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Nucleon resonances in nuclei and quark exchange
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We investigate the photoexcitation of nucleon resonances in nuclei taking into account the quark
structure of the nucleon. We calculate the total strength of the Ml, E1, and E2 excitation in a
two-nucleon system, considered as two three-quark clusters with a properly antisymmetrized wave

function. The calculations show that the resonance excitation in the deuteron is not modi6ed with
respect to the free nucleon case. In contrast, when the nucleon relative distance assumes typical
nuclear values, quark exchange leads to a 11%damping of the DI3 resonance and 23% of the E&5,

but it leaves the 4 excitation practically unaffected, in agreement with the recent photoabsorption
measurements.

PACS number(s): 25.20.Dc, 13.60.Rj, 24.85.+p, 24.30.Gd

The study of nucleon resonances in nuclei is believed
to be relevant for the understanding of the interplay be-
tween nuclear structure and the internal degrees of free-
dom of the nucleon. Up to now, attention has mainly
focused on the excitation of the Pss(1232) (i.e., 6 reso-
nance), but recently new data on the higher resonances
have become available [1—3]. The total photoabsorption
cross section has been measured for various nuclei, &om
Be up to U, using various methods (transmission

techniques [1], total hadron reaction, and photofission
[2 3]).

The new experimental results have confirmed the
shape of a very evident 6 peak, and have shown that
in this region the cross section per nucleon follows a uni-
versal behavior, which, even in the presence of nuclear
medium effects, is not too different &om the &ee proton
behavior. By contrast, in the higher resonance region,
the cross section has a Hat trend. This is unexpected
since in the photoabsorption cross sections the Dqs(1520)
and Pqs(1680) resonances are clearly seen both in the
proton and in the deuteron [4].

One could think that the depletion of the cross section
is due to an enlargement of the resonance widths caused
by the Fermi motion of the nucleons. In order to test
whether this hypothesis is sufhcient to explain the data,
the photonuclear cross section can be computed by means
of a simple folding formula:
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approach [7], the theoretical cross section reproduces the
4 peak very well and predicts a broad peak in the higher
resonance region [8]. This prediction clearly exceeds the
experimental data (see Fig. 1).

The fact that the higher resonances in nuclei are miss-

ing cannot therefore be attributed to kinematics but
rather to dynamical nuclear effects: the excitation of each
single nucleon seems to be affected by the presence of
other nucleons. Since the resonance excitation involves
the internal structure of the nucleon, it is quite natural
to study these effects in the framework of quark models.

The constituent quark model (CQM) has provided a
good description of the baryon spectrum [9] and of the
electromagnetic excitation of baryon resonances [10]. It
has also been used to describe the repulsive core in the
short-range nucleon-nucleon interaction [11]. Therefore
CQM seems to be a suitable means of investigating how

where sr~~ is the nucleus total photoabsorption cross sec-
tion, o'~tv is the average photonucleon cross section, n(p)
is the nucleon momentum distribution in nuclei and W„
is the invariant mass of the incoming photon and the
moving nucleon, cr~N is taken &om the phenomenologi-
cal analysis [4] while n(p) is computed from realistic KN
potentials.

With the NN wave functions of the Paris [5] or Bonn
[6] potentials, Eq. (1) reproduces the experimental
deuteron cross section quite well [4]. Using the momen-
tum distribution of C evaluated in the correlated basis
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FIG. 1. The total photoabsorption cross section per nu-

cleon, as a function of the photon energy; the experimental
points are taken from [1]. The full curve is evaluated by means
of Eq. (1), using the phenomenological fit of [4] for the single
nucleon cross section and folding with a realistic nucleon mo-
mentum distribution [7]. The dot-dashed curve is the same
as the full one, but reducing the D&2 and F» strength by the
factor 0.88 and 0.77.
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the excitation mechanism of isobar resonances is modified

by neighboring nucleons. Moreover, it is convenient for
the description of multinucleon systems, since, being a
nonrelativistic model, it avoids any spurious contribution
to the c.m. motion.

There are various aspects that have to be considered
when two nucleons are close to one another [11,12]. In
particular, when the internucleon distance is comparable
with the confinement (or bag) radius, the wave functions
of the two nucleons are strongly overlapped and, in accor-
dance with the Pauli principle, there is a quark exchange
between the two clusters. This effect has been shown
to be relevant at such distances in previous investiga-
tions concerning the electromagnetic form factors of few
nucleon systems [13—17]. In this work we examine how
much quark exchange aEects the excitation mechanism of
correlated nucleons and compare the transition strength
with the free nucleon one [18].

Since a definite electromagnetic multipole is involved
for each resonance excitation, the transition probability
can be fairly described by means of multipolar sum rules.

In the case of the 4, the transition is a magnetic dipole
and the corresponding cross section, integrated over the
resonance width, is

of single nucleon excitation [19]. The states gp and Q'
are taken from the Isgur-Karl model [9] and the transi-
tion strength is in agreement with the phenomenological
values, provided that the confinement radius consistent
with the helicity amplitudes [20] is chosen. This radius
is R = 0.48 fm and corresponds to a harmonic oscil-
lator (h.o.) constant for the three-quark wave function
a = 0.41 GeV [20].

