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The inQuence of short-range correlations on the p-wave single-particle spectral function in 0
is studied as a function of energy. This inBuence, which is represented by the admixture of high-
momentum components, is found to be small in the p-shell quasihole wave functions. It is therefore
unlikely that studies of quasihole momentum distributions using the (e, e'p) reaction will reveal a
significant contribution of high-momentum components. Instead, high-momentum components be-
come increasingly more dominant at higher excitation energy. The above observations are consistent
with the energy distribution of high-momentum components in nuclear matter.

nv (k) = (~al a~~, a~t~ I@a) .

The total momentum distribution is obtained by sum-

ming over all Lj combinations multiplying each contribu-
tion with the relevant degeneracy factor. It is possible
to rewrite Eq. (1) by inserting a complete set of A —1
particle states with the result

n~i(k) = ):(~-la~~a l~o) . (2)

In a simple mean-Geld description this sum is ex-
hausted by the transition from the ground state of the
A particle system to the ground state of the A —1 par-
ticle system when the 1j combination corresponds to 4hc
last occupied single-particle level. In that case Eq. (2)
represents nothing but the square of the corresponding
single-particle wave function in momentum space. When
correlations beyond the mean field are present, this is no
longer true, although the ground state to ground state
transition might still dominate at least for small mo-
menta. This has been observed in Ref. [6], where it is
demonstrated in the example of He, that the ground
state to ground state contribution to Eq. (2) contributes
only an insignificant fraction of the high-momentum com-
ponents, which must come from the contribution of the
excited states in the A —1 system. This has been con-
firmed in Ref. [7] for the nucleus He. In this work
the ground state to ground state transition was calcu-
lated for both He and He. In other words, the calcu-
lation of high-momentum components in nuclei requires
the knowledge of the complete energy dependence of the
nucleon hole spectral function

PACS number(s): 21.10.Jx, 24.10.Cn, 27.20.+n

The in8uence of short-range correlations in Bnite nu-
clei has been studied theoretically by calculating the mo-
mentum distribution in the ground state of a particular
nucleus [1—5]. These results clearly show that for mo-
menta above 400 MeV/c short-range and tensor correla-
tions completely dominate the momentum distribution.
The momentum distribution for a given Ij combination
is given by

S~&(»E) = ) .(~-I a~~i I~a) b(E —(Eo —E." ')).

By integrating S~i(k, E) from —oo to e+ ——Eo —Eo
which represents the energy difference between the cor-
responding ground states, one obtains the contribution
from this particular lj combination to the total momen-
tum distribution. Clearly S~s(k, E) contains the infor-
mation on the location of high-momentum components
which can be studied in the (e, e'p) reaction.

A recent proposal to study short-range correlations
with the (e, e'p) reaction focuses on the low-lying discrete
transitions at high missing momentum [8]. This proposal
has been inspired by the work of Ref. [9] for sHe droplets
of a finite number of atoms. In this work the correspond-
ing coordinate space contribution to Eq. (2) from the
ground state to ground state transition was evaluated. A
simple procedure was developed to obtain the amplitude
(@„~ar~~. ~4o), usually referred to as the quasihole wave
function, from a corresponding mean-Beld wave function.
In Rcf [10] a p. hcnunicnulugical prescript, ion was devel-
oped to study the change from standard Woods-Saxon
wave functions to the corresponding quasihole wave func-
tion for nuclei. A general discussion of quasihole (quasi-
particle) properties and a many-body analysis based on
experimental information is available in Ref. [11].Based
on the work in Refs. [10,11] one obtains a suppression
of the mean-Beld wave function in the nuclear interior
which results in a corresponding quasihole wave function
with high-momentum components, which are sensitive to
this suppression. Whether these high-momentum compo-
nents follow from the inclusion of short-range correlations
induced by a realistic nucleon-nucleon interaction is not
clear however.

