of the solid points,
but retains their long-range behavior; it is calculated
from Eq. (7) with p =6 and y=1.0/w,=41 MeV/A Y3,

The Fermi surface X of the smooth distribution of levels
is illustrated for 126 neutrons. The corresponding shell
correction is given by the difference between the areas
under the staircase curve and the smooth curve up to
n=126. Since the single-particle energies are calculat-
ed by use of a finite harmonic-oscillator basis (N,=12),
states of positive energy are also discrete; in this re-
gion the curves are drawn dashed.

plotted twice; for lack of space on the figure the
points corresponding to odd particle numbers are
omitted.) For a macroscopic system without
single-particle effects all the energies would lie
on a smooth curve, but the discreteness of the
single particles causes some fluctuations about a
monotonic increasing function of #». The discrete
energies €, can be regarded as a “staircase”
function €, (n) formed by horizontal and vertical
lines through the points.

We next remove the local fluctuations of e, (%)
while retaining its long-range behavior by passing
a smooth curve €(n) through the staircase function.
Then the shell correction for a specified particle
number N is given simply by the difference be-
tween the areas under the staircase curve and the
smooth curve up to N, that is,

8, = [ leuln) ~2ilan

N N

=Z €, —f €(n)dn . (4)
n=1 o

Although we will be calculating shell corrections

here only for even particle numbers, this equation

also applies to odd values of N.

The description up to this point applies to a gen-
eral class of shell-correction methods. The var-
ious methods in this class'2:!14"!° differ from
one another according to the procedure that is
used to determine the smooth curve €(n). Shell-
correction methods that are not based upon Eq. (4)
and that consequently belong to a broader category
have also been studied.*!+110:118-123 The primary
advantage of Strutinsky’s method is that it can be
used for arbitrary distributions of single-particle
energies that arise from realistic potentials of
general shape, whereas up to now the other pro-
posals cannot.

In Strutinsky’s method the quantity that is given
explicitly is the inverse of the function €(z), name-
ly, the average particle number 7(e) as a function
of the single-particle energy. This quantity is
determined by first noting that the exact particle
number is given by

n(e)= f_E dn(e’) de’ = f_ig(e’)de’ ,

w de’

where the exact single-particle level density is
gle)=) ble —¢,). (5)
n=1

[Note that # is increased by 1 for each particle.
This definition of g(e) is the same as that used in
studies of nuclear level densities,!?*"12% and facil-
itates the discussion for an odd number of parti-
cles. However, in most other discussions of
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Strutinsky’s method, the quantity denoted by the
same symbol is % our g(e).]

In principle the summation in Eq. (5) should ex-
tend over only the bound states, with the continum
states represented by an appropriate continuous
expression. However, since the continuum states
affect the final shell correction only in determin-
ing the smooth curve €(n) for particle numbers »
at and below the Fermi surface, for this purpose
they can be approximated with sufficient accuracy
in terms of discrete states.

The next step is to separate the exact level den-
sity g(e) into a smoothly varying part g(e) and a
part 6g(e) that contains the local fluctuations, i.e.,

gle)=g(e)+og(e).

This is accomplished by expanding the 6 function
in a series of Hermite polynomials and then sepa-
rating the terms into a smoothly varying part and
a fluctuating part. This expansion includes auto-
matically a Gaussian weighting function and leads
t0115

1 1« o
gE)==D 6, =—=> e™" Y c (),
Y n=1 '}/\/77 n=1 m =0
(6)
where we use the abbreviation
u,=(€-€,)/v,

and where the coefficients c,, are given by

\ﬂ"f_ m even
Cp=- 2™(m/2)!"°
’0 , modd

A scaling factor y, which has the dimensions of
energy, has been introduced to make the argu-
ments dimensionless and to control the range over
which the Gaussian weighting function is effectively
nonzero. The summation over  in practice in-
cludes even values only, since the coefficients of
all the odd Hermite polynomials are zero.

Since Hermite polynomials of low order oscillate
more slowly than those of high order, the first few
Hermite polynomials in Eq. (6) represent the
smoothly varying contribution to g(¢), and the re-
maining terms the fluctuating contribution. There-
fore, the smooth level density g(¢) is given by an
expression analogous to Eq. (6), but with the sum-
mation over m extending only to p (which defines
the order of the shell correction) rather than to
infinity. In the remaining fluctuating part dg(e),
the m summation runs from p +1 to infinity.

[The oscillations in the Hermite polynomials
lead to a somewhat unpleasant feature of Strutin-
sky’s method. In the process of decreasing to
zero below the bottom level, the smooth level den-

sity g(e) in general becomes slightly negative for
certain energies. This in turn causes the average
particle number 7(e) to also become slightly nega-
tive for certain energies below the bottom level.
Therefore, the various integrals over particle
number # in this subsection should in principle
start at —« rather than 0 when Strutinsky’s method
is used. |

The average particle number can now be evalu-
ated explicitly to give

7= [ g

:isg[nerf(unﬂ—f—l;e'“"zzp:cmffm-l(un)g :

n=1 m=1

(M

Conceptually, the next step is to invert this equa-
tion to give the average single-particle energy
€(n) as a function of particle number. This func-
tion could then be inserted into Eq. (4) and the re-
sulting integral evaluated numerically to give the
shell correction.

However, in practice it is more convenient to
transform the integration over particle number in
Eq. (4) into an integration over energy, namely

LNE(n)dn=J‘ie§(e)de.

The upper limit X, which can be interpreted as
the Fermi energy of the smooth distribution of
levels, is illustrated in Fig 6. It is determined
implicitly by the equation

n(X)=N,

which in practice is solved iteratively, with z(X)
given by Eq. (7). The desired integral can then be
evaluated explicitly to give

£

-2

fN €(n)dn = Z{ 2€,[1 +erf(@,)] - 2—1\/‘;‘""}/2'Un

n=1

1 2 &
—7_;6_"" Zcm[é'yHm(in)

m=1

+€,H,,_(&,) +myH,_,(&,)] } R

@)

where we use the abbreviation
T,=(X-€,)/r.

Substitution of this result into Eq. (4) gives finally
the shell correction.

As seen from Eq. (4) and Fig. 6, the shell cor-
rection depends explicitly upon the single-particle
energies €, and the smooth curve €(n) only below
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the Fermi surface X. Single-particle states above
the Fermi surface enter implicitly only in deter-
mining the smooth curve €(z) for n< N, and the
contributions of the higher states in determining
this rapidly approach zero. In particular, in Egs.
(7) and (8) a given term »n approaches zero as the
energy €, exceeds the smooth Fermi energy X by
an amount that is large compared to the smoothing
range y. This means that the summations over »
in these equations can be truncated as soon as
(€,-X)/y>1.

Since neither the smoothing range vy nor the or-
der p of the shell correction represent physical
quantities, the value of the shell correction should
be insensitive to these quantities as long as they
are chosen suitably. Since the smooth curve €(n)
is determined primarily by the single-particle lev-
els within an interval y to either side of €, the val-
ue of y should be large compared to the single-
particle spacing, and in particular should be large
enough to average over the levels between major
shells. However, the value of v should not be too
large, because then levels far from the Fermi
surface (in particular continuum states) would
strongly affect the value of the shell correction.
For the calculations reported here we have used
the value y =1.0%w, =41 MeV/A'? in a sixth-or-
der correction (p =6).

In Appendix B we discuss in greater detail the
numerical accuracy of the shell correction calcu-
lated in this way. In addition to its dependence
upon y and p, we also examine the role played by
the continuum states.!?”!?® The conclusion is that
for a given single-particle potential the shell cor-
rection can be calculated with a numerical accura-
cy of about 0.5 MeV, except for light nuclei, where
the accuracy is less.

C. Pairing Correction

The second type of single-particle correction,
the pairing correction, arises from the short-
range interaction of correlated pairs of nucleons
moving in time-reversed orbits. This is the most
important and easily treated of the many residual
interactions felt by a nucleon. This interaction
always lowers the total potential energy relative
to the energy without pairing. However, relative
to the pairing energy of a smooth distribution of
levels representing an “average” nucleus, the
pairing correction can have either sign. The low-
ering in energy is larger when more pairs of nu-
cleons are able to interact, which occurs when
the level density near the Fermi surface is high.
This is opposite to the behavior of the shell cor-
rection, where the potential energy is lowered
most when the level density is low. This leads to

a partial cancellation of effects between the shell
and pairing corrections. The shell correction is
the larger of the two, and therefore the main
trends of the total single-particle correction are
determined by the shell correction.

The essential features of the pairing correction
can be described in terms of a constant pairing
interaction G acting between a given number of
pairs of particles.? Then a standard pairing cal-
culation in the BCS approximation tells how much
the energy is lowered for the actual distribution of
levels. A similar calculation performed for the
same number of particles distributed smoothly
according to €(n) (or in practice distributed uni-
formly) determines the lowering in energy for an
average nucleus. The difference between the low-
ering for the actual levels and the lowering for the
smooth levels gives the pairing correction.

