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Resonant Igs Sx+ (q2) electroproduction multipole amplitude
and the ENp scalar form factor Go(qz)
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The resonant Pss single-pion electroproduction multipole amplitude S + (q ) and the ANp
scalar form factor G&(q ) are calculated nonperturbatively in terms of the well-known nucleon form
factors gz(q ) and Gz(q ). Results are in good agreement with experiment. Our treatment is
completely relativistic with current conservation guaranteed. Assuming the usual dipole behavior
for g~(q ) and G&(q ), we confirm that G&(q ) falls off asymptotically at the rate q as expected
in perturbative +CD.

PACS number(s): 13.40.Gp, 13.60.Rj, 25.20.1j, 25.30.Rw

The ANp transition form factor [1,2] GM(q2), G&(q2),
and G&(q2) in elementary particle physics are very im-

portant in that they provide a basis for testing theories
of efFective quark forces or production models [3,4]. They
are especially important in the analysis of perturbative
QCD (PQCD) models involving gluon exchange mecha-
nisms, tensor interactions, or possible hybrid baryonic
states; in enhanced quark models in which the tran-
sition form factors may be calculated as a function of
q2; in electroproduction and photoproduction processes;
in symmetry schemes such as SU(6) and U(6,6), and
Melosh transformations; in bag models; in dispersion re-
lation and Bethe-Salpeter approaches; in current algebra
baryon sum rules; and in nonperturbative methods such
as lattice QCD, QCD sum rules, and algebraic formula-
tions [5—8]. The fundaxnental reason that the transition
form factors are such good QCD probes lies in the fact
in many quark, syxnmetry, or potential models, G&(q )
and/or G&(q2) are identically zero, thus giving rise to
pure magnetic dipole M&+ transitions. However, we wish
to point out that while much theoretical and experimen-
tal attention has been focused in the past few years on the
ratio (Ex+ /Mx+ )~2 o

———(G@/GM)q~ o, one should not
forget the equally important scalar quadrupole amplitude
Sx+ (q2) oc G&(q2) which arises in the electroproduction

I

of the 4 in the reaction p + N -+ 6 ~ m + N. This is
particularly true when one considers that available data
indicate that lSx+(q )l is greater than lEx+(q )l at low
momentum transfer.

In this paper, we utilize the nonperturbative methods
of asymptotic flavor SUp(2) syxnmetry and asymptotic
level realization [8,9] to derive an explicit form for the
Coulomb form factor G& as a function of q and the well-
known nucleon weak axial-vector form factor g~(q"2)
[parametrized by g~(q"2)/g~(0) = (1 —q"2/m2&) 2],
where

(p, pq~s" (0)~n, p~) = (2m) g( m„)/m(E~, s~, )

xux, (p2) [g~(q )p"ps]u (px)

m„= neutron mass, and q" = (p2 —px) and the nu-
cleon isovector Sachs form factor G&(k ) [parametrized
by Gv&(k2) = 2x(1 —kz/0. 71) 2] [10]. From this relation,

we then determine SI+ (q2) and coxnpare our results(3/2)

with available data and a dispersion relation numerical
calculation.

One may write [11) for the 6+pp transition helicity
amplitude (including an explicit isospin factor of g2/3)
the expression

mm' EpE~u„p, A„ I.'„p u& p', &~

where

(2)

.3(m'+ m), , x, 3(m*+ m)
I'~p = i (G~ —3G&)O m'qpe„(qpp) — (GM + G&)O [2ep (p'p)e„(p'p)ps —im'qpe„(ivy)]

3(m*+ m)+ Gce qp [pqqyqp) ]3's. ,

m

In Eqs. (1) and (2), the electromagnetic current js de-
noted by j~, q =—p' —p, p* and p are the four mo-
menta of the L+ and nucleon, respectively. 0
([(m'+m)2 —q ][(m' —m)2 —q ]) x is a kinematic fac-
tor which depends on q2, m' (the b,+ mass), and m (the
proton mass); AJ and An are the helicities of the proton
and 4+, respectively. We note that the first, second, and

third terms in Eq. (2) induce transverse 2, transverse 2,
and longitudinal helicity transitions, respectively, in the
rest frame of the E+ isobar [2].