In order to study this question and to elucidate the
presence of high-momentum components in nuclei, the
nucleon hole spectral function for the p states in 0
has been calculated in a complete energy domain. Short-
range and tensor correlations have been evaluated explic-
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itly for the finite system under study. Although the nu-

cleon hole spectral function has been carefully studied in
nuclear matter starting with the work of Refs. [12,13] (see
also a review in Ref. [14]),no complete microscopic calcu-
lations are available for nuclei heavier than sHe [15]. The
relevant method for the present study has been developed
in Ref. [16]. In Ref. [16] the nucleon self-energy was cal-
culated in 0 using a G-matrix interaction calculated
&om a realistic nucleon-nucleon interaction. A Hartree-
Fock-like contribution was identified which is obtained
by using a real G matrix, calculated in nuclear matter at
an appropriate starting energy and density, in the cor-
responding Hartree-Fock diagram for the self-energy in
16p

The imaginary part of the self-energy is obtained by
calculating the relevant second-order diagrams in this G-
matrix interaction which contain the two-particle —one-
hole and two-hole —one-particle terms appropriate for this
nucleus. The former term is responsible for the deple-
tion of strength, which in mean Geld is located below
the Fermi energy, to high energy. The latter term is es-

sential for the accumulation of single-particle strength
below the Fermi energy from states (in particular those

I

with high momenta) which are empty in mean field. As
a single-particle basis the relevant bound states of the
Hartree-Fock term are included and for states at posi-
tive energy plane waves are employed with correspond-
ing single-particle energies. These plane waves are prop-
erly orthogonalized to the bound states (if present) and
enclosed in a box of sufficiently large radius to allow a
convenient discretization [16]. The real part of the self-

energy is obtained by using dispersion relations relevant
for these two self-energy contributions. To avoid dou-
ble counting for the real part, the corresponding second-
order term calculated in nuclear matter at the original
starting energy is subtracted.

In the present work the one boson exchange potential
C is used as a realistic nucleon-nucleon interaction [17].
Whereas the in8uence of short-range correlations is care-
fully considered in this work, no attempt is made to treat
the coupling to the very low-lying two-particle —one-hole
and two-hole —one-particle states in an adequate way. At-
tempts at such a treatment can be found in Refs. [18—22]
(see also Ref. [14]). To obtain the nucleon hole spectral
function one needs to solve the Dyson equation for the
single-particle propagator

gr~ (kr, kz, E) = gI. (kr, kz., E) + ) gI. (kr, ks., E)Zr~. (ks, k4, E)gr~ (k4, k2, E),
A;3, Ic4

(4)

where g~ ~ refers to the Hartree-Fock propagator and Z~z
represents the real and imaginary parts of the irreducible
self-energy calculated &om the second-order terms dis-
cussed above. For the energies E of interest here (below

e& ——Ez+ —Eo ), the solutions of Eq. (4) are insen-
sitive to the discretization of the momentum integrals,
if the radius of the box, which determines the grid of
momenta k;, is sufficiently large. The spectral function
for hole strength is obtained from the diagonal matrix
element of g~~ by taking the imaginary part and divid-
ing by vr. In the present work the solution of the Dyson
equation yields discrete solutions corresponding to the p 2

ground state as well as the Grst p2 excited state of the
A = 15 system. These discrete quasihole solutions are
obtained by solving the eigenvalue problem correspond-
ing to Eq. (4). The eigenvector corresponding to these
discrete states yields the quasihole wave function in mo-
mentum space, which still needs to be normalized by the
spectroscopic factor

and 0.91 for the p2 state, respectively. These numbers
can be compared with experimentally determined spec-
troscopic factors which have recently been determined at
the NIKHEF facility [23]. Although the present theoreti-
cal result overestimates the experimental result by about
0.2, it is clear that a considerable renormalization of the
strength is to be expected due to the coupling of the
single-hole states to the low-lying collective excitations,
which are not treated in this work. Instead, one should
view the quasihole strength that is obtained here, to be
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where o.qp corresponds to the quasihole single-particle
quantum numbers and the self-energy, which is real at
the quasihole energies aqua, is calculated for these quan-
tum numbers [14]. The quasihole energies obtained in
the present work yield —17.9 MeV for the pz and —14.1
MeV for the pz state, respectively. The results for the
strength of the quasihole poles is 0.89 for the pz state

10

1
-S0 I I r I j I I I I

J
~ I I I

[
I I I I

J
I I I I

i
I I I I

i
I I

0 100 200 300 400 500 600 700

Momentum [MeV/c]