In calculating the pairing correction for either
neutrons or protons, we consider N, pairs of par-
ticles, with %N, pairs lying above the sharp Fermi
surface and 3N, pairs lying below. (Our discus-
sion of the pairing correction is limited to the
case of even particle numbers; some aspects of
odd-particle effects are discussed in Refs. 44 and
51.) Then, for a specified pairing strength G, the
pairing correlation energy (relative to the energy

without pairing) is given in the BCS approximation
by90. 129

) W, A2 ) i
Em=2<2 ekvkz—zek> - —G<E vt = Z}l) .
k=1 k= 1 k=1 k=1
9)

[To conform to standard pairing theory notation,
the summations in this discussion are over the
pairs of particles considered in the pairing inter-
action rather than over the single particles them-
selves. Note that Eq. (9) gives the pairing corre-
lation energy,*® which is shifted by the constant
amount %GN, relative to the energy considered in
most pairing discussions. Since this same con-
stant term is also present in the average pairing
correlation energy, the final pairing correction is
completely independent of whether or not it is in-
cluded. |

With the further standard approximation that the
variation of the v,* term in Eq. (9) is neglected,
the pairing gap A and the BCS Fermi energy A
(which we do not need explicitly) are given by the
solutions of the equations

B o S . S
N, ; Il [(ek—;)2+A2]”2( ’ (10)
and
2 & 1
G2 TG AT 1)
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The occupation probabilities appearing in Eq. (9)
are given by

€ -\

AN R R

, N, .
(12)

PR

The pairing correlation energy of an average nu-
cleus is determined from expressions analogous
to Egs. (9)-(12), but with the summations over dis-
crete states €, replaced by integrals over the
smooth function €(n) of Fig. 6. The resulting in-
tegrals can be evaluated explicitly if €(r) is re-
placed by a linear function (obtained by making a
Taylor expansion about the sharp-Fermi-surface
particle number and neglecting terms quadratic
and higher). The inverse of the slope of this curve
is simply g(X) and is obtained by means of the
methods discussed in the last subsection. The av-
erage density of pairs is then given by

p=38(X).
For such a uniform distribution of levels, the pair-
ing correlation energy is given explicitly by

— 1 N,2 <2ﬁK )2]”2 |
T o o —— 1 —_— -—
* 4 p l: ’ N, lg
_ N,
1= -1 ?
+ 3 PAG tan hZﬁE s

with the pairing strength G and the average pairing
gap A related by

1 _ s NP 2 1/2 Np '

—=pln —£ 1 —. 13

¢ ” ?[(2m> "] Topaf 43
The pairing correction for either neutrons or pro-
tons is given finally by

AE =E ~E . .

This formulation of the pairing correction!! 1230
permits the strengths G for neutrons and protons
to be determined directly from the average behav-
ior of odd-even mass differences. The value of G
for either neutrons or protons is given by Eq. (13),
with the average pairing gap A chosen to repro-
duce exactly the semiempirical result

A=12 MeV/VA

for the average mass difference of neighboring nu-
clei that differ by one neutron or one proton.!3% 13!
The value of A is assumed to remain constant
with deformation. This is motivated by the lack of
any direct evidence, either experimental or theo-
retical, for the pairing strength depending upon
deformation. Several years ago some interpreta-
tions of fission-fragment angular-distribution data
suggested that the pairing gap is a strong function
of deformation,'®® 133 put these conclusions are now
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in doubt,!**-13¢ hecause the analyses did not take
into account the presence of two peaks in the fis-
sion barrier. The available theoretical studies®®”
of the shape dependence of the pairing strength are
also inconclusive.

When A is taken to be the independent parameter
describing the pairing interaction, the logarithmic
dependence of the strength G upon the number of
pairs considered is taken into account automatical-
ly.}+ 1230 1t i5 not necessary to make the usual
artificial prescriptions®!~%" relating the pairing
strength and number of pairs in order to repro-
duce approximately the desired average odd-even
mass difference.

For most of our calculations we have taken into
account all bound levels above the Fermi surface
and an equal number below, or all levels below
the Fermi surface and an equal number above if
there are fewer levels below than above. (How-
ever, in calculating the results to be shown later
in Fig. 17, we have for Z >114 included proton lev-
els up to an energy of 5 MeV rather than 0, as
well as an equal number below the Fermi surface.)
Since for a given number of pairs the strength G
is determined to reproduce exactly the desired av-
erage pairing gap A, the final pairing correction
depends upon N, only very weakly. This point is
discussed more thoroughly in Appendix B, where
it is concluded that for a given single-particle po-
tential and value of A, the pairing correction can
be calculated with a numerical accuracy of about
0.1 MeV, except for light nuclei, where the accur-
acy is less.

VI. CALCULATED FISSION BARRIERS

In this section we present a limited selection of
results for heavy and superheavy nuclei that have
been obtained thus far. These represent only a
few of the many possible applications that we plan
to make. In particular, one of the more important
applications is the calculation of ground-state sin-
gle-particle corrections for use in nuclear mass
formulas. Our preliminary results on these cor-
rections indicate that the over-all trends of ex-
perimental ground-state single-particle correc-
tions are reproduced by the calculations, but that
the magnitude of the calculated corrections is
somewhat too large. A similar conclusion is
reached in Ref. 30. We have not made a detailed
comparison, since we have not yet allowed for the
possibility of positive hexadecapole (diamond-like)
deformations. The inclusion of these deformations
lowers the ground-state single-particle correction
for some heavy deformed nuclei’®“° by as much as
about 2 MeV. We therefore postpone presenting
such results until positive hexadecapole deforma-
tions have been taken into account.
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A. Heavy Nuclei

The dependence of the single-particle energies
upon the approximate fission coordinate y is shown
in Figs. 7 and 8 for, respectively, the neutrons
and protons in 2*°Pu. For the spherical shape the
usual gaps are observed in the single-particle lev-
els at 82, 126, and 184 neutrons and at 50, 82,
and 114 protons. Fairly large gaps associated
with secondary shells also occur for 150 neutrons
at y=0.07, for 142 neutrons at y=~0.16, and for
146 neutrons at y~0.18, as well as for 98 protons
at y=0.07 and for 100 protons at y=0.08. Such
secondary shell structure is responsible for the
occurrence of deformed ground-states and second-
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ary minima in the fission barriers of nuclei con-
taining approximately these numbers of nucleons.

The quantum numbers shown in the figures for
the deformed states give the parity and the pro-
jection Q (or K) of the particle’s total angular mo-
mentum on the nuclear symmetry axis. In addi-
tion, states of even parity are drawn as solid
curves, and states of odd parity as dashed curves.
It is observed that states having the same quan-
tum numbers (2 and parity) do not cross, in ac-
cordance with the von Neumann-Wigner noncross-
ing rule.38-14!

At the deformation y~0.3, the lower levels for
each value of © begin to group into nearly degen-
erate pairs of levels with opposite parity. The
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FIG. 7. Single-neutron energies near the Fermi surface of 24Pu as a function of the symmetric-deformation coordi-
nate y. The levels are labeled by the parity and the projection © (or K) of the total angular momentum on the nuclear
symmetry axis. In addition, odd-parity levels are drawn dashed. The quantum numbers for the spherical levels are
shown at the left. States up to N (=14 are included in the harmonic-oscillator basis (see Sec. v).
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primary reason is that at this deformation the nu-
cleus begins to develop a neck, which both raises
the potential slightly and reduces its volume in
the neck region. This means that an even-parity
wave function will nearly vanish in the neck and
consequently will have almost the same energy as
the corresponding odd-parity solution. This im-
plies that the particles begin to feel the formation
of the fragments at a very early stage in the divi-
sion process, a conclusion that has also been
reached in Refs. 60-62, 68, and 78. For reflec-
tion-asymmetric shapes these near degeneracies
are of course broken.

In Fig. 9 we show the dependence of the potential
energy on the approximate fission coordinate y for
a group of actinide nuclei differing from each oth-
er by four protons and four neutrons. The posi-

tions of the nuclei correspond to those in a chart
of the nuclides, with the rows representing proton
numbers 90, 94, 98, and 102 and the columns neu-
tron numbers 142, 146, 150, and 154. The dashed
curves give the liquid-drop contributions and the
solid curves the total potential energies.

These results are qualitatively similar to those
of several previous calculations; see for example
Refs. 30, 40, 62, and 63. Each nucleus is seen to
have both a deformed ground-state minimum and
also a secondary minimum. The calculated quad-
rupole moments of the ground-state minima are
in approximate agreement with experimental val-
ues.!*?

Relative to the spherical liquid-drop energy, the
values of the secondary minimum and the two
peaks increase as neutrons are added up to neu-
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FIG. 8. Single-proton level diagram, analogous to Fig. 7.
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tron number N= 152, and then decrease gradually.
The ground-state minimum initially decreases
with the addition of neutrons, but part of the de-
crease evident in the figure is a spurious effect
associated with our restriction to shapes described
by the coordinate y. This family of shapes con-
tains a small indentation at the equator (relative
to spheroidal shapes), whereas the true ground-
state shapes of the lighter actinide nuclei prefer

a small bulge, that is, they prefer a positive hex-
adecapole (diamond-like) deformation. For exam-
ple, for 2*°Pu the ground-state energy shown in
the figure is lowered by 0.7 MeV when spheroidal
deformations are introduced, and by about an ad-
ditional®® 0.6 MeV, for a total of about 1.3 MeV,
when positive hexadecapole deformations are in-
troduced. Since the magnitude of the hexadecapole
deformation increases with decreasing neutron
number,?® the calculated ground-state energy is
raised more by our shape restriction for nuclei
having a smaller number of neutrons (such as
232Th and 2*®Pu). Therefore, the calculated heights
of the secondary minimum and the two peaks rela-
tive to the ground-state energy increase somewhat
less rapidly with the addition of neutrons than is
implied by the figure.

Whereas the variation of the potential energy
with neutron number arises primarily from single-
particle effects, its variation with proton number
is associated also with large changes in the liquid-
drop energy. Increasing the proton number Z in-
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FIG. 9. Dependence of potential energy of actinide
nuclei upon the symmetric-deformation coordinate y.
The dashed curves give the liquid-drop contributions
and the solid curves the total potential energies, which
are calculated with single-particle levels for 2°Pu. The
dot-dashed curve for %2Th is calculated with single-par-
ticle levels for *?’Ra, and the dot-dashed curve for 25¢No
with levels for 28Fm. The solid points at zero deforma-
tion are calculated with the appropriate spherical single-
particle levels for each individual nucleus.
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creases the fissility parameter x, which pulls in
the maximum of the liquid-drop energy to make
the first peak higher than the second. Conversely,
decreasing Z decreases x, which pushes out the
liquid-drop maximum to make the second peak
higher than the first.

