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Angular momentum dependence of the parity splitting in nuclei with octupole
correlations
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Experimental data on the angular momentum dependence of parity splitting of yrast bands in
different nuclei are analyzed using a one-dimensional model of octupole motion with axial symmetry.
A two parameter formula, based on a solution of the Schrodinger equation with a double-minimum
potential, predicts that the parity splitting exponentially decreases with I(I + 1) and gives a good
St to these data. Moreover, it relates the observed parity splitting directly to the internal barrier
height of the potential.
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Octupole correlations have attracted widespread in-
terest [1—5] as a characteristic collective mode that has
been observed in many nuclei. These correlations have
been treated in geometrical, mean field, and algebraic
approaches [6—8]. Experimentally the most characteris-
tic feature of the presence of strong octupole correlations
is the appearance of alternating parity bands. If the oc-
tupole motion can be characterized as vibrational then
the negative parity states appear at rather high excita-
tion energies and are well separated from the positive
parity states. If significant octupole correlations or de-
formation are present, the negative parity states lie much
lower in excitation energy and form an alternating parity
band of molecular type with the low-lying positive par-
ity states. Thus, the energy splitting of the negative and
positive parity states in a band can be used as a mea-
sure of the strength of octupole correlations (or of the
potential energy as a function of the octupole deforma-
tion parameter). Moreover, and this is the central focus
of the present work, the parity splitting of the octupole
correlations can depend on the angular momentum.

The purpose of this Rapid Communication is to in-
vestigate the relation of the octupole potential energy
surface to the parity splitting in the alternating parity
bands. In particular, we derive a formula for the angular
momentum dependence of the parity splitting in a band
and show how this can be connected to the angular mo-
mentum dependence of the effective octupole potential
energy, which includes a rotational energy term. Further-
more, we compare this formula to the data for a variety
of alternating parity bands.

We investigate the dependence of the parity splitting
on the potential well depth of the octupole deformed min-
imum for a one-dimensional Schrodinger equation with
double-minimum potential reflecting the symmetry with
respect to change of sign of the octupole deformation
(Fig. 1) and with constant mass parameter. Probably,
other effects such as Coriolis coupling to higher K g 0
octupole states [1,3,9,10] or two quasiparticle admixtures
are also involved, but we consider them less important or

assume that they can be included efFectively through a
renormalization of the potential. For instance the effect
of the Coriolis coupling to higher K P 0 states can be ex-
pressed as a renormalization of the moment of inertia [1],
whose influence on the angular momentum dependence of
the potential is discussed below. Thus we rather focus on
the octupole potential. The potentials of the type shown
in Fig. 1 with different values of softness can be used to
investigate the dependence of the parity splitting on the
barrier height AV between the deformed minima. For
physically reasonable cases the parity splitting (E E+)—
(i.e., the energy difference between two lowest eigenvalues
for negative and positive parities, respectively) decreases
as b,V increases [11). With a reasonable accuracy the
quantity —ln(E —E~) linearly increases with b, V with
the same slope for all potentials considered, which are
smooth functions of the octupole variable Ps.

This result can be exploited to parametrize the angular
momentum dependence of the parity splitting in a simple
fashion. With increasing angular momentum, centrifugal
forces modify the efFective potential. This potential thus
depends on the angular momentum via a rotational en-

ergy term A(Ps)I(I + 1). Since the rotational parameter
A(Ps) depends on the octupole deformation Ps and in-
creases with Ps [12—15], the depth of the minimum (lo-

V(I)

&3,min

FIG. 1. The potential V(Ps, I) for constant I as a function
of Ps showing the two symmetric minima. The vertical scale
depends on the mass parameter.
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cated at Ps;„)or the barrier height between the reflec-
tion asymmetric shape and its mirror image will increase
proportionally to I(I + 1). Allowing for a possible in-
crease of the moinent of inertia with spin I (described
by a variable moment of inertia or the Lipas-Holmberg
expression) we take the following expression for the po-
tential well depth

(Ps ) = (Ps o) + A(Ps)
)

I(I + 1)

where a parametrizes changes in the moment of inertia
with I. Hence b V($) is

b.V (I) = V(0, I) —V(Ps, ;„,I)

= const + [A(Ps ——0) —A(Ps;„))
I(I + 1)

1+aI I+1 '

(2)

Since —ln(E —E+) linearly increases with b V(I), the
parity splitting b,E(I) is

b,E(I) = E (I) —E+(I)
I(I + 1)/Jp(Jp + 1) l

1 + aI(I + 1)

where Jo is a parameter. It can be shown from [11]and
&om a numerical solution of one-dimensional Schrodinger
equation with the potential shown in Fig. 1 that the value
of Jp is

2

[J.(J, + 1)]-' = o.2 ',™a
[A(p, = o) —A(p, , ;„)].

(4)

In Eq. (3) and Eq. (4) c is a constant and Bs is the
octupole mass parameter. The factor 0.2 comes &om the
numerical solution of the Schrodinger equation. We note
that we use the same picture of the dependence of the
relative energy of the positive and negative parity states
on the barrier height between the reflection asymmetric
shape and its mirror image as discussed in [2] but we
consider in addition the angular momentum dependence
of the barrier height, which is of crucial importance for
describing the data. We will see that this gives another
sensitive measure of octupole correlation effects.

If the potential has a minimum at Ps ——0, the par-
ity splitting is equal to a kequency of vibration. As I
increases the potential becomes softer due to centrifugal
forces. Then the vibrational frequency decreases and the
parity splitting decreases, showing the same tendency as
discussed above. Thus Eq. (2) may be useful in this case
as well.

