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Optical-model description of time-reversal violation
in neutron-nucleus scattering
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A time-reversal-violating spin-correlation coefBcient in the total cross section for polarized
neutrons incident on a tensor rank-2 polarized target is calculated by assuming a time-reversal-
noninvariant, parity-conserving "6vefold" interaction in the neutron-nucleus optical potential. Re-
sults are presented for the system n+ Ho for neutron incident energies covering the range 1—20
MeV. From existing experimental bounds, a strength of 2 6 10 keV is deduced for the real and
imaginary parts of the 6vefold term, which implies an upper bound of order 10 on the relative
T-odd strength when compared to the central real optical potential.

PACS number(s): 25.40.Dn, 11.30.Er, 24.10.Ht, 24.70.+s

Measurements of the transmission of polarized neu-
trons through nuclear targets provide sensitive tests
of the fundamental symmetries in the nuclear systems
[1]. The violation of parity conservation in low energy
neutron-nucleus scattering is now well established on the
basis of such tests, with measured longitudinal analyzing
powers of the order of 10% [2). Optical-model analyses of
the longitudinal analyzing power, utilizing a postulated
parity-nonconserving term in the neutron-nucleus inter-
action, have been reported recently [3,4]. An optical-
potential description of nucleon-nucleus scattering ob-
servables supplies a useful analytical tool as it relates
the observables to the average properties of compound
nuclear states, and provides a link to the underlying
nucleon-nucleon interaction [5].

A neutron-transmission test of time-reversal invari-
ance in neutron-nucleus scattering has been performed
recently, employing polarized 2 MeV neutrons incident
on an aligned (tensor rank-2 polarized) ~ssHo target
[6,7], with a null result at a 10 4 level of a time-
reversal-violating ("T-odd" ) spin-correlation coefficient,
measured by reversing the direction of neutron trans-
verse polarization. In the present work, we report a
coupled-channels calculation in the &amework of the op-
tical model of the T-odd spin-correlation coefficient for
the system n+ Ho.

The calculation is based on the presence of a time-
reversal-noninvariant, parity-conserving "6vefold" term
in the optical potential, expressed in terms of the opera-
tor s.(Ix r) (I r), where s and I are the projectile spin and
target spin, respectively. Unlike in the studies of parity

nonconservation, where eV energies of p-wave resonances
are relevant and accordingly the compound-elastic cross
section dominates the shape-elastic (direct-elastic) cross
section, MeV energies with many overlapping, closely-
spaced compound-nucleus resonances are under consid-
eration here. Following the general philosophy of the op-
tical potential, the 6vefold term is an energy-averaged
representation of time-reversal-noninvariant scattering
processes, with an imaginary part that accounts for
time-reversal-noninvariant contributions to the average
compound-elastic and reaction cross sections. As such it
gives the most general description of time-reversal viola-
tion in the scattering of polarized neutrons &om aligned
targets, and via folding-model techniques [8] it can in
principle be related rigorously to a T-symmetry violation
in the effective nucleon-nucleon interaction.

The total cross section crt for neutrons (spin s = 1/2)
incident on a target nucleus with spin I, when the pro-
jectile and target are in polarization states that are de-
scribed by statistical tensors [9] that are "diagonal" in
suitably chosen coordinate frames, i.e., tkq(s) = tko(s) bqo

and tltq(I) = tap(I)hqp, respectively, can be written as ~

&t = ) t leo (s)tKrr (I)ore K ~ (1)
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Clip(s I p) —)

s I,

(s p)(I p) ——s I, A = 2
'~

(4)

and these re8ect the presence of spherical and tensor
spin-spin terms, s I and (s r)(I ~ r) —

s s I, respectively,
in the projectile-target interaction (here r" is a unit vec-
tor along the direction from the target to the projectile;
an operator quadratic in r" transfers two units of orbital
angular momentum, A = 2). Another example is the case
of k = 0 and X = 2, the deformation cross section ops for
an unpolarized projectile incident on an aligned target.
The deformation cross section 0'p2 has a correlation term
with A=2:

Cpzz(sIp) =
z (I p) —

s = Pz(I p), (5)

which corresponds to the tensor potential (I r) —sI(I+
1) of a nucleus with spin I ) 1/2, or the quadrupole reori-
entation interaction of a rotational, statically deformed
nucleus, which has the same tensor form.

The k = 1, K = 2 cross section o.q2 is of our interest, as
it has a parity-even, time-reversal-odd correlation term
with A = 2, which has the following "fivefold" form in
terms of the Cartesian vectors s, I, and p:

Ciz2(sIp) =i s . (I x p) (I . p).

