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s-wave pion-nucleus interaction and weak coupling constants
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The chiral expansion of the off-shell vrlV amplitude suggests that the s-wave interaction with the
nucleus of spacelike pions is appreciably repulsive. This has important consequences for the weak
hadronic nuclear current, which are discussed here.
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The importance in a number of nuclear phenomena of
the s-wave part of the interaction of ofF-shell pions with
the nucleus has gradually emerged. One of the places
where this interaction is manifest is the quark condensate
which signals the spontaneous violation of chiral symme-
try. It is modified in the nucleus, with a decrease of
its magnitude, so that there is in the nuclear medium a
partial restoration of chiral symmetry [1—3]. The change
is governed by the sigma commutator matrix element,
which is nothing else than the scattering amplitude for
soft pions. Another case where this interaction might
play an important role is in the experiments aiming at
the detection of a pion excess in the nucleus, such as the
(p, n) reaction [4]. We have investigated the role of the s-
wave interaction with the nucleus of the pion exchanged
between the projectile and the target, which is appre-
ciably off-shell with a spacelike character [5]. We have
suggested that, in this case, the interaction is repulsive
and that it could be responsible for the long standing
discrepancy between the data and the calculations based
on a random phase approximation (RPA) where only the
p-wave interaction is incorporated. Since the weak inter-
actions are linked through partially conserved axial cur-
rent (PCAC) to pionic phenomena it is natural to inves-
tigate also in this case the role of this s-wave component.
The in8uence of the p-wave interaction on the weak cou-
pling constants was discussed long ago [6]. More recently
the in-medium pion decay constant has been discussed in
connection with the Cell-Mann —Oakes —Renner relation
in which appears the time part of the axial current (in
the medium the space and time components renormal-
ize differently) [3,7]. It was shown to be linked to the
properties of the s-wave pion self-energy [7].

The aim of the present work is to study the weak
hadronic current in the nucleus, both space and time
components, with a unique formalism which takes into .

account both the p- and 8-wave parts of the pion self-
energy. We derive the renormalization of the difFerent
coupling constants entering the weak axial current. The
basis of our approach is PCAC in its standard form:
BI"A& ——f m 4 where 4 is the pion field and f =94
MeV the pion decay constant. It is important to remark
that the proportionality constant on the right-hand side

Also at CERN, Geneva, Switzerland.

should not change in the medium since it is fixed by a
given underlying Lagrangian. This does not prevent the
two quantities f and m2 from being renormalized when
they appear in the expressions of A„and 4. We give a
general derivation and illustrate our results by a method
based on meson exchange diagrams

We consider the case of a homogeneous isospin sym-
metric infinite nuclear matter. We introduce the pion
self-energy II, denoting II, and II„ its 8- and p-wave
parts, respectively. To leading order in the density this
quantity is related to the isospin symmetric nN for-
ward amplitude T(+) by II = —pT(+). For the p-wave
self-energy we keep the notations of our previous work
[6] with the parametrization II~ = uq2. The quantity
n = BII~/Bq which arises from the b,-hole excitations is
weakly energy dependent at low energies and we take it
to be constant. Notice that we have discarded the impor-
tant part of the self-energy which comes &om the nucleon
poles. As is common in studies of renormalization efFects
we consider that these N-hole excitations are separately
accounted for by a convenient RPA treatment.

The attention will be focused here on the s-wave self-
energy which is energy and momentum dependent. We
introduce the following linear expansion in g and qo
around the soft pion point (q„= q„' = 0):

II, = ll, (0) + qeBII, /Bqo + q BII./Bq'+ (1)
with self-explaining notations. This expansion parallels
that of the 8-wave part of the xN amplitude, which in
the static limit (i.e., infinite nucleon mass) is written:

—Z +r(+) = "(1-q ' ]+p,'+" .f E m2

Here q (q') is the four-momentum of the incident (out-
going) pion (with the condition qo ——qe since we work
in the static limit); Z~ is the sigma commutator term
which has a value of about 45 MeV. The coefficient P
is linked to the efFective range of the s-wave amplitude;
its empirical value is such that the scattering length
al+& = (p~/f2 + pm )/4z nearly vanishes, so that
P = —Z~/f2m2. Notice that the expansion (2) satis-
fies the Adler consistency condition of the vanishing of
the amplitude for one pion soft and the other on-shell.
The coefBcient of the Z~ term, which will play an izn-
portant role in our discussion, is fixed by this constraint.
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g p(n. = ",' 1+f.'
~Np 1+