The two-nucleon states to be used in Eq. (2) are con-
structed within the framework of the cluster theory [21]
for the description of nucleon pairs. In this approach,
each nucleon is regarded as a cluster of three quarks,
as described by the Isgur-Karl model. The two-nucleon
wave function for the initial state can be written as

gp = Np&(&g&g[gg 8 ggy]
' p(r)} = &o&QNN (3)

where Qg, Q~ are the internal wave functions of the
quarks in nucleon A and B respectively; 8~8~ is the
color singlet for six quarks and y(r) describes the rela-
tive motion of the two clusters; the spin-isospin parts of
the quark wave functions are coupled to definite values
of the total spin S and isospin T of the nucleon pairs; Np
is a normalization factor. A is the antisymmetrization
operator for the exchange of all six quark coordinates:

where o (u) is the total Ml cross section, go is the
initial state of two nucleons in the nucleus, g' is the final
state in which one of the two nucleons is excited to the
4 resonance, p,, is the magnetic dipole operator, and
M —Mp is the excitation energy.

For the electric dipole and quadrupole excitations, sim-
ilar sum rules can be written which, in the nucleon, cor-
respond to the Die(1520) and Fis(1680) resonances, re-
spectively. Equation (2) and similar equations for the
other multipoles have already been used for the analysis

=) P,, (4)

Since 8~/~ and 8~/~ are already antisymmetrized with
respect to the quark coordinates in each cluster, the op-
erator A is simply 1 —9PM.

The final state Qy = NyA@NN. has the same form
as in (3) but g~ is replaced by Qz, which is the wave
function of three quarks in a resonance state.

For a given electromagnetic transition operator 0 =
i O(i) the total amplitude has the form

Mtot;= &f&o((1 —9Pse)QNN lOl(1 —9Pse)QNN)
= 3~f~p(82[(&NN. IO(s) l@NN) + (@NN. lo(6) l@NN)l

—18[(QNN. lO(3)Psel+NN) + (gNN lO(6)Ps l+NN)]}.

The first matrix element in the curly brackets vanishes
because @NN. is orthogonal to gNN. The last two matrix
elements describe the exchange contribution.

The electromagnetic operator 0 has the following form
for the various multipoles

(6)

relative to the total center of mass system; m is the quark
mass, assnmed to be I/3 of the nucleon mass.

We first consider the excitation of two nucleons in the
deuteron. To this end we take the realtive wave function
y(r) from realistic potentials (in this preliminary evalua-
tion we take into account only the S-wave part since the
D-state percentage is of the order of 4—7%%). The total
transition strength is

Ozl. = ) e; r; YI.()(Oi), L = 1, 2,2I +1

where the sum is over all six quarks; e;, cr; are the quark
charge and spin, respectively; r; is the quark coordinate

~2N = ) lMtotl',

where g ineans sum over final states and average over
initial states. Using S~ to denote the corresponding
quantity for a single nucleon, we define the ratio
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TABLE I. The ratio R [Eq. (9)] in the case of the deuteron,
for various multipoles and NN potentials: Paris [5], Bonn
[6], Argonne [22], De Tourreil-Sprung [23], and one-pion ex-
change.

R
Paris
Bonn

Ar gonne
DTS

opEp

M1
1
1
1
1
1

E1
0.98
0.99
0.98
0.98
0.97

E2
0.99
0.99
0.98
0.98
0.98

R = S2~/2SN.

Without quark exchange B is 1 and therefore the occur-
ring of R P 1 is an indication of quark exchange efFects.
In Table I we report the theoretical results for R, ob-
tained using various realistic wave functions. One can
see that for the deuteron there is practically no modifi-
cation of the excitation strength of the 6, Dqs, and Fqs
resonances, in comparison with the free nucleon. Devia-
tions are in the order of a few percent and mainly concern
the electric multipoles. This is due to the fact that the
deuteron is a loosely bound system and the excitation of
each nucleon occurs fairly independently.

We now turn to the excitation of a nucleon pair in the
nuclear medium.

As a first attempt, one can work, as it is custom-

ary in photonuclear physics, within the framework of a
"quasideuteron" approach [24]. This means first of all
that a real photon is absorbed by a correlated proton-
neutron pair and the choice of the overall quantum num-

bers is the same as for the deuteron, that is S wave for
the relative motion and S = 1,T = 0.

We also consider the case of an arbitrary nucleon pair
with no restriction on the total spin and isospin, but in

any case we restrict ourselves to a relative S-wave func-
tion since the higher angular momentum states are less
relevant in the short range behavior of XN correlations.