This correlation term is imaginary as here k + K+ A is
odd. A projectile-target interaction that has the same
spherical-tensor structure is

Ts ——i[s . (I x r)(I . r) + (I . r)(I x r) . s]. (7)

As I x r" and I . r do not commute (s and I are opern
tora of the projectile and target spins, respectively, while

Here A is the reduced wavelength, k = (2k + 1)i~z, etc. ,
T~, ,, = (1/2i)(Si~. ..- —bii b,, ), where Si~. .. are ele-
ments of the elastic-scattering S-matrix in the spin-orbit
coupling representation, [, ]s denotes a spherical-tensor
product of rank k, and s, I, and p are unit vectors along
the z axes of the &ames in which the projectile and target
statistical tensors are diagonal, and along the beam direc-
tion, respectively; the angular brackets, S', and braces
denote the Clebsch-Gordan, Racah, and 9-j coefBcients,
respectively. The scalar quantities Cslcp(s Ip) are the so-
called correlation terms in the forward elastic-scattering
amplitude, which are real (pure imaginary) for k+ K+ A

even (odd). Expressions of differing generality for the to-
tal cross section with the projectile and target in polar-
ization states described by statistical tensors have been
given also elsewhere [10—13].

A correlation term Csin'~(sIp) indicates the presence
of a term in the projectile-target interaction that has
the same spherical-tensor structure. For example, the
k = K = 1 cross section ~q~ has spin-spin correlation
terms with orbital angular momentum transfers A = 0
and 2:

the quantities s, I, and p in the correlation terms are
"c-numbers" ), the fivefold operator Ts is symmetrized as
above. It is Hermitian and conserves parity, but it an-
ticommutes with the operator of time reversal. The op-
erator T5 generates an antisymmetric elastic-scattering
S matrix, S&, ,

&

———&. &,
.„as it is odd on time re-J J

versal and Hermitian; an operator iT5, which is time-
reversal-even and anti-Hermitian, leads similarly to an
antisymmetric S matrix. This parallels the behavior of
the familiar central terms in the optical potential: the
central real part V(r), which is time-reversal-even and
Hermitian, and the central imaginary part iW(r), which
is time-reversal-odd and anti-Hermitian, both generate a
symmetric S matrix [9]. Table I summarizes the symme-
try properties of these terms in the optical potential. The
presence of an interaction with the operator Ts or iTs in
the neutron-nucleus optical potential leads to a nonzero
cross section 0i2, or a T-odd spin-correlation coefFicient

[14] As, defined as

1 0'y2

&oo 2s (I x p)(I p) Ooo

where o'iz corresponds to the maximum value of the
fivefold correlation term and 0'pp is the total cross section
for an unpolarized beam and target (note that As of this
definition is by a factor of (15/32)i~ smaller than the
"T-odd analyzing power" used in [6,7]). Experimentally,
the T-odd spin-correlation coefficient is determined from
the ratio (ot —o'g)/20'pp, where og (ug) is the total cross
section for neutrons incident on an aligned target and
polarized up (down) with respect to a direction parallel
to I x p [6,7]. It should be mentioned that an interaction
of the same form as in Eq. (7), but with the position
operator r" replaced by the momentum operator p has the
same spherical-tensor structure and symmetry properties
as the operator T5. However, such an interaction has
a second-order velocity dependence, as opposed to the
static character of T5, and such interactions are generally
considered to be of much less importance when a static
interaction is available (cf. the case of the tensor spin-
spin interaction).

Using the techniques of spherical-tensor algebra [15],
the fivefold operator T5 can be expressed as a scalar prod-
uct of rank-2 spherical tensors

Ts ———i~4m([Yq(r), s]z, [I,I]z }p,

TABLE I. The symmetry S of the elastic-scattering S ma-
trix and the properties under Hermitian conjugation H and
time reversal T for the central and 6vefold interactions. The
positive (negative) sign denotes that an interaction is even
(odd) under a transformation and that the corresponding S
matrix is symmetric (antisymmetric).

Interaction
V(1 )
iw(r)
T5
XT5
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and thus it is seen to be responsible for transfers A =
2, j, = 1, and jI ——2 of the orbital, projectile-spin, and
target-spin angular momenta, respectively, in the spin-
orbit coupling representation A + j, = jl. The reduced
matrix element [15] of Ts is then proportional to

~4~(s][s]]s)(I[[[a,X],]]I)

500

250—

o 0
E

= —i 3 8 8+1 I I+1 2I+3 2I —1, 10
-250—

and a calculation of elastic-scattering 8-matrix elements
with the interaction T5 included in the optical poten-
tial can be performed using a standard coupled-channels
code. The reduced matrix element of T5 is imaginary, in
accordance with the operator being odd on time reversal
and Hermitian.