The magnetic, electric, and Coulombic multipole (CM)
transitions given by Mx+(q ), Ex+(q ), and Sx+ (q ) can
be written in terms of GM(q ), G@(q ), and Gz(q ).
Specifically, the isospin 2 scalar quadrupole multipole
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amplitude Si+ (q ) is given in terms of G&(q2) by the
expression [12]

S'"'"(q') = —— V'q+& G' ( ') (3)1+ A 16 m+2m

where Q+(q2) = (m' + m) —q, A = 2~3m'[(p'I')/
a] )', p'=magnitude of the pion CM three-momentum
for the reaction p+p ~ 4+ -+ x +p, 1—:total 4 width

0.12 GeV, and o.= fine-structure constant &37.
For the virtual process p ~ p+ p, we have similarly

(p(s, A) Ij„(0)Ip(t, A'))

.y 'I(«')".(»)F~l".(' "*) (4)

where

I'„= [1 —q /(4m )] [(i/(4m ))GM(q )e„(Pqp)ps

+(1/(2m))Ga(q )Pi,],

P„—:p+p, q = p' —p with p' = (p, t), and p = (p, s).
GM(q ) and G@(q ) are the familiar nucleon Sachs form
factors.

In order to proceed with the calculation of Go(q ),
we consider only helicity states with A = +2 (i.e.,

spin nonfiip sum rules) and the nonstrange (S = 0)
L = 0 ground-state baryons (J = 2, 2 ). It
is well known [8,13] that if one defines the axial-
vector matrix elements (p, 1/2IA + ln, 1/2) = f
g~(0), (b,++ I/2]A~+ (4+ 1/2):— —g(3/2)g, and

(4++, 1/2
I
A + lp, 1/2)—:—~6h, and applies asymptotic

level realization to the chiral SU(2)SU(2) charge alge-
bra [A +, A -] = 2Vs, then h2 =

2s f2 [the sign of ti =
+ s f, can be fixed by requiring that GM(0) ) 0 [9]] and

g = (—~2/5)f. If one further defines (suppressing the
index p) (6+, 2, sl js I

6+, -'„t)—:a, (p, 2, sl js lp, 2, t) =
6, (n, 2, sljslAo, 2, t) —= c, (6, , —2', sljsln, —,', t) —= d
(note that other required matrix elements of js can
then be obtained easily &om the double commutator

[[jg(0),V+], V —] = 2jf(0)) and inserts the algebra
]

[js(0),A +] = A"+(0) (j" = js + js, where js
isovector part of j" and j& is isoscalar) between the
ground states (B(o,A = 2, s) I

and IB'(o., A = 2, t)) with
Isl ~ oo, ltl m oo, where (B(a)l and IB'(P)) are the
following SUy(2) related combinations: (p, n), (p, A ),
(4++,p), (n, 4 ), (b,++, b,+), (6+, b,o), (Ao, b, ), and
(b,+, n), then one obtains (we use (Njl&IA) = 0) the
constraint equations (not all independent):

2fb —1/2h(c+ d) = f =
(A = 2)(plA"+ ln), (5)

~6h(3a —b) —/3/2gc = f =
(A = 2)(nlA"+IE ), (8)

—~6ga+ v 6hc = f =0(A = 21)(b,++IA" ~b,+), (9)

—2~2ga+ ~2h(c+ d) = f =
(A = 2)(b,+IA"+lb, ),

(10)

—~6ga+ phd = f =
(A = 2)(6 IA" IE ),

—~2h(a+ '6) + (f + ~2g)d = f =
(A = 2)(6+IA"+ In).