These fission barriers have all been calculated
using single-particle levels for the nucleus **°Pu.
This represents a numerical approximation, be-
cause the levels themselves are somewhat differ-
ent for the different nuclei. An idea of the accura-
cy of this approximation is gained by comparing
the curves at zero deformation with the solid
points, which have been calculated using spherical
levels appropriate to the particular nucleus. In
addition, the dot-dashed curve for **2Th has been
calculated from single-particle levels for **°Ra,
and the dot-dashed curve for 2*No from levels for
258Fm. The approximation is fairly good for nuclei
close to the nucleus for which the levels have been
calculated, but grows worse for nuclei far away.
The reason it works fairly well is because the
shell and pairing corrections depend mainly upon
the spacings between the levels near the Fermi
surface, and the spacings remain nearly constant
with changes in N and Z, even though the actual
positions of the levels change by relatively large
amounts. Since the dot-dashed curves for ***Th
and 2%No lie neither entirely above nor entirely
below the corresponding solid curves, it is no/
possible when using realistic diffuse surface po-
tentials to correct for the use of different single-
particle levels by simply scaling the results by a
geometric factor, as is sometimes done.*°

In addition to the symmetric fission coordinate,
it is also important to examine how the potential
energy depends upon the remaining coordinates,
especially the mass-asymmetry coordinate. From
simple qualitative considerations, one expects that
when the nucleus encounters a high and sharp peak
in the total potential energy as a function of the
symmetric fission coordinate, it would be energeti-
cally favorable to go around rather than over the
peak by taking advantage of asymmetric deforma-
tions. This expectation stems from the observa-
tion that single-particle corrections oscillale about
an average of zero, and that if one is already at a
high and sharp peak in the fission coordinate, the
single-particle correction is expected to decrease
also for asymmetric deformations. Then, provid-
ed that the liquid-drop energy does not increase
too rapidly, the total potential energy should have
an asymmetric path of lower energy leading around
the symmetric peak.® Conversely, a deep mini-
mum in the single-particle correction as a func-
tion of the symmetric fission coordinate is expect-
ed to lead to increased stability with respect to
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asymmetric deformations.

The upper part of Fig. 10 shows again the cal-
culated dependence of the potential energy of 2*°Pu
on the symmetric coordinate y. From our qualita-
tive discussion we would expect the potential ener-
gy to be stable with respect to mass asymmetry at
both the first and second minima, and this turns
out to be the case. At the first minimum, the po-
tential energy is actually lowered somewhat when
the two remaining symmelric coordinates are con-
sidered. This is because the ground-state shape
of #*°Pu prefers a small bulge at the equator rather
than the indentation that is present in the coordi-
nate y. The arrow at the first minimum indicates
the amount the potential energy is lowered when
the shapes are permitted to become spheroidal;
the inclusion of positive hexadecapole (diamond-
like) shapes would lower the ground-state energy
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FIG. 10. Dependence of potential energy (solid curves)
of 2%py upon the approximate fission coordinate y (top)
and mass-asymmetry coordinate o, (bottom). The dashed
curves give the liquid-drop contribution. The arrow at
the ground-state minimum indicates the amount the poten-
tial energy is lowered when spheroidal deformations are
included. At the second peak the solid point indicates the
amount the potential energy is lowered when the remain-
ing two symmetric coordinates are included, and the
arrow the further lowering associated with the asym-
metric coordinate a,. In the lower part of the figure,
the three symmetric coordinates are held fixed at their
values corresponding to the second symmetric saddle
point (whose energy is given by the solid point).

by about an additional®® 0.6 MeV. At other defor-
mations the coordinate y was found to be more
satisfactory; for example, at the second peak the
introduction of the other two symmetric coordi-
nates lowers the energy by only the small amount
indicated by the solid point.

The second peak extends well above the liquid-
drop background, by an amount roughly twice that
of the first peak. In accordance with our qualita-
tive expectations, the second peak is indeed found
to be unstable with respect to mass asymmetry,
as shown in the lower part of Fig. 10. This part
of the figure shows how the potential energy varies
with the mass-asymmetry coordinate «,, for fixed
values of the symmetric coordinates corresponding
to the second symmetric saddle point (whose ener-
gy is given by the solid point). The coordinate q,
is defined by’®

__a’-a’
where a, and a, are the transverse semiaxes of,
respectively, the left-hand and right-hand spher-
oids forming the shape, as illustrated in Fig. 3.
Strictly speaking, the mass-asymmetry coordi-
nate should contain a small component of the asym-
metric coordinate ¢, (defined in Ref. 75), but this
was found to be extremely small and is conse-
quently neglected. (The coordinates a, and a,
used here should not be confused with the Legen-
dre-polynomial expansion coefficients usually des-
ignated by the same symbols.) Also, we neglect
here the possible changes in the symmetric coordi-
nates that occur between the symmetric peak and
the asymmetric saddle point. With these approxi-
mations, the potential energy of the asymmetric
saddle point is 3.2 MeV lower than the energy of
the symmetric saddle point. As indicated by the
arrow at the second peak, the inclusion of the
mass-asymmetry degree of freedom reduces the
height of the second saddle point to slightly below
that of the first. The first peak, which extends
above the liquid-drop energy by a smaller amount
than the second peak, is found to be stable with
respect to mass asymmetry.

Results qualitatively similar to these were first
obtained by Mbdller and Nilsson with a generalized
deformed harmonic-oscillator potential*® and have
also been confirmed with more realistic poten-
tials.?’"%° Since the single-particle corrections
are correlated with the distribution of single-par-
ticle levels near the Fermi surface, the level den-
sity is lower than average at the two minima and
at the asymmetvic saddle point, and is higher than
average at the first saddle.

The calculated shapes of the equilibrium points
for 2*°Pu are shown in Fig. 11. The ground-state
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minimum, first saddle, and second minimum are
symmetric in shape, but the second saddle has
the asymmetric shape shown by the solid curve.
The dashed curve gives the corresponding shape
for the symmetric peak.

Figure 12 shows the calculated liquid-drop and
total potential energies vs the symmetric defor-
mation coordinate y for the lighter nucleus 2°Po.
Because it is near a doubly closed shell, 2°Po has
a large negative spherical shell correction, which
increases the barrier height considerably. The
second minimum in this barrier should lead to a
shape-isomeric state that would decay primarily
back to the ground state by y emission. For val-
ues of y approaching 0.4 this coordinate ceases to
represent motion in the fission direction,*® and the
rise in both the liquid-drop and total energies on
the right-hand side of the graph should be disre-
garded. Unlike Méller and Nilsson?® and Pauli et
al.,*” we find that ?'°Po is slightly unstable with
respect to mass asymmetry at its highest sym-
metric peak, which extends well above the liquid-
drop energy. However, for values of y slightly
beyond the highest symmetric peak the total po-
tential energy drops well below the liquid-drop
energy, which suggests that the dynamical path
for this nucleus would possibly revert to symmet-
ric shapes after passing over the asymmetric sad-
dle point.

Figure 13 shows a similar calculation for the

Ground - state mimimum

First saddle

Second minimum

Second saddle

240p,

FIG. 11. Calculated equilibrium shapes for 240pu. At
the second saddle the solid curve gives the shape of the
asymmetric saddle point, and the dashed curve the cor-
responding shape for the symmetric peak.

(K3,

still lighter nucleus '®8Qs. Since this nucleus is
deformed in its ground state, the barrier height
is determined mainly by the liquid-drop contribu-
tion. Although the total barrier oscillates several
times, there is no suggestion of a local minimum
sufficiently deep to form a shape-isomeric state.
This nucleus is found to be stable with respect to
mass asymmetry at the highest peak, which was
expected, since the total potential energy does not
extend above the liquid-drop energy at this point.

The stability of the potential energy with respect
to mass asymmetry was also considered for the
nuclei 22°Ra and 2**Fm. We found that the highest
saddle point for ***Ra is asymmetric in shape and
2.3 MeV lower in energy than the corresponding
symmetric peak. There is no indication of both
symmetric and asymmetric saddle points of com-
parable energy. The second saddle point for 2%Fm
is asymmetric and 2.0 MeV lower in energy than
the second symmetric peak. The second minimum
has almost vanished, since its energy is approxi-
mately the same as that of the asymmetric saddle
point. As in other actinide nuclei, the first saddle
point for ?**Fm is symmetric.

We have not attempted at this stage a comprehen-
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FIG. 12. Dependence of potential energy of 2!Po upon
the symmetric deformation coordinate y.
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sive comparison of our calculations with experi-
mental results. Nevertheless, some important
conclusions can be drawn even from a limited com-
parison.

First, we have seen that single-particle effects
lead to secondary minima in the calculated fission
barriers of actinide nuclei. Evidence for such sec-
ondary minima is available experimentally from
three sources: (1) spontaneously fissioning iso-
meric states, (2) broad resonances in fission
cross sections, and (3) narrow intermediate struc-
ture in fission cross sections.!® 226 144 Thege
phenomena have now been observed in a variety of
actinide nuclei for which the calculations indicate
fairly deep secondary minima; conversely, they
have not been seen in nuclei for which the calcu-
lated barriers have shallow secondary minima or
none at all. Thus, the calculations describe cor-
rectly the general region of nuclei that contain
deep secondary minima.