Using the coupled-channels code cHUcK [16], calcula-
tions of the T-odd spin-correlation coefficient A5 were
performed for the system n + ~ssHo (spin I = 7/2) for
neutron incident energies covering the range 1—20 MeV.
A deformed optical potential of the standard Woods-
Saxon parametrization was employed, with the real part
of strength 49.8 —16(N —Z)/A —0.325E MeV, surface
imaginary part of strength 5 —8(N —Z)/A+ 0.51E (E &
6.5 MeV) and 8.3 —8(N —Z)/A —0.09(E —6.5) (E )
6.5 MeV), volume imaginary part of strength —1.8 +
0.2E (E ) 6.5 MeV), and a spin-orbit strength of 6 MeV;
the reduced radius and diffuseness parameters of all the
terms of the potential were 1.26 and 0.63 fm, respectively,
with the exception of 0.48 fm for the di8'useness of the
surface imaginary part; the central part of the potential
had a quadrupole deformation parameter P2 ——0.29 [17].
A fivefold interaction term

[Vsfv(r) + iWs fw(r)]Ts,

with volume Woods-Saxon form factors fv(r) and fear(r)
of the same geometries as the corresponding terms in
the central potential was added to the optical potential.
Apart &om the coupling due to the fivefold term, the
calculations included the reorientation coupling of the
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FIG. 2. The deformation cross section cry, f for n + Ho
as a function of the neutron incident energy E„.The experi-
mental data are &om [22] (diamonds), [23] (squares), and [24]
(circles). Typical experimental errors are +(50—80) mb.
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ground state of Ho, with angular momentum trans-
fers A = 2, 4, and 6, assuming the rotational model
and a ground-state bandhead K = I = 7/2. Perform-
ing coupled-channels calculations, instead of a distorted-
wave Born approximation treatment of the small five-
fold term, thus had the advantage of being able to ac-
count easily for the large static deformation of Ho.
The optical potential used is an adequate representation
of the average n- Ho interaction in the energy range
considered; this can be seen in Figs. 1 and 2, where
the experimental total cross sections croo and deforma-
tion cross sections o~,f = oo2/P2(I p) are compared
with the predictions calculated with the potential. Fig-
ure 3 presents the results for the T-odd spin-correlation
coeKcient A5, separately for a pure real fivefold term of
strength V5 ——+0.1 MeV and a pure imaginary fivefold
term of strength R'5 ——+0.1 MeV. As a function of the
incident neutron energy, the spin-correlation coefficients
are seen to oscillate in a typical Ramsauer fashion [18],
reBecting the small changes in the overall strength of the
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FIG. 1. The total cross section choo for an unpolarized beam
and target for n+ Ho as a function of the neutron incident
energy E„.The experimental data are from [21].
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FIG. 3. T-odd spin-correlation coefficient A5 for n+ Ho
as a function of the neutron incident energy E . The solid
and dashed lines are for a real strength V5 ——+0.1 MeV and
an imaginary strength W& ——+0.1 MeV, respectively, of the
fivefold interaction.
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nucleon-nucleus interaction due to the 6vefold term. The
amplitude of the oscillation is about 4 x 10 at the low-

energy end of the 1—20 MeV range. The calculated values
of A5 are proportional to the small strengths V5 and R'5.

Using these results and the experimental value of
As ——(0.7 6 4.1) x 10 for the T-odd spin-correlation
coefficient in the system n+ sHo at 2 MeV [6], both
the real and imaginary strengths of the T-odd fivefold
term in the optical potential are estimated as 2 6 10
keV. In order to be able to relate quantitatively this es-
timate to the strength of the T-odd, parity-even part
of an eff'ective nucleon-nucleon interaction, the fivefold
term in the optical potential would have to be calcu-
lated from the underlying nucleon-nucleon force, which
is still an outstanding task. An order-of-magnitude esti-
mate can be made, however, of the bound on the ratio

aT of the strengths of the T-odd, parity-even and T-
even, parity-even parts of the eff'ective nucleon-nucleon
interaction simply by taking the ratio of the strengths
of the 6vefold and central real parts in the optical po-
tential: aT ( (10keV)/(50MeV) = 2 x 10 4. This is
of the same order as the best sensitivity in az obtained
&om analyses of detailed-balance experiments [19] and
&om a recent analysis of energy shifts in neutron p-wave
resonances [20].
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