2zNp&
qop' P+

m2)

m~ mm2 2

Applying the expansion (2) to the forward amplitude,
i.e., q„= q„', we obtain the corresponding expansion of
the self-energy:

At the soft point the interaction is repulsive: II, (0) =
ZNp/f .We have pointed out in Ref. [5] that the ex-
pansion (3) implies that the repulsion becomes more im-
portant for spacelike pions of small energy. This is for
instance the situation in muon capture where the energy
transfer corresponds to typical nuclear excitations ener-
gies, in particular giant Gamow-Teller resonances, while
the momentum transfer is of the order of the muon mass.
The pion propagator in the nuclear medium is

D(q, qp) = [m + II, (0) + q (1 + BII,/Bq + BII„/Bq ) —qo(1 —BII,/Bqo)] (4)

Let us now turn to the axial nucleonic current. In &ee space a nonrelativistic reduction leads to the following
expressions of its space and time components:

f gq(~ q —qo~ p/M)A = gACT—
M m +q —

qo

o p f g qp(o'. q —qpcr p/M)
0 gA M M m2+q2 q2

In the nuclear medium all quantities entering these expressions can be modified. However, the axial coupling
constant as well as the vrN coupling constants belong to vertex parts which are irreducible with respect to pion lines
and remain unchanged since we study for the moment the case of a homogeneous medium where correlations are
ignored. The in-medium expression of the current is

(Cf )g q(o q —qpcr . p/M')
M' rn2 + II(0) + q (1+BII,/Bq + BII /Bq') —q,'(1 —BII./Bqp)

g~~ p (Cof )g qp(cr q —qpcr p/M')
M' M' m +II(0)+q (1+BII,/Bq +BII /Bq ) —q (1 —Bll, /Bq )

(6)

Here C and Co are the renormalization factors of the space and time parts of the pion decay vertex, respectively, and
M* is the effective nucleon mass. They are determined by the PCAC relation B"A„=f m24. In momentum space
the divergence of the axial current reads

qoAp q A' = —gq[o ~ q —qpo ~ p/M'] 1 + (Cpqp —Cq )D(q, qp)

where we have made use of the Goldberger-Treiman relation g~ ——f g/M On the oth. er hand, the operator f m 4
has the matrix element

f m 4' = — rn [o q —qpo p/M']D(q, qo). (8)

One can see in Eqs. (6)—(8) that we have used the xN pseudoscalar coupling. With the pseudovector coupling
one should wo rk with a modified coupling constant f' = gm /2M' in order to keep untouched the pCAC relation.
identifying Eqs. (7) and (8) for all values of the momentum and the energy provides the renormalization factors (we
would get the same answer by identifying the residues at the modified pion pole):

11(0)&=
j
1+

M m2)
C = (1+BII,/Bq + BII~/Bq ) C, = (1 —Brl./Bq2)

or

M' t ZNp i1+
M ( f2m2)

( 2zNpi ( zNp i
C = 1+a+ 1+ Cp 1. (10)
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The expressions (9) are general while the expressions
(10) are those obtained in the approximation (3) for the
self-energy. The factors C and Co represent the renor-
malization of the pion decay vertex, for the space and
time components, respectively. Let us first comment on
the time component Co, which we find here to be prac-
tically 1, while in Ref. [7] we found that it decreases as
the square root of the condensate. Formally in the ex-
pression of Co the factor (1 —BII,/Bqo) appeared with a
square root. The reason for this dHFerence lies in dHFer-

ent definitions of the decay constant, since in the nuclear
medium there is a latitude, as explained in Ref. [7]. Our
present definition goes along with a full pion propagator
and hence is different from our previous one which was
chosen because of its compatibility with the Cell-Mann-
Oakes —Renner relation. As for the factor C which enters
in the space component, it difFers in two points from that
of our previous work [6] where the s-wave infiuence was
ignored. The first one is the appearance here of a denom-
inator which comes &om the effective mass term. The
second and most important one is the appearance of the
momentum derivative of the 8-wave self-energy. Indeed
the parameter o. in C arising &om the p-wave interac-
tion has an effective value of —0.63 at normal density.
If it were alone, it would imply a strong suppression of
the pion decay constant and hence of the pion pole term,
as was stressed in Ref. [6]. However, when the s-wave
term is incorporated with 2E~p/f m = 0.7p/po, the
inQuence of the p-wave factor is nearly totally counterbal-
anced. The suppression effect is no longer present. The
introduction of the 8-wave self-energy thus introduces a
major change in the perspective developed in previous
works where this infIuence was ignored.