We can derive y(r) from a h.o. shell model for a typical
nucleus after separating the c.m. and relative motion
of a nuclear pair with the technique of the Moshinsky
coefficients [25]. In the case of sO we have

v(r) =
l l

—+3(Pr)'+ (&r)' e ' (Io)
vr 4

where P = 0.55 fm is fixed by the charge rms radius.
The wave function (10) does not vanish for r = 0, as it

is required by the repulsive core in the NN interaction. A
more realistic wave function is then obtained introducing
a Jastrow correlation factor g(r). We choose the form [26]

g(r) = N(1 —e "
)

with o, = 1.4 fm

TABLE II. The ratio R„„=,R "„,R~~ (for N = Z = 8) with the wave functions (10), (11), and

(12), for various multipoles.

M1 excitation
RM (fm)

0
1
2

4
7

Corrected wave-function Eqs. (10) and (11)
Without q exchange

R ='
pn

0.99
0.99
1.00
1.00
1.00
0.99
1.00

Rp"„
0.99
0.99
1 ~ 00
1.00
1.00
0.99
1.00

RNN
0.99
0.99
1.00
1.00
1.00
0.99
1.00

El excitation
RM (fm)

~0
1
2

4
7

Corrected wave-function Eqs. (10) and (11)
Without q exchange

Rs=1
pn

0.91
0.89
0.94
0.99
1.00
0.90
1.00

Rp"„
0.92
0.89
0.94
0.99
1.00
0.90
1.00

RNN
0.92
0.89
0.94
0.99
1.00
0.90
1.00

E2 excitation
rM (fm)

0
1
2
4
7

Corrected wave-function Eqs. (10) and (11)
Without q exchange

R'='
pn

0.79
0.77
0.89
0.99
1.00
0.78
1.00

Rp„
0.81
0.79
0.81
0.99
1.00
0.79
1.00

RNN
0.81
0.79
0.84
0.99
1.00
0.80
1.00
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In order to test the sensitivity of the results to the
average internucleon distance and then to possible quark
exchange, we also use the trial wave function

&p(r) = Ne ~(" " (12)

The parameter rM corresponds to the average distance
between the two nucleons, and the coefficient P ( 0.23
fm i) is taken in order to obtain a reasonable depletion
of the wave function at short distances.

In this way we get the results reported in Table II as

pn
In order to analyze the effects related to the choice of

the quantum numbers, we calculate also the ratio R„„=,
corresponding to S = 0, T = 1 and the average, weighted
with the standard spin factors:

Rav Rs=l + Rs=0
PTL 4 PTL 4 PfL

Furthermore, we also evaluate the ratio R~~ obtained
by means of an average over all types of nucleon pairs.

In Table II we report the results for B~ and Riviv, in
correspondence of the Ml, El, and E2 excitations.

For large internucleon distances the results agree with
those of the deuteron. As long as the distance rM de-
creases, the magnetic transition strength remains unaf-
fected; this is in qualitative agreement with the fact that
the 6 peak is evident in all nuclei. By contrast, the
electric multipoles show a significant depletion. At typi-
cal internucleon distances in nuclei ( 1 fm), there is an
11' and 22% reduction for the El and E2 transition
strength, respectively, and the situation practically does
not change taking into account the contributions coming
&om difFerent NN pairs and quantum numbers. This
again agrees, at least qualitatively, with the depletion of
the peaks in the higher resonance region, although it is
not sufficient to reproduce the data (see Fig. 1).

These results show that the Ml transition behaves

quite differently &om the electric multipoles when the
quark exchange mechanism is taken into account. This
can be understood by observing that the M1 operator
involves the quark spin, and the spin part of the wave
function is only slightly affected by the exchange opera-
tor; in the case of the electric transitions there is a rele-
vant modification of the space wave function and there-
fore a significant exchange contribution. In other words,
the typical feature of a two-nucleon pair with quark ex-
change is to give rise to a deformed two-cluster structure
[27]. The Ml transition is simply a spin-ffip and there-
fore, unlike El and especially to E2 transitions, is not
sensitive to deformation.

The numerical results are reasonable and present the
correct phenomenological trend, both in finite nuclei and
in the deuteron. This is, however, a preliminary calcula-
tion and several improvements are necessary in order to
perform a detailed comparison with data.

In particular, one should consider more refined cluster
wave functions, with a better description of the short
range NN behavior. Also higher angular momentum
states should be in principle considered, but the increas-
ing importance of the centrifugal barrier certainly keeps
nucleons far apart and the quark exchange effects are
expected to be less relevant.

To conclude, we have shown that taking into account
the quark structure of the nucleon and the nucleon reso-
nances is beneficial for the description of resonance pho-
toexcitation in nuclei. In particular, the quark exchange
between two neighboring nucleons produces a depletion
of the El and E2 transition strength in nuclei, while
leaving practically unaffected the M1 absorption in nu-

clei and all multipole transitions in the deuteron.
The numerical results are not able to explain the data,

but only their qualitative trend. The model, however,
seems to be a reasonable basis for a more reliable descrip-
tion of the excitation of nucleon resonances in nuclei.
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