(12)

Applying asymptotic level symmetry, Eqs. (5)—(12) im-
mediately imply that d = c and a = ti+ [

—1(g/p)—
(I/2~2)(f/h)]c. One can calculate f+=o(A = 1) eas-
ily by setting p = 0, restoring the z dependence to the
matrix elements and integrating over dx. We find that
f =s(A = 2) = 1. Finally, we obtain [14]

1/2h(a+6) + (—~2g —f)c = f =
(A = -')(plA" IA ),

(6)

v 6h( —3a + b) + /3/2gd = f =
(A = -') (b,++ IA" lp),

(7)

(p, -'„slj~(0)l~+, -'„t) = — '" ' "' " '' '
(p, -'„slj&(0)lp -'2 t)'2' 4 2f (13)

Now take the limit Itl ~ oo where lsl = rltl (s and t are taken along the z axis, 0 & r & m /m' ) and ev»ua«
directly each of the matrix elements in Eq. (13). We find that

G«2 5rmm' 1 q"' (1+r)'
Gc q 1 —

2 + 1—
(1 —r)(rm' —m)(m+ m') 2 m 4r 4m2

&«(«')
I

(14)
1 r2( r)

(
«2 2) 112 ( )

(
2 2) -2 ( ) 2 Gv(0) 1

r r r

Equation (14) is the main result of this work and effec-
tively gives G& as a function of q . One finds analytically
that lq IGo (q ) ~ ((5m*ms)/[2(m+m')])((m~/m )
(+0.71/m) ) as —q ~ oo. In Fig. 1, we see immediately

I

that G&(q2) falls off asymptotically at the rate 1/q as
expected in PQCD [4] but that lq IGo (q ) does not show
significant signs of approaching its asymptotic value of

0.4(1.3) GeVs/cs for m~ = 0.95(l.l) GeV/c until —q2
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FIG. 1. The quantity ]q [G&(q ) for m' = 1.232 GeV/c.
The solid line hss mz = 0.95 GeV/c. As —q -+ oo, the
dashed line represents its asymptotic value of 0.382 GeV /c .
The dot-dsshed line hss mz = 1.10 GeV/c. As —q ~ oo, the
dotted line represents its asymptotic value of 1.189 GeV /c .

FIG. 2. The b Np scalar quadrupole amplitude S~+~ I(q )
for m' = 1.232 GeV/c. The solid line represents our theoret-
ical calculation for m~ = 0.95 GeV/c. The dash-dot-dotted
line represents our theoretical calculation for m~ ——1.10
GeV/c. The dash-dotted line is the dispersion relation re-
sult of Ref. [20]. The dashed line is the result of a fit to data
from Refs. [2,16,19]. The triangular data points are from Ref.
[18] and the circular data points are from Ref. [17].

is in the range of 10—20 GeV2/c2. Since one would expect
that the q2 region corresponding to the oiiset of PQCD
scaling for G&(q ) is the same as that for G~(q2) and
G&(q ), it may be very difficult to observe this "leveling
oH'" behavior even at the accelerator energies that Con-
tinuous Electron Beam Accelerator (CEBAF) can pro-
vide. On the other hand, for low momentum transfer,
we expect that our results will be tested in the very near
future by new electroproduction experiments designed to
produce data near the photon point and also designed to
yield new more precise measurements of m~ or equiva-
lently the axial root-mean-square radius of the nucleon

[15]. Equations (3) and (14) allow one to obtain Si+
explicitly as a function of q2. In Fig. 2, we plot Si+ (q2)

(m' = 1.232 GeV/c) as given by our theoretical calcu-
lation for m~ = 0.95 GeV/c and m~ = 1.10 GeV/c, by
experiment [2,16—19], and as given by a numerical cal-
culation using projected fixed t dispersion relations [20].
One observes that (especially for the value m~ = 1.10
GeV/c) our calculation is in very good numerical agree-
ment with the data and also predicts the explicit analytic
q2 behavior of S + (q2) consistent with the fitted values
and form factor model assumptions of Refs. [2,19] and
the implicit qz behavior of the results of Ref. [20].
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