We introduce now the effect of the correlations which
renormalize the axial coupling constants differently for
the space and time components. For the space compo-
nent the role of short-range correlations associated with
p-wave axial production amounts to a quenching of g~
by the Lorentz-Lorenz factor (1 glN&n)

i —where g&& is
the Landau-Migdal parameter which enters in the mix-
ing force between N-hole and 4-hole states. Additional
quenching is provided by second order core polarization
[8,9]. As for the time component, g~„ it is well known
to be enhanced by soft pion exchange 'associated to Pauli
correlations [10—13]. To be fully consistent we would have
to introduce the effect of short range correlations also for
s-wave pions. This question has been discussed in the
case of soft pions [14]. It requires a delicate study of
the comparative range of the scattering amplitude and
the correlations that we do not attempt here. We define
AN coupling constants g* and go corresponding to the p-
and s-wave parts of the vertex, respectively. At q„= 0
PCAC implies that they are renormalized in the same
way as the axial ones according to

FIG. 1. Mechanism for enhancement by M' denominators
in the o model: excitation of NN pairs (Hartree approxima-
tion).

where the pion source function is

j'(q, qo) = (g'r —q —goqoo p/M')/M' (13)

This expression allows the evaluation of the nuclear axial
current for any momentum and energy transfer, provided
they are small enough (& m ) for the linear expansion
to hold. The situation of muon capture provides a good
application case.

Before we turn to this question, it is illustrative to
see how the renormalizations that we have derived are
realized in a specific Lagrangian model. A good ex-
ample is the linear 0 model which satisfies chiral sym-
metry. The modification of the nucleon mass is gov-
erned by the exchange of the 0' meson according to
M'/M = 1 gzp/Mm— z = 1 ZN p/f—2m where we have
expressed m in terms of Z~ gj' mz /m and used the
Goldberger-Treiman relation of the model M = gf To.
lowest order in the density this expression is nothing else
than the first of relations (10) [we have actually shown
that relation (9) for the efFective mass works up to sec-
ond order in the density]. It is then natural that the
matrix elements of Dirac odd operators, i.e., axial charge
o' p/M', pseudoscalar vertex o q/2M', etc. , should
be enhanced by the presence of a M' denominator. In-
deed in the language of exchange currents [15], there is
an enhancement of the axial charge matrix elements by
a nucleon effective mass effect corresponding to the ex-
citation of nucleon-antinucleon pair via 0 exchange (see
Fig. 1). Such an estimate was, however, model depen-
dent due to the fictitious character of the scalar meson
with unknown mass and coupling. The relation that we
make here with Z~ which is a measured quantity seems
quite safe. As for the renormalization of the pion axial
decay vertex it corresponds to the o -+ z' current (Fig.
2). One gets in the Hartree limit

wf qi ~ f qi —,qi = f q~m2 fzm2
~

'

a result already known from Ref. [16]. Since time and
space components of the vertex are renormalized in the

g /g = gA/gA and go/go —g~ /gA. ,

respectively. The axial current now becomes

gA~ + f-C qj".(q, qo)D(q, qo)

&o = gg, ~ P + f Co qoj.(q, qo)D(q, qo) (i2) FIG. 2. Renormalization of f in the o' model: cr-z' current.
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same way, it is legitimate to consider this modification as
a renormalization of f in the medium which turns out to
follow that of the nucleon mass: f'/f = M'/M. One
recovers here a feature common to chiral models. The
above expression is again in agreement with the M'/M
factors in C and Co of Eqs. (9). Except for the absence
of energy-momentum dependence in the self-energy, the
cr model presents the same features as our general deriva-
tion.