Second, experimental information on the heights
of the first and second saddles and the secondary
minimum is now becoming available for some nu-
clei. Table I compares the experimental results
of Britt et al.’*® for 2*°Pu with the calculated
heights, which are relative to a ground-state en-
ergy calculated for spheroidal shapes. As men-
tioned earlier, the inclusion of positive hexadeca-
pole (diamond-like) deformations would lower the
ground-state energy by about 0.6 MeV and hence
increase each of the three calculated heights by
this constant amount. Since for spheroidal ground-
state shapes the calculations reproduce the experi-
mental heights to within 0.25 MeV, the inclusion
of hexadecapole deformations would result in cal-
culated heights that are somewhat larger than the

TABLE I. Comparison of experimental and calculated
fission-barrier heights.

Experimental Calculated

height height

Nucleus (MeV) (MeV)

Mpy  First saddle 5.82 5.8b

Second minimum 2.62 2.7

Second saddle 5.352 5.60

Hpg 204 ¢ <24.14
18805 23.7¢ 21.3

2 Reference 145,

b Relative to a ground-state energy calculated for
spheroidal shapes.

¢ References 111 and 146,

dThe inequality arises because this nucleus is calcu-
lated to be unstable with respect to mass asymmetry at
its highest peak, whereas the exact energy of the asym-
metric saddle point has not yet been determined.

€ References 111 and 147,

experimental heights. This possibly indicates that
the ratio of the surface energy to Coulomb energy
should be slightly smaller for actinide nuclei than
that given by the Lysekil conference Myers-Swia-
tecki nuclear mass formula®* which we are using.
This same conclusion has also been reached by
Pauli and Ledergerber.2®

Similar comparisons for other actinide nuclei
show that the calculations reproduce approximately
the over-all dependence upon proton number of the
heights of the first and second saddles and the sec-
ondary minimum. However, the calculated heights
of the first peaks are somewhat lower than the ex-
perimental values for thorium isotopes and some-
what higher for curium isotopes; these discrepan-
cies have also been observed by Pauli and Leder-
gerber.?® The calculated heights of the second
minimum show a greater variation with neutron
number than the experimental heights (even after
estimates are made of the influence of positive
hexadecapole deformations on the ground-state
energy).

Table I also includes the experimentall!l 146 147
and calculated barrier heights for 2°Po and !#8Qs.
The calculated height for 2'°Po is larger than the

201
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FIG. 13. Dependence of potential energy of '880s upon
the symmetric deformation coordinate y.
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experimental height by some 10 to 15% and for
1880g is smaller by about 10%. It should be
stressed that in all these comparisons no arbi-
trary parameters have been adjusted; the experi-
mental and calculated results have not been nor-
malized to one another in any way. (For each nu-
cleus in Table I we have taken 0.5 MeV as an es-
timate of the zero-point energy in the fission de-
gree of freedom at the ground-state minimum and
secondary minimum 5% 148 149)

Finally, we would like to discuss in a qualitative
way the extent to which experimental fission-frag-
ment mass distributions can be understood in
terms of the calculated properties of the saddle
points. Most of the experimental information on
mass distributions that we want to consider has
been known for a long time'*®: At low excitation
energies, heavy nuclei (Z =90) divide primarily
into one large and one small fragment. As the
excitation energy increases, the probability for
division into two equal fragments increases, until
at high energies the mass distribution is peaked
about a division into two equal fragments. The
mass distributions for nuclei in the vicinity of
radium (84<Z <90) have three peaks, one corre-
sponding to division into equal fragments and the
others to division into unequal fragments. In-
creasing the excitation energy increases the prob-
ability for an equal-mass division. Still lighter
nuclei like Po (Z <84) divide primarily into two
equal fragments at all excitation energies for
which the mass distributions are known. More re-
cent experiments's* ' have shown that the degree
of mass asymmetry also decreases strongly for
very heavy nuclei. In particular, the most proba-
ble mass split in the thermal-neutron-induced fis-
sion of *"Fm (Z =100) is symmetric.52

To what extent are single-particle effects able
to account for these experimental observations,
namely, the mass asymmetry in the low-energy
fission of actinide nuclei, the three-peaked mass
distributions for radium, and the transitions to
symmetric divisions for both lighter and heavier
nuclei and at high excitation energies?

We have seen that for unexcited actinide nuclei
the second saddle points are calculated to be asym-
metric in shape. At low energies an actinide nu-
cleus will therefore start its descent from the sad-
dle point to scission in an asymmetric shape. But
it is a fairly long way to scission — some 40-MeV
decrease in potential energy and a complete de-
velopment and constriction of a neck — and the sad-
dle asymmetry could be destroyed en route. On
the other hand, the potential energy drops rapidly
beyond the second saddle, and the inertia associat-
ed with a rapid descent of the nucleus could over-
ride subsequent forces that would prefer an equal-

mass division. In this case an asymmetric mass
division would result, in accordance with the ex-
perimental observations.

The saddle points of light nuclei like #8Qs are
calculated to be symmetric in shape, which could
be responsible for the transition to symmetric
mass divisions in lighter nuclei. If we go the other
way, for the heavier actinide nuclei the second
saddles decrease in height relative to the first,
and the nucleus begins its descent with a shape
corresponding to the first saddle. But the shape
at the first saddle is symmetric, which could ex-
plain the transition to symmetric divisions in the
thermal-neutron-induced fission of 25"Fm.

The transition to symmetric divisions with in-
creasing excitation energy is probably associated
with the decrease in relative importance of single-
particle effects at high excitation energies. At
high excitations, the nucleons are distributed ran-
domly over a large number of single-particle lev-
els. This effectively destroys the influence of the
shells, and, in a loose manner of speaking, the
system divides in accordance with the smooth
macroscopic contribution to the energy, which
prefers an equal-mass split.

The phenomena that one is able to understand
qualitatively in terms of the calculated saddle
points are thus the mass asymmetry in the low-
energy fission of actinide nuclei, and the transi-
tions to symmetric divisions for both lighter and
heavier nuclei and at high excitation energies.
The calculated saddle points do not reproduce the
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FIG. 14. Dependence of potential energy of superheavy
nuclei upon the symmetric-deformation coordinate y.
The dashed curves give the liquid-drop contributions and
the solid curves the total potential energies, which are
calculated with single-particle levels for 2%114. The
solid points at zero deformation are calculated with the
appropriate spherical single-particle levels for each in-
dividual nucleus.
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exact location of the transition to symmetric divi-
sions for lighter nuclei, and also do not reproduce
the expected symmetric and asymmetric saddle
points for nuclei like radium in the transition re-
gion.

On the other hand, it is still possible that the
mass distribution could be altered somewhere
beyond the saddle point during its dynamical de-
scent to scission, or even be determined altogeth-
er somewhere close to the scission point. This
point of view is made plausible by the dynamical
calculations of Hasse,!®® which demonstrate that a
single-particle correction of reasonable magni-
tude near scission can lead to a preference for
asymmetric mass divisions, even for dynamical
paths that start from approximately symmetric
shapes. In addition, the potential energy surfaces
calculated by Mosel and Schmitt® %2 with a gener-
alized two-center harmonic-oscillator potential
suggest that single-particle effects can be very
large near the scission point.

The calculations performed thus far have been
somewhat fragmentary and have concentrated on
the region near the saddle point. The next step is
to examine systematically the region between sad-
dle and scission for a wide range of nuclei. Ideal-
ly the kinetic energy should also be calculated and
the equations of motion solved to give the actual
dynamical paths. But a fair approximation to the
dynamical paths might be obtained from maps of
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proton number for superheavy nuclei containing 184 neu-
trons.

the potential energy vs fission and mass-asymme-
try coordinates that have been selected previously
in such a way as to minimize inertial effects. In
this way one could possibly decide the important
question of where, between saddle and scission,
single-particle effects are most important in de-
termining the mass distribution.

B. Superheavy Nuclei

Some of our results for superheavy nuclei have
already been discussed in Refs. 68-70, but will be
repeated here for completeness.

Figure 14 summarizes our calculated fission bar-
riers for superheavy nuclei. The positions of the
nuclei correspond to those in a chart of the nu-
clides, with the nuclei differing from each other
by four neutrons and four protons. For the doubly-
closed-shell nucleus 2°®114, the spherical single-
particle correction is —10.3 MeV. As the nucleus
deforms the total potential energy (solid curve) in-
creases until it reaches a maximum value of 2.7
MeV at the deformation y=0.07. Further deforma-
tion leads to a secondary minimum followed by a
somewhat lower second peak. Beyond this peak the
barrier drops rapidly. The difference in energy
between the highest peak and the spherical shape
is 13.0 MeV.

As neutrons are added beyond 184, the barrier
height decreases drastically. Subtracting neutrons
also lowers the barrier, but not as much as if the
same number were added. When a small number
of protons are added beyond 114, the barrier
heights actually increase slightly. When protons
are subtracted, the barrier is again lowered.

For the nuclei near the top of Fig. 14, the peaks
extend well above the liquid-drop background, and
it is possible that mass-asymmetric or axially
asymmetric (y) deformations could lower these
barriers somewhat. However, the results of Refs.
51-53 and 74 suggest that the amount of this lower-
ing is rather small. (Other results !*~!%¢ would
imply that superheavy nuclei undergo oblate fis-
sion through a barrier that is some 5 MeV lower
than the barrier for prolate fission. However, we
discount these results, since these barriers were
calculated by simply summing single-particle en-
ergies, a procedure which is now known to be seri-
ously inadequate.'*® !57)

Figures 15 and 16 aid in understanding why the
barrier heights depend upon neutron and proton
numbers in the way they do. As seen in Fig. 15,
the level density is very high for spherical nuclei
containing a few protons less than 114, since 14
particles fill the 1¢,,,, level and 8 fill the 2,2 lev-
el. The level density of spherical nuclei contain-
ing a few more protons than 114 is relatively low-
er, which explains why such nuclei continue to
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have fairly high fission barriers.