Let us consider the data for the angular momentum
dependence of the parity splitting. If we approximate a
smooth part of an energy E(I) of an alternating parity
band by the rotor expression, we obtain

E(I) = AI(I+ 1) ——(—1) b,E(I), (5)
1

where positive AE(I) is the parity splitting [see Eq. (3)].
From Eq. (5) we derive

E(I) —2E(I —1) + E(I —2)

= 2A —2(—1) —[b,E(I) + 2b,E(I —1)
4

+DE(I —2)]. (6)

The left-hand side of (6) is the staggering index intro-
duced in [16] times E(2+). On the right is a parity split-
ting term averaged over three neighboring values of I

b,E(I) = [EE(—I) + 26E(I —1) + AE(I —2)] (7)
1

4

and a term proportional to the rotational parameter A,
which is small compared to the second term in Eq. (6) at
low and middle spins I and becomes important only for
spins at which parity splitting decreases significantly. For
instance, jn Th at I = 9, 10 the first term is ten times
smaller than the second one. Nevertheless, it is conve-
nient to subtract this term in order to get an expression
for an averaged parity splitting. This can be done ap-
proxiinately by subtracting &om both sides of Eq. (7)
the expression

[E(I+ 2—) —2E(I) + E(I —2)]
1

b,e(I) = b,E(I)/AE(2). (10)

Moreover, we want to compare experimental normalized
parity splitting data [17—31] with calculated values based
on Eq. (3), which gives for Ae(I)

I(I + 1)/ Jp (Jp + 1) 6/ Jp (Jp + 1)
1+aI(I+ 1) 1+6a

Note the extremely simple result that ln b,e(I) is exactly
linear in I(I + 1) if a = 0. Hence the dependence on
I(I + 1) can be conveniently studied if we plot the data
for —ln b,e(I).

This is shown in Fig. 2. Considered as a function
of I(I + 1) the data fall into three groups. The first
group, to which Th belongs, shows a linear dependence
of —ln Ae(I) on I(I+ 1). The second group correspond-
ing to positive a, is exemplified by the U, Kr, Se isotopes
and various rare earth nuclei. This corresponds to a de-
crease of the rotational parameter A(Ps) with I. The
third group, with negative a, comprises the Ra isotopes

which contains the energies of states of the same parity
and for this reason the parity splitting contributions ap-
proximately cancel each other in Eq. (8). As a result we
get

b,E(I) = —iE(I) —2E(I —1) + E(I —2)
1

2

[E(I+—2)-—2E(I) + E(I 2)] I

~—1
4

It is convenient to use instead the normalized parity split-
ting b,e(I)
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and also sCe and ~44'~4sBa. (Note that the negative a
cannot be justified as an angular momentum dependence
of the moment of inertia. )

Examples of the St of experimental data for b,e(I) with
Eq. (11) are presented in Fig. 3. The overall agree-
ment is very satisfactory. Although a is very small,
its inclusion is often important to get a good fit at
large I. The values of the parameters used in the
fit are given in Table I. We give also the quanti-
ties b, = [I 2 Pl s (b,e,„~(I)—b,eth, ~,(I)) ] and

E(1 )/E(2+), which allow the reader to judge the very
good quality of the fit.

Relation (4) connects the phenomenological parameter
Jo, which can be extracted &om the experimental data,
to quantities which can be calculated microscopically and
therefore should give an important test of the model.
Taking Jo Rom the Table I we extract the ratio A(Ps ——

0)/A(Ps;„) from Eq. (4). Of course the results depend
on the octupole mass parameter B3, which can depend on
an isotope [32] and on Ps. If we take Bs/h2=200 MeV
as in [2], we get for A(Ps ——0)/A(Ps;„) 1.5 in Th,
2.9 in Th, 4.6 in Th, and 2.7 in Ce, which seem
reasonable. An increase of B3 by a factor of 2 decreases
the value of A(Ps ——0)/A(Ps;„) —1 by the same factor.

In conclusion, we have suggested a formula for the
angular momentum dependence of the parity splitting
in alternating parity bands from a solution of the
one-dimensional Schrodinger equation with a double-

Nucleus
»4Th

230Th

220R
2248
226R
144B
146B
146C
232 U'

234U

236U

238U

Jp
4.9
7.9

12.1
15.9

22
4.3
5.8
7.9
6.15
6.2
5

24
37
21

17.8

0
0
0
0

0.0002
0.004
0
0
0
0

0.0008
0
0

0.0016
0.0011

imax
9
17
12
20
26
9
9
13
10
8
9
10
10
18
22

E(1 )/E(2s)
2.53
3.19
5.68
9.55

14.47
2.32
2.56
3.75
3.81
4.08
3.58

11.84
18.08
15.2
15.14

1.0 1 i I i I i I i I i I i I s I I

TABLE I. Values of the parameters Jp, a, the maximum
value of the angular momentum I „used in the Bt of the
experimental data [17—31] for b,c(I) [Eq.(10)], and the ratio
E(1 )/E(2 ). The quantity b. , which measures the deviation
of the theoretical values of de(I) from the experimental ones,
averages 0.012 and is always less than 0.026.
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FIG. 2. Experimental data for —ln de(I) versus I(I+1)/6

for Th, U, and Ra isotopes [see Eq. (10)]. The straight lines
show the quality of the linear approximation.

FIG. 3. Angular momentum dependence of the relative
parity splitting ds(I) = dE(I)/b, E(2) for three nuclei Solid.
lines give the theoretical results; triangles, the data.
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minimum potential. A good overall fit to the experi-
mental data is obtained. This supports the basic valid-
ity of this model of the octupole correlations and allows
the observed parity splitting to be directly related to the
barrier height. An additional consequence is that nuclei
with dynamical octupole deformations at low spins will
develop static octupole deformations at suKciently high
collective spins.
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