We come now to a numerical application to muon
capture and more specifically the efFective pseudoscalar
coupling constant. In &ee space it is defined as g~ ——

2m„f g(m2 —q2) ~. In ordinary muon capture the en-

ergy transfer can be taken to be zero while the momen-
tum transfer ]q] = m„. In the medium the relevant cou-
pling constant is gJ, = 2m„Cf~g'D([q[ = m„, 0). It is
obvious in Eqs. (12) and (13) that it always appears
in the current under the combination g&/M'. The ef-
fective mass factor present in C is thus canceled. As
the remaining factor in C is practically unity, owing to
strong cancellation between the s- and p-wave terms,
we are left with two effects for the renormalization of
gJ . First is the quenching of the xN vertex g'/g for
which we take the empirical value 0.70 at p = po accord-
ing to the observed quenching of Gamow-Teller strength
[17]. Second is the renormalization of the pion prop-
agator. At ]q] = m„and qo —— 0 its expression is

D(m„, 0) = [m2 + II, (0) + m2] ~ which is quenched
by the repulsive s-wave interaction II, (0). In our pre-
vious work where s-wave interaction was neglected one
had instead D(m„, 0) = [m2 + (1+o.)m2] ~ which cor-
responds to enhancement. Altogether our present renor-
malization of g~ amounts to a factor 0.60 to be compared
to the stronger quenching 0.33 in the absence of s-wave
interaction. Furthermore, experiments measuring corre-
lations [18—20] are actually sensitive to the ratio gJ, /g&
where the quenching factors of g' and g& factors can-
cel. One is left there with a quenching of 0.85 only while
the p-wave alone would give 0.47. For the lower densi-
ties, relevant for light nuclei such as 2C, this ratio would
be even closer to 1. This is a result worth emphasizing
since it is in much more satisfactory agreement with ex-
periment [18—21] than the strong quenching we obtained
previously. Another important test case is provided by
the celebrated ~sO(0+) ++~sN(0 ) transition. It has at-
tracted interest for a long time because it gives access to
the soft pion exchange enhancement of the axial charge
g& /g~„expected to be close to 50% [10—13] (see Ref.
[22] for a recent analysis). In these nuclei, both the in-
verse processes of p capture and P decay are measured so
that the disposal of two related observables reduces the
uncertainties of the interpretation. It is clear that they

should be reanalyzed in the light of our present work with
due account of s-wave renormalization.

The process of radiative muon capture with photons in
the upper part of the spectrum offers a kinematical sit-
uation where the energy carried by the virtual pion can
be large. It is, however, much more complicated to in-
terpret since both the weak and electromagnetic currents
are involved giving rise to many Feynman graphs. It is
thus not possible to define in a simple way efFective pseu-
doscalar coupling constants. Furthermore the medium
effects should be introduced in agreement with gauge in-
variance. We will be content here to calculate the renor-
malization of the pion propagator entering in the graph
where the nucleon radiates. This is the pion pole graph
to which the capture rate is the most sensitive. Indeed at
maximum photon energy E~ m„ the &ee space propa-
gator is (m2 —m2) ~, rather close to the pion pole. For
a more realistic kinematical situation we select E~ = 70
MeV, hence the pion carries momentum-energy g = 30
MeV, qo ——70 MeV. We find a quenching factor 0.74 in-
stead of 0.79 for spacelike pions. With p-wave interaction
only we would have found a small enhancement of 1.04
(1.30 in ordinary muon capture).

To conclude, we have studied the renormalizations of
the weak coupling constants in nuclei introducing the s-
wave interaction of the pions with the nuclear medium,
besides the p-wave one. The indications are that the
s-wave interaction is appreciably repulsive leading to
quenching of the pion propagator at momentum-energy
transfer relevant to ordinary muon capture. The PCAC
constraint fixes then the pion decay vertex. Its previously
known quenching arising &om the p-wave pion interac-
tion is practically canceled by the s-wave one. In addi-
tion there appears in its expression a nucleon efFective
mass factor which is common to chiral models. Another
requirement of PCAC is a relation between the nucleon
effective mass in the medium and the soft pion self-energy
II, (0) which in turn can be expressed in terms of a mea-
surable quantity, the Z commutator. A consequence for
the induced pseudoscalar coupling constant is a much
more moderate quenching than once believed. We stress
that the present treatment applies only to infinite nuclear
matter. It should be extended to specific nuclear transi-
tions for a meaningful comparison. Surface effects which
can play an important role have to be taken into account
[23]. Moreover, the role played by the s wave in presence
of short range correlations remains to be investigated.

It is a pleasure to thank Dr. G. Chan&ay for stimu-
lating exchanges and Professor J. Deutsch and Professor
I . Grenacs for discussions about their experimental pro-
gram in muon capture.
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