As the proton number increases (with the neu-
tron number held fixed at 184), the proton separa-
tion energy decreases substantially. In fact, when
Z>126 the Fermi surface lies in the continuum,
which means that these nuclei are unstable with
respect to proton emission. (Of course this mode
of decay will be less rapid than @ emission.)

As seen in Fig. 16, the neutron level density is
lower when the number of neutrons is slightly less
than 184, than when the number is slightly more.
This explains why the barrier heights decrease
more rapidly with the addition of neutrons beyond
184 than with their subtraction. We also see that
for a fixed number of neutrons the neutron separa-
uion energy increases with increasing proton num-
ber. This of course makes it harder to emit neu-
trons, which is a handicap with respect to getting
rid of excess excitation energy in attempts to pro-
duce superheavy nuclei.

Many of the points we have tried to make are
conveniently summarized in Fig. 17, which is a
contour map of the single-particle correction for
spherical superheavy nuclei vs neutron and proton
numbers. As we move away from the doubly-
closed-shell nucleus with 114 protons and 184 neu-
trons, the spherical single-particle correction de-
creases in magnitude from -10 MeV for nuclei
along the inner contour to -5 MeV for nuclei along
the outer contour. The fission-barrier height de-
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creases in a similar way. (These results are ob-
tained from single-particle levels recomputed for
each individual nucleus.) The portions of contour
lines shown dashed correspond to nuclei calculated
to be proton unstable. The dot-dashed curve gives
the line of B stability, which has been determined
by minimizing the calculated masses for even
spherical nuclei with respect to N~ Z for con-
stant mass numbers A.

The present fission barriers are somewhat high-
er than most of those calculated previously by
means of the macroscopic-microscopic method,
both for generalized harmonic-oscillator poten-
tialg!!~1% 19.35=42.46 and for diffuse-surface poten-
tials.'® !%¢7 The primary reason for this is that
our present single-particle potential radius is
somewhat smaller than most values used previous-
ly. This leads to a somewhat lower average densi-
ty of levels near the Fermi surface, which in turn
leads to single-particle corrections of larger am-
plitude. Since the present potential radius is ob-
tained from statistical calculations that reproduce
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FIG. 17. Contour plot of single-particle correction for
spherical superheavy nuclei. The portions of contour
lines shown dashed correspond to proton-unstable nuclei.
The dot-dashed curve gives the calculated line of 8 sta-
bility.
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correctly the average trends throughout the Period-
ic Table of a variety of nuclear properties,® it
should be more reliable than a potential radius ex-
trapolated from results adjusted to best reproduce
experimental single-particle levels. Results quali-
tatively similar to ours are also obtained in some
other recent calculations.**** (Fission barriers
for superheavy nuclei have also been calculated in
Refs. 76 and 154-156 by the inadequate method of
summing single-particle energies.)

To summarize briefly, the present results sug-
gest that (1) the fission barriers of superheavy nu-
clei near **®114 are even higher than previously
supposed, (2) the addition of neutrons beyond 184
decreases the barrier height more than subtract-
ing the same number of neutrons from 184, and
(3) the addition of several protons beyond 114 has
little effect on the fission barriers (although the
probability for a decay increases substantially).

VII. SUMMARY AND CONCLUSION

We have performed a new calculation of the nu-
clear potential energy of deformation, with an em-
phasis on techniques that permit more accurate
extrapolations both to large deformations and to
new regions of nuclei. Our calculation proceeds
according to the following five steps:

(1) The over-all geometrical shape of the nucleus
is specified with five degrees of freedom, in
terms of smoothly joined portions of three quadrat-
ic surfaces of revolution (e.g., two spheroids con-
nected by a hyperboloidal neck).

(2) The single-particle potential is obtained by
folding a Yukawa function with a uniform sharp-
surface generating potential of appropriate shape.
The parameters describing the potential are ob-
tained from statistical (Thomas-Fermi) calcula-
tions that reproduce correctly the average trends
throughout the Periodic Table of a variety of nu-
clear properties.

(3) The Schrédinger equation with this potential is
solved for the single-particle energies and wave
functions by an expansion of the wave function in a
set of deformed harmonic-oscillator basis func-
tions. We also investigated a finite-difference
method of solution.

(4) Shell and pairing corrections are calculated
from the single-particle energies by use of the
methods developed by Strutinsky.

(5) These corrections are added to the surface
and Coulomb energies of the liquid-drop model to
obtain the total potential energy of deformation.

With this approach we have calculated a limited
number of results for heavy and superheavy nuclei.
The calculations reproduce the over-all trends of
experimental single-particle corrections and quad-

rupole moments of nuclei in their ground states.
They also describe correctly the general region of
nuclei whose fission barriers are known experi-
mentally to contain deep secondary minima, as

well as the over-all trends of experimental fission-
barrier heights of nuclei ranging from rare earths

to actinides. The over-all variation in the relative
heights of the two peaks in the fission barriers of
actinide nuclei agrees with experimental results,
but the calculated first peak is somewhat low for
thorium isotopes and somewhat high for curium
isotopes. The calculated heights of the secondary
minimum are in approximate agreement with the
experimental heights, but vary more rapidly with
neutron number than the experimental heights.

The approach also provides an approximate un-
derstanding of experimental fission-fragment
mass distributions on the basis of calculated sad-
dle-point shapes. In particular, asymmetric mass
distributions for the low-energy fission of actinide
nuclei, and the transitions to symmetric distribu-
tions for both lighter nuclei like *®*QOs and heavier
nuclei like 2®Fm, as well as at high excitation en-
ergies, can be understood. The exact location of
the transition to symmetric divisions for lighter
nuclei and the presence of both symmetric and
asymmetric saddle points for nuclei like radium
in the transition region are not reproduced. There
is some evidence that single-particle effects be-
yond the saddle point are also important in deter-
mining the mass distribution.

There are still some unanswered questions, and
more work needs to be done before a final assess-
ment can be made, but tentatively it appears that
the combined macroscopic-microscopic method as
formulated here does provide a suitable framework
for calculating the nuclear potential energy of de-
formation.

When these same general methods are applied to
superheavy nuclei, we find that the fission barriers
of nuclei near **114 are even higher than previous-
ly supposed. With respect to spontaneous fission,
the appearance of the island of superheavy nuclei
is a mountain ridge extending north and south from
114 protons to about 124 protons. The descent
from the mountain down to the sea of instability is
rather gentle toward the west (that is, for de-
creasing neutron numbers below 184). However,
east of 184 neutrons, as well as north of 124 pro-
tons and south of 114 protons, the descent is more
rapid. Nature has been very kind in extending the
island both to the north and to the west, since it
is the northwest territory that is most accessible
experimentally.

The methods discussed here for calculating the
nuclear potential energy of deformation have an
enormous range of applicability, of which only a
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small fraction has been exploited thus far. In fu-
ture applications, higher-order terms in the mac-
roscopic part of the energy, such as compressibil-
ity and curvature effects, should be taken into ac-
count, and also an internally consistent set of pa-
rameters should be used for both the macroscopic
and microscopic parts of the energy. At that point
a better assessment of the macroscopic-micro-
scopic approach can be made by using a single
method for the systematic calculation of a variety
of phenomena. This should include a thorough sur-
vey of fission barriers, nuclear ground-state
masses and deformations, and the potential energy
for heavy-ion reactions. In this way the related
areas of fission, nuclear masses, and heavy-ion
physics can be unified, and a sense of continuity
achieved in the development of their theory.
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APPENDIX: NUMERICAL ACCURACY
OF THE CALCULATIONS

A. Single-Particle Energies
and Wave Functions

Since the numerical accuracy of the finite-differ-
ence method of solution is discussed in Ref. 93,
we limit ourselves here to the accuracy of the ex-
pansion in deformed harmonic-oscillator basis
functions. The primary source of error in calcu-
lating the single-particle energies and wave func-
tions is the truncation of the basis. Integration er-
rors involved in calculating the matrix elements,
and matrix-diagonalization errors can in practice
be made negligibly small compared to the trunca-
tion error.

Figure 18 illustrates the dependence of the sin-
gle-particle energies on the size of the basis. The
calculated energies for various spherical neutron
levels in ?*®Pb are plotted vs 1/N,, where N, is
the number of harmonic-oscillator quanta included
in the basis. In this plot the results become more
accurate toward the left, with the limit of an infi-
nite basis given by 1/N,=0. Levels below the Fer-
mi surface converge fairly rapidly with the size of
the basis, whereas bound levels close to zero en-
ergy converge less rapidly. The unbound levels
approach 0 as the basis becomes infinite. This is
because any positive energy is a solution of the
Schrédinger equation; to simulate the continuum,
the density of unbound levels approaches infinity
as the basis becomes infinite. Thus, the unbound
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levels calculated with a finite basis do not repre-
sent resonant states, as is often suggested. Nev-
ertheless, they are of use in calculating the shell
correction, as we discuss in Appendix B.

In addition to a spherical *®*Pb nucleus, we have
tested the convergence of the single-neutron and
single-proton energies for ?*°Pu for the symmetric
deformation y=0.24, for the case of two equal tan-
gent spheres, and for a very asymmetric case cor-
responding to the x=0.8 Businaro-Gallone saddle
point.”® 1*® For a sphere, the results were checked
with those calculated by use of the shooting meth-
od, 1937197 and for general shapes with those cal-
culated by use of the finite-difference method.?! %29
Except for the very asymmetric shape, we found
that the truncation error corresponding to N,=12
is in general about 0.001 MeV for the ground state,
0.1 MeV for the Fermi surface, and 0.3 MeV for
the least-bound level. (The truncation errors for
the Fermi surface and least-bound level are larger
in cases where these levels are closer to 0.) For
the very asymmetric shape, the truncation errors
are substantially larger.