FIG. 1. Square of the quasihole wave function for the p-
state in 0 (solid curve), normalized to the spectroscopic
factor according to Eq. (5), compared to the Hartree-Fock
result (dashed curve).
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FIG. 2. The p2 spectral function as a function of momen-
tum at Axed energies corresponding to —50, —100, and —250
MeV. The results demonstrate the increasing importance of
high-momentum components with higher excitation energy in
A —1 system (more negative energy).

the result of the in6uence of short-range correlations [16].
The square of the quasihole wave function for the p2

state [normalized to the spectroscopic factor, see Eq. (5)]
is shown in Fig. 1 as the solid line. For comparison the
result for the Hartree-Fock wave function is shown as the
dashed line. From the comparison one can infer that at
the quasihole energies no substantial change in the wave
functions occur and that the Hartree-Fock wave function
is a good approximation. It should further be noted that
the wave function of a Woods-Saxon potential, which is
constructed as the local equivalent of the Hartree-Fock
potential [16], is indistinguishable from the Hartree-Fock
wave function. This suggests that the explicit inclusion
of short-range correlations does not lead to the strong
suppression of the wave function in the interior of the
nucleus as has been implied by Refs. [10,11]. Again it
should be emphasized that the coupling to the low-lying
collective excitations may lead to additional changes in
the quasihole wave function. It is unlikely, however, that
these changes will involve the high-momentum part of
the wave function, which is studied in this work. The
calculation of the natural orbitals for the p states does
not yield much new information. With the emphasis on
short-range correlations in the present work, the diago-
nalization of the one-body density matrix yields for its
largest eigenvalue (0.93 for the p- orbital) a wave func-
tion which is practically identical to the quasihole wave
function (which has strength 0.91).

The hole spectral function in the continuum is obtained
from the imaginary part of the single-particle propagator
by expressing the propagator in terms of the reducible
self-energy Z&. . The reducible self-energy can be ob-

lg
tained from the irreducible self-energy by a complex ma-
trix inversion, which solves an equation similar to Eq. (4).
The results at three diferent energies are shown in Fig. 2.
The long-dashed curve corresponds to —50 MeV, the
solid curve to —100 MeV, and finally the short-dashed
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FIG. 3. Total p-' momentum distribution (solid curve)
compared to quasihole contribution (dashed curve).

curve to —250 MeV. From these results it is clear that
an important change in the momentum content of the
single-particle strength occurs with increasing excitation
energy in the A = 15 system. At higher excitation energy
one Ands more high-momentum components. Moreover,
these high-momentum components are not observed in
the quasihole states. This can be concluded from Fig. 3
where the contribution to the momentum distribution of
the quasihole state (dashed line) is compared with the to-
tal p2 momentum distribution including the contribution
of the continuum (solid line). This requires the integra-
tion of the continuum hole strength for each It' according
to Eq. (2). This result for i 0 is very similar to the obser-
vation for sHe made in Ref. [7], where the contribution of
the ground state to ground state transition exhibits also
very few high-momentum components.

To understand this result, it is important to recall
that the appearance of high-momentum components at
a certain energy in the A —1 system is related to the
self-energy contribution containing two-hole —one-particle
states at this energy. Prom energy conservation it is then
clear that at low energy it is much harder to And such
states with a high-momentum particle than at high en-
ergy. This same feature is observed in nuclear matter
where the peak of the single-particle spectral function
for momenta above k~ increases in energy as k [24]. As
a result, the hole strength in nuclear matter as a func-
tion of momentum shows the same tendency as the result
shown in Fig. 2 [25], i.e. , higher momenta become more
dominant at higher excitation energy.

The additional p2 strength in the continuum, which is
illustrated in Fig. 2, integrated over k yields 4'%%uo of single-
particle strength. Together with the quasihole strength
this leads to an occupation of p 2 quantum numbers which
is less than one. This implies that higher waves like
d and f will be partially occupied. Results for these
higher waves (and the s wave) will be discussed elsewhere
together with results for the average separation energy,
Koltun sum rule, etc. [26].
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In conclusion, it has been shown in this work that the
inBuence of high-momentum components in the quasihole
wave function is of minor importance. By calculating the
complete energy dependence of the p-wave hole spectral
function it has been demonstrated that the presence of
high-momentum components in the nuclear ground state

will only show up unambiguously at high excitation en-

ergy when the (e, e'p) reaction is employed.
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