For potentials that go to zero at large distances,
the true asymptotic behavior of the bound-state
wave functions is exponential, whereas the asymp-
totic behavior of wave functions calculated in an
oscillator expansion is Gaussian. This is illus-
trated in Fig. 19 for the neutron Fermi surface
and least-bound level in a spherical **Pb nucleus.
In such a semilogarithmic plot of » times the radi-
al wave function vs 7, errors in the asymptotic
behavior appear as deviations from a straight line.
The wave function for the Fermi surface is calcu-
lated accurately out to 12 fm for a basis containing
states up to 12 quanta, and fairly accurately out to
15 fm for 24 quanta. This is 4.5 and 7.5 fm, re-
spectively, beyond the radius at which the value of
the potential is 3 its maximum value. At these dis-
tances, the wave function (times 7) has decreased
to about 10 and 2%, respectively, of its maximum
value. The wave function for the least-bound level
is calculated accurately out to only 9 fm, where
the wave function is still about 90% of its maximum
value, for both 12 quanta and 24 quanta.

B. Shell and Pairing Corrections

Apart from fundamental questions associated
with the over-all validity of the method itself, the
numerical accuracy with which the shell correction
can be calculated is limited solely by the accuracy
with which the smooth curve €(») of Fig. 6 can be
determined below the Fermi surface X. For a giv-
en set of single-particle energies, the smooth
curve is determined so as to remove the local fluc-
tuations of the energies but retain their long-range



5 NEW CALCULATION OF FISSION BARRIERS... 1073

behavior. Strutinsky’s method provides a means
for determining the smooth curve, but it depends
upon both the smoothing range y and the order p.
This in turn leads to a dependence of the shell cor-
rection upon these quantities.

This dependence is illustrated in Fig. 20 for neu-
trons in a spherical ?®*Pb nucleus, when a basis
containing states up to 12 oscillator quanta is used.
For small values of ¥, the shell correction is
close to zero, since the smooth curve of Fig. 6 is
close to the staircase curve. For values of y
close to #w, the shell correction is relatively in-
sensitive to both the value of ¥ and the order p.
This is because neither y nor p represent physical
quantities. As long as the smoothing range is
close to the spacing between major shells and the
order is not too large, the shell correction de-
pends only weakly upon their precise values. For
moderately large values of y (several #w,), an in-
crease in y causes the shell correction to become
more negative. As vy continues to increase, the
shell correction goes through a minimum and final-
ly diverges to +~ as y approaches «, in accor-
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FIG. 18. Dependence of spherical neutron levels of
28ph upon 1/N,, where N, is the number of harmonic-
oscillator quanta included in the basis. In addition to s
states, which are shown as solid lines, the Fermi sur-
face, the least-bound level, and the least-unbound level
(for N;=30) are also included as dashed lines. The ar-

row indicates the number of quanta (12) used in most of
our calculations.

dance with the results of Lin.'?’

The results shown in Fig. 20 are qualitatively
similar to those obtained previously for a harmon-
ic-oscillator potential,*>*! but differ from the re-
sults of Lin'?” and Brueckner'?® for a diffuse-sur-
face potential that goes to zero at large distances.
In the latter work, the density of levels in the con-
tinuum is spuriously low, which causes the shell
correction to diverge to += by going through a min-
imum only (rather than through a plateau) as y in-
creases. This behavior in turn led Lin and Brueck-
ner to conclude erroneously that the Strutinsky
shell-correction method could not be applied to po-
tentials that go to zero at large distances.

The effect of the density of unbound states on the
shell correction is illustrated in Fig. 21. This is
a plot of the neutron shell correction for a spheri-
cal 2®*Pb nucleus as a function of 1/N,, for
y=1.0/iw,. For moderate values of 1/N, (corre-
sponding to 8 < N, < 13), the shell correction is rel-
atively insensitive to the size of basis used. How-
ever, as 1/N, approaches 0, the shell correction
diverges to +=. This is because, as we saw in
Fig. 18, the density of unbound states approaches
o as 1/N, approaches 0. This lowers the smooth
curve of Fig. 6, which in turn increases the shell
correction. Since the effect of the unbound states
is larger for larger values of ¥, the shell correc-
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FIG. 19. Asymptotic behavior of neutron wave func-
tions for a spherical 2%®Pb nucleus. The product of ¥
times the radial wave function is plotted vs » beyond the
last node for the Fermi surface and the least-bound lev-
el. The thin solid straight lines give the exact slopes,
the heavy solid curves the results for a harmonic-oscil-
lator basis containing states up to 24 quanta, and the
dashed curves the results for a basis containing states
up to 12 quanta. The arrow indicates the radius at which
the value of the single-particle potential is } its depth.
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FIG. 20. Dependence of spherical neutron shell cor-
rection for 2%Pb upon smoothing range v, for various
orders. The solid point on the sixth-order curve at vy
=1.07w,=41 MeV/A Y3 indicates the values used in our
calculations. For small smoothing ranges, multiple
solutions exist; these are not included in the figure, but
the solid point at the origin gives the single solution for
v=0. All single-particle levels from a harmonic-oscilla-
tor basis containing states up to 12 quanta are used.

tion diverges to +~ more rapidly than the curve of
Fig. 21 when y> 1.0%w,, and less rapidly when
y< 1.0%w,.

From Figs. 20 and 21 and similar results for
other cases, we conclude that for a given single-
particle potential, the Strutinsky shell correction
can be computed with a numerical accuracy of
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FIG. 21. Dependence of spherical neutron shell cor-
rection for 2%Pb upon 1/N,, where N, is the number of
harmonic-oscillator quanta included in the basis. The
results are calculated with a sixth-order correction and
smoothing range y=1.0Aw,=41 MeV/A Y3, The arrow in-
dicates the number of quanta (12) used in our calcula-
tions of single-particle corrections.

about 0.5 MeV, except for light nuclei. The low
density of levels in light nuclei makes it more dif-
ficult to determine the smooth curve €(n) of Fig. 6,
which in turn reduces the accuracy with which the
shell correction can be calculated.'?*'*°

Apart from fundamental questions associated
with the treatment of the pairing interaction in
terms of a constant interaction strength and the
use of the BCS approximation, the numerical ac-
curacy with which the pairing correction can be
calculated is limited primarily by the sensitivity
of the results to the number of pairs included in
the calculation. As shown in Fig. 22, the pairing
correction AE,. and other quantities of interest de-
pend sensitively upon the number of pairs N, only
for small values of N,. When a moderate or large
number of pairs are included, the results are very
insensitive to the precise number used. [The re-
placement of the smooth curve €(n) in Fig. 6 by a
straight line over the region considered in the pair-
ing calculation leads to a small systematic error.]
From these and similar results, we conclude that
for a given single-particle potential and value of
A, the pairing correction can be calculated with a
numerical accuracy of about 0.1 MeV, except for
light nuclei. The smaller number of pairs present
in light nuclei reduces the accuracy with which the
pairing correction can be calculated.

AE

FRFURT I S S -

240 Pu

PEEVRRENR. . ¥

Ground - state minimum
Neutron pairing

Pairing energies, gap,and strength (MeV)

o 56 100
Number of pairs Np

FIG. 22. Various neutron pairing quantities for 24Py
at its spheroidal ground-state minimum, as functions of
the number of pairs included in the calculation. The up-
per smooth curve gives the pairing strength G required
to reproduce an average pairing gap A=12 MeV/A V2,
and the lower smooth curve gives the average pairing
correlation energy E pc- The upper solid points (connect-
ed by straight lines) give the pairing gap A, the lower
solid points the pairing correlation energy E ., and the
middle solid points the pairing correction AE, . =E
—EPC. The arrow indicates the number of pairs (50) hav-
ing negative energy with equal numbers above and below
the Fermi surface.



5 NEW CALCULATION OF FISSION BARRIERS... 1075

*Work performed under the auspices of the U, S. Atom-
ic Energy Commission.

TPresent address: Kellogg Radiation Laboratory, Cali-
fornia Institute of Technology, Pasadena, California
91109,

lw, J. swiatecki, in Proceedings of the Second Inter-
national Conference on Nuclidic Masses, Vienna, 1963
(Springer, Vienna, 1964), p. 58.

V. M. Strutinsky, Yadern. Fiz. 3, 614 (1966) [transl.:
Soviet J. Nucl. Phys. 3, 449 (1966)].

W. D. Myers and W. J. Swiatecki, Nucl. Phys. 81, 1
(1966).

‘W. D. Myers and W. J. Swiatecki, Arkiv Fysik 36, 343
(1967).

5C. Y. Wong, Phys. Letters 21, 688 (1966).

8A. M. Friedman, Joint Institute for Nuclear Research
Report No. JINR-D7-3548, 1967 (unpublished), p. 39.

. M. Strutinsky and Yu. A. Muzychka, Joint Institute
for Nuclear Research Report No. JINR-D7-3548, 1967
(unpublished), p. 51.

8. M. Strutinsky, Institute of Atomic Energy Report
No. IAE-1108, 1966 (unpublished) [transl.: ANL Report
No. ANL-TRANS-353, 1966 (unpublished)].

%V. M. Strutinsky, Arkiv Fysik 36, 629 (1967).

10y, M. Strutinsky, Institute of Atomic Energy Report
No. IAE-1350, 1967 (unpublished) [transl.: LASL Report
No. LA-TR-67-36, 1967 (unpublished)].

ty, M. Strutinsky, Nucl. Phys. A95, 420 (1967).

12y, M. Strutinsky, Nucl. Phys. M 1 (1968).

13yu, A. Muzychka, V. V. Pashkevich, and V. M. Strutin-
sky, Yadern. Fiz. 8, 716 (1968) [transl.: Soviet J. Nucl.
Phys. 8, 417 (1969)].

14y, V. Pashkevich, Joint Institute for Nuclear Research
Report No. JINR-P4-4383, 1969 (unpublished).

15y, V. Pashkevich, Joint Institute for Nuclear Research
Report No. JINR-D-3893, 1968 (unpublished), p. 94.

16y, M. Strutinsky and S. Bjgrnholm, in Proceedings of
the International Symposium on Nuclear Structure, Dub-
na, 1968 (International Atomic Energy Agency, Vienna,
1968), p. 431.

1%y, v. Pashkevich and V. M. Strutinsky, Yadern. Fiz. 9,
56 (1969) [transl.: Soviet J. Nucl. Phys. 9, 35 (1969)].

18yy, A. Muzychka, Phys. Letters 28B, 539 (1969).

1%yu, A. Muzychka, Yadern. Fiz. Q 113 (1969) [transl.:
Soviet J. Nucl. Phys. 10, 66 (1970)].

2%u. A. Muzychka, Yadern. Fiz. 11, 105 (1970) [transl.:
Soviet J. Nucl. Phys. 11, 57 1970)1.

2y, v, Pashkevich, Nucl. Phys. A133, 400 (1969).

22, Damgaard, H. C. Pauli, V. V. Pashkevich, and
V. M. Strutinsky, Nucl. Phys A135, 432 (1969).

%%, Bjgrnholm and V. M. Strutinsky, Nucl. Phys. A136,
1 (1969).

2y, M. Strutinsky and H. C. Pauli, in Proceedings of
the Second International Atomic Enevgy Agency Sympos-
tum on Physics and Chemistry of Fission, Vienna, Aus-
tria, 1969 (International Atomic Energy Agency, Vienna,
1969), p. 155.

BV, M. Strutinsky, in Proceedings of the Robert A.
Welch Foundation Confevence XIII. The Transuvanium
Elements, Houston, Texas, 1969 (Robert A. Welch Foun-
dation, Houston, Texas, 1970), p. 83.

263, Bjgrnholm, in Proceedmgs of the Robert A, Welch

Foundation Conference XIII. The Transuvanium Elements,

Houston, Texas, 1969 (see Ref. 25), p. 447.

%', C. Pauli, T. Ledergerber, and M. Brack, Phys.
Letters 34B, 264 (1971).

28H, C. Pauli and T. Ledergerber, to be published.

2%y, V. Pashkevitch, Joint Institute for Nuclear Re-
search Report No. JINR-P4-5581, 1971 (unpublished)
[transl.: ANL Report No. ANL-TRANS-878, 1971 (unpub-
lished)].

M. Brack, J. Damgaard, H. C. Pauli, A. Stenholm-
Jensen, V. M, Strutinsky, and C. Y. Wong, to be pub-
lished.

31p_ A. Seeger and R. C. Perisho, LASL Report No. LA-
3751, 1967 (unpublished).

2p A. Seeger, in Proceedings of the Thivd Internation-
al Conference on Atomic Masses, Winnipeg, 1967 (Uni-
versity of Manitoba Press, Winnipeg, 1967), p. 85.

3p, A, Seeger, CERN Report No. CERN 70-30, 1970
(unpublished), Vol. 1, p. 217.

P, A. Seeger, LASL Report No. LA-DC-12792, 1971
(to be published).

%S. G. Nilsson and J. R. Nix, Bull. Am. Phys. Soc. 13,
605 (1968).

%S. G. Nilsson and J. R, Nix, Joint Institute for Nuclear
Research Report No. JINR-D-3893, 1968 (unpublished),
p. 86.

%S, G. Nilsson, J. R. Nix, A. Sobiczewski, Z. Szyman-
ski, S. Wycech, C. Gustafsson, and P, Méller, Nucl.
Phys Al115, 545 (1968).

383, G. Nllsson in Cargese Lectuves in Physics, edited
by M. Jean (Gordon and Breach, New York, 1969), Vol.
3, p. 105.

g, G. Nilsson, S. G. Thompson, and C. F. Tsang,
Phys. Letters 28B, 458 (1969).

493, G. Nilsson, C. F. Tsang, A. Sobiczewski, Z. Szy-
manski, S. Wycech, C. Gustafsson, I. L. Lamm P. Mol-
ler, and B. Nilsson, Nucl. Phys. A131, 1 (1969).

4c, F. Tsang, Ph.D. thesis, University of California,
1969 (unpublished); UCRL Report No. UCRL-18899,

1969 (unpublished).

23, G. Nilsson, in Proceedings of the International Con-
ference on Properties of Nuclear States, Montreal, 1969
(University of Montreal Press, Montreal, 1969), p. 149.

43p, Méller, S. G. Nilsson, A. Sobiczewski, Z. Szymafi-
ski, and S. Wycech, Phys. Letters 30B, 223 (1969).

“S G. Nilsson, G. Ohlén, C. Gustafsson, and P. Méller,
Phys. Letters 30B, 437 (1969).

%C. F. Tsang and S. G. Nilsson, Nucl. Phys. A140, 275
(1970).

“6C. F. Tsang and S. G. Nilsson, Nucl. Phys. A140, 289
(1970).

47p. Méller, Nucl. Phys. A142, 1 (1970).

48p, Moller and S. G. Nllsson Phys Letters 31B, 171
(1970).

#p, Méller and S. G. Nilsson, Phys. Letters 31B, 283
(1970). _

50C. F. Tsang and S. G. Nilsson, CERN Report No.
CERN 70-30, 1970 (unpubhshed), Vol. 2, p. 769.

5IR. Bengtsson, C. Gustafsson, T. Johansson P. Mol-
ler, S. G. Nilsson, G. Ohlén, and I. Ragnarsson, CERN
Report No. CERN 70-30, 1970 (unpublished), Vol. 2,
pp. 645, 847.

52C. Gustafsson, P. Mdller, and S. G. Nilsson, Phys.
Letters 34B, 349 (1971).

53T. Johansson, S. G. Nilsson, and Z. Szymafski, Ann.
Phys. (Paris) 5, 377 (1970).




1076 BOLSTERLI,

%A, Lukasiak, A. Sobiczewski, and W. Stepiefi-Rudzka,
Institute of Nuclear Research Report No. INR-P-1293/
VII/PL, 1971 (to be published); A. Sobiczewski, private
communication.

5K, Albrecht, D. Scharnweber, W. Greiner, and U. Mo-
sel, Phys. Letters 32B, 229 (1970).

6. Mosel and D. Scharnweber, Phys. Rev. Letters 25,
678 (1970).

STK, Albrecht, D. Scharnweber, and W. Greiner, CERN
Report No. CERN 70-30, 1970 (unpublished), Vol. 2,

p. 775.

%83, Grumann, T. Morovié, and W, Greiner, Z. Natur-
forsch. 26a, 643 (1971).

%D, Scharnweber, W. Greiner, and U. Mosel, Nucl.
Phys. A164, 257 (1971).

80y, Mosel and H. W. Schmitt, Nucl. Phys. A165, 73
(1971).

61U, Mosel and H. W. Schmitt, Bull. Am. Phys. Soc. 16,
516 (1971).

62U. Mosel and H. W. Schmitt, Phys. Rev. C 4, 2185
(1971).

63B. L. Anderson, F. Dickmann, and K. Dietrich, Nucl.
Phys. A159, 337 (1970).

4K, Dietrich, to be published.

%G, D. Adeev, P. A. Cherdantsev, and I. A. Gamalya,
Phys. Letters 35B, 125 (1971).

8H. J. Krappe and U. Wille, in Proceedings of the Sec-
ond Intevnational Atomic Enevgy Agency Symposium on
Physics and Chemistry of Fission, Vienna, 1969 (see
Ref. 24), p. 197.

67J. R. Nix, CERN Report No. CERN 70-30, 1970 (un-
published), Vol. 2, p. 605.

3. R. Nix, LASL Report No. LA-DC-12488, 1971 (un-
published).

%M, Bolsterli, E. O. Fiset, J. R. Nix, and J. L. Norton,
Phys, Rev. Letters 27, 681 (1971).

"3, L. Norton, J. R. Nix, and M. Bolsterli, in Ameri-
can Chemical Society Abstracts of Papers, 162nd Meet-
ing (American Chemical Society, Washington, D. C.,
1971), abstract NUCL 1.

"C. Y. Wong, to be published.

™H, Schultheis, R. Schultheis, and G. Siissmann, Nucl.
Phys. Al144, 545 (1970).

H. Schultheis and R. Schultheis, Phys. Letters 34B,
245 (1971). _

™H. Schultheis and R. Schultheis, Phys. Letters 35B,
296 (1971).

J. R. Nix, Nucl. Phys. A130, 241 (1969); UCRL Re-
port No. UCRL-17958, 1968 (unpublished).

C. Gustafsson, I. L. Lamm, B. Nilsson, and S. G.
Nilsson, Arkiv Fysik 36, 613 (1967).

s, G. Nilsson, in Proceedings of the International
School of Physics “Envico Fermi,” Nuclear Structure
and Nuclear Reactions, Course XL, Varenna, 1967, edit-
ed by M. Jean and R. A. Ricci (Academic, New York,
1969), p. 142.

"A. Brandt and 1. Kelson, Phys. Rev. 183, 1025 (1969).

M. Gaudin and A. M. Sajot, in Proceedings of the Inter-
national Atomic Energy Agency Symposium on Physics
and Chemistyy of Fission, Vienna, 1969 (see Ref. 24),
p. 229,

80p. Réper, Z. Physik 195, 316 (1966).

8iF, Dickmann, Z. Physik 203, 141 (1967).

FISET, NIX, AND NORTON

|

827, Bennewitz and P. K. Haug, Z. Physik 212, 295
(1968).
83p, Holzer, U. Mosel, and W. Greiner, Nucl. Phys.
A138, 241 (1969).

89W. Greiner, in Proceedings of the International Con-
ference on Nuclear Reactions Induced by Heavy Ions,
Heidelberg, Gevmany, 1969 (North-Holland, Amster-
dam, 1970), p. 748.

85D, Scharnweber, U. Mosel, and W, Greiner, Phys.
Rev. Letters 24, 601 (1970).

8y, Mosel, J. Maruhn, and W. Greiner, Phys. Letters
34B, 587 (1971).

“875. Maruhn and W. Greiner, to be published.
88C. Y. Wong, Phys. Letters 30B, 61 (1969).

8%y, Gotz, H. C. Pauli, and K. Alder, to be published.

90w, Ogle, S. Wahlborn, R. Piepenbring, and S. Fred-

riksson, Rev. Mod. Phys. 43, 424 (1971).

%G, Ehrling and S. Wahlborn, Phys. Letters 34B, 369
(1971).

%M. Bolsterli, E. O. Fiset, and J. R. Nix, in Proceed-
ings of the Second International Atomic Enevgy Agency
Symposium on Physics and Chemistry of Fission, Vienna,
1969 (see Ref. 24), p. 183.

BE. O. Fiset, J. R. Nix, and M. Bolsterli,
port No. LA-4735-MS, 1971 (unpublished).

%J. D. Talman, Phys. Rev. 102, 455 (1956).

%C, Syros, Ph.D. dissertation, University of Cologne,
1961 (unpublished).

%W, D, Myers, Nucl. Phys. A145, 387 (1970).

D, L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102
(1953).

BW, J. Swiatecki, in Proceedings of the Second United
Nations Intevnational Conference on the Peaceful Uses of
Atomic Energy, Geneva, 1958 (United Nations, Geneva,
1958), Vol. 15, p. 248.

993, Blomqvist and S. Wahlborn, Arkiv Fysik 16, 545
(1960).

100p, Bolsterli and J. L. Norton, J. Math., Phys. 12,
969 (1971).

101y, Ortega, in Mathematical Methods for Digital Com-
puters, edited by A. Ralston and H. S. Wilf (Wiley, New
York, 1967), Vol. II, Chap. 4, pp. 94—115.

12g, G, Nilsson, Kgl. Danske Videnskab. Selskab, Mat.-
Fys. Medd. 29, No. 16 (1955).

103G, E. Brown, J. H. Gunn, and P. Gould, Nucl. Phys.
46, 598 (1963).

—T°4J M. Blatt, J. Computational Phys. 1, 382 (1967).
‘1. H. Sloan, J. Computational Phys. 2, 414 (1968).
1%, Rost, Phys. Rev. 154, 994 (1967).
1R, L. Tarp, UCRL Report No. UCRL-50430, 1968

(unpublished).

1%w, D, Myers and W. J. Swiatecki, Ann. Phys. (N.Y.)
55, 395 (1969).

W. D. Myers and W. J. Swiatecki, UCRL Report No.

UCRL-19543, 1970 (unpublished).
oy p, Myers, University of California, Lawrence

Berkely Laboratory Report No. LBL-209, 1971 (to be

published).

1R, W. Hasse, UCRL Report No. UCRL-19910, 1970
(to be published).

27, W. Truran, A. G. W. Cameron, and E. Hilf, CERN
Report No. CERN 70-30, 1970 (unpublished), Vol. 1,

p. 275.

LASL Re-




5 NEW CALCULATION OF

135, Ludwig, H. von Groote, E, Hilf, A. G. W, Cameron,

and J. Truran, to be published.

1145, 8. Tyapin, Yadern. Fiz. 11, 98 (1970)[transl.:
Soviet J. Nucl. Phys. 11, 53 (1970)].

15w, H. Bassichis, A. K. Kerman, C. F. Tsang, D. R.
Tuerpe, and L. Wilets, University of California, Law-
rence Livermore Laboratory Report No. UCRL-73044,
1971 (to be published).

16, A. Bethe, to be published.

T\, L. Gursky, Ph.D. thesis, Vanderbilt University,
1958 (unpublished); private communication.

118\, Bolsterli, unpublished results.

%, D, Myers and W. J. Swiatecki, unpublished results.

1205 Hilf, to be published.

121R  Balian and C. Bloch, Centre d’Etudes Nucléaires
de Saclay Report No. DPh-T/71-16, 1971 (to be pub-
lished).

122y A. Ramamurthy, S. S. Kapoor, and S. K. Kataria,
Phys. Rev. Letters 25, 386 (1970); S. S. Kapoor, private
communication.

123R, K. Bhaduri and C. K. Ross, Phys. Rev. Letters 27,
606 (1971).

1244, A. Bethe, Rev. Mod. Phys. 9, 69 (1937).

1257, Ericson, Advan. Phys. 9, 425 (1960).

1265 . Bohr and B. Mottelson, Nuclear Structuve (Benja-
min, New York, 1969), Vol. I, pp. 281-293.

12'w, Lin, Phys. Rev. C 2, 871 (1970).

128K A, Brueckner, CERN Report No. CERN 70-30,
1970 (unpublished), Vol. 2, p. 773.

1255, T, Belyaev, Kgl. Danske Videnskab. Selskab, Mat.-
Fys. Medd. 31, No. 11 (1959).

1305, Bohr and B. Mottelson, Nuclear Structure (Benja-
min, New York, 1969), Vol. I, p. 170.

13N, Zeldes, A. Grill, and A. Simievic, Kgl. Danske
Videnskab. Selskab, Mat.-Fys. Skrifter 3, No. 5 (1967).

132y, c. Britt, W. R. Gibbs, J. J. anfm and R. H.
Stokes, Phys. Rev. 139, B354 (1965).

135, R. Huizenga, A.N. Behkami, J. W, Meadows, Jr.,
and E. D. Klema, Phys. Rev. 174, 1539 (1968).

134G, N. Smirenkin, V. G. Nesterov, and A. S. Tishin,
Yadern. Fiz. 6, 921 (1967) [transl.: Soviet J. Nucl. Phys.
6, 671 (1968)].

135A, V. Ignatyuk and G. N. Smirenkin, Phys. Letters
29B, 159 (1969).
“1%k, p. Androsenko, S. B. Ermagambetov, A, V, Igna-
tyuk, N. S. Rabotnov, G. N. Smirenkin, A. S. Soldatov,
L. N. Usachev, D. L. Shpak, S. P, Kapitsa, Iu. M. Tsi-

FISSION BARRIERS... 1077

peniuk, and I. Kovach, Obninsk Report No. FEI-185,
1969 (unpublished) [transl.: LASL Report No. LA-4369-
TR, 1970 (unpublished)].

3R, C. Kennedy, Phys. Rev. 144, 804 (1966).

1387, von Neumann and E. Wigner, Physik. Z. 30, 467
(1929).

13, Teller, J. Phys. Chem. 41, 109 (1937).

140c . A, Coulson and J. T. Lew1s, in Quantum Theory,
edited by D. R. Bates (Academic, New York, 1962), Vol.
11, pp. 203-205.

14y, Eyring, J. Walter, and G. E. Kimball, Quantum
Chemistry (Wiley, New York, 1949), pp. 205—206.

2K, E. G. Lobner, M. Vetter, and V. Hénig, Nucl.

Data A7, 495 (1970).

143w, J. Swiatecki, unpublished results.

145 E. Lynn, in Proceedings of the Second Intevnational
Atomic Enevrgy Agency Symposium on Physics and Chem-
istry of Fission, Vienna, 1969 (see Ref. 24), p. 249.

145y, c. Britt, S. C. Burnett, B. H. Erkkila, J. E. Lynn,
and W, E. Stein, Phys. Rev. C 4, 1444 (1971)

1467, Khodai-Joopari, Ph.D. thesm University of Cali-
fornia, 1966 (unpublished); UCRL Report No. UCRL-
16489, 1966 (unpublished).

1475, G. Thompson etal., unpublished results.

8piscussion in Proceedings of the Robert A. Welch
Foundation Conference XIII. The Transuvanium Elements,
Houston, Texas, 1969 (see Ref. 25), pp. 206-211.

149w, J. Swiatecki, unpublished results.

1501, Wilets, Theories of Nuclear Fission (Clarendon,
Oxford, 1964), p. 8.

15313, p, Balagna, G. P. Ford, D. C. Hoffman, and J. D.
Knight, Phys. Rev. Letters 26, 145 (1971).

152w, John, E. K. Hulet, R. W. Lougheed, and J. J. Wes-
olowski, Phys. Rev. Letters 27, 45 (1971).

1535 W Hasse, Nucl. Phys. A128, 609 (1969).

1547, Mosel and W. Greiner, Z. Phys1k 222, 261 (1969).

1553, Grumann, U. Mosel, B. Fink, and W, Greiner, Z.
Physik 228, 371 (1969).

156R, Fraser, J. Grumann, and W. Greiner, Phys. Let-
ters 35B, 483 (1971).

157w _H, Bassichis and L. Wilets, Phys. Rev. Letters 22,
799 (1969).

158y, L. Businaro and S. Gallone, Nuovo Cimento 5, 315
(1957). -

1537, R. Huizenga and F. C. Williams, Jr.
results.

, unpublished



M=\

04

i Shape y Equipotentials

FIG. 4. Shapes described by the symmetric-deforma-
tion coordinate y, and resulting equipotentials of the
folded Yukawa spin-independent nuclear potential V.
The equipotential curves shown are for 10, 30, 50, 70,
and 90% of the well depth V.



