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Deformed atomic nuclei with degeneracies of the nucleonic levels higher than 2
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As it is well known, the single-nucleonic levels in a nucleus manifest either the Kramers degeneracy
d = 2, or, if a nucleus is spherical, a trivial "magnetic" degeneracy d = 2j+1. It will be shown using
the results of the realistic total nuclear energy calculations that a possibilty of a fourfold degenerate
levels exists in a number of N 136 isotones due to their high intrinsic symmetry. Those exotic
states are predicted to be isomeric; they lie only a few hundreds of keV above the ground state.
Other possible nuclear regions where the same mechanism may take place are indicted.

PACS number(s): 21.10.Re, 21.90.+f, 27.90.+b

The classical concept of a nuclear deformation and that
of a geometrical form of a nucleus have become impor-
tant theoretical tools in testing various quantum mecha-
nisms in nuclear structure. For example, if there exists a
symmetry of the nuclear field, consisting of its invariance
with respect to the R:—exp(im j ) opertion (rotation of
a coordinate kame through an angle of ~ around an axis,
say the 0 axis), then a conservation of the signature [1]
quantum number r results. Such a symmetry implies the
existence of two families of rotational bands character-
ized by I = 0, 2, 4, . . . and I = 1,3, 5, . . . for an even-even

an odd-A case). Conversely, by observing manifestations
of those two types of bands in experiment, the existence
of the R symmetry can be determined.

In this Rapid Communication we suggest the possi-
ble existence of highly symmetric shape-isomeric states
in several isotones with N 136. The underlying sym-
metry group is the spinor group Tg. It has an attractive
feature of implying the existence of three families of nu-
cleonic multiplets: two of them doubly and one quadruply
degenerate. It is precisely the latter degeneracy which is
"unusual" or "exotic" in the nuclear context, the "usual"
one, characteristic of deformed nuclear orbitals being the
double (Kramers) degeneracy.

To introduce the mathematical arguments let us first
present the results of the realistic nuclear total energy

calculations performed by using the Strutinsky method
[2] with the Woods-Saxon Hamiltonian. The latter has
been generalized (with respect to Ref. [3] &om which we
take the "universal" set of parameters of the potential) to
include spherical harmonics Yp„with A = 3, 4, 5, . . . and
—A & p & +A in the nuclear shape definition. The spher-
ical harmonics define the nuclear surface Z and therefore
the underlying geometrical symmetry of the average field
Hamiltonian via the standard expansion (for details see,
e.g. , Ref. [3])

Z: R(8, p) = Roc((o.)) 1+) ) o.g„Y„*„(8,y)

In most of the calculations known in the literature the
y, g 0 components in the equation of the nuclear surface
Z, for A & 3, usually have been neglected. Some selected
combinations of the (A = 3, p P 0) components in the
nuclear shapes have been employed [4] in a search for
the octupole correlations in the superdeformed nuclei of
the Hg-Pb region. Another study of p g 0 effects using
a parametrization that involves a nonaxiality parame-
ter and limits the corresponding high-dimensional space
to a two-dimensional nonlinear projection has been also
presented in [5]. The expansion (1) using the (a2p (13@)
dependence of the total energy surfaces to predict the ex-
istence of the ns„-unstable, superdeformed (SD) isomers
was used in [6], while a discussion of similar symmetries
in the metallic cluster context can be found in [7]. Here
we are going to present for the first time the calculation
results for A & 5 with all the p values included in the
total energy cross sections.

Figure 1 illustrates the total energy surface for the
86 Rn~36 nucleus as a function of the a2p and o.32 de-
formation parameters, indicating the coexistence of two
minima: the ground-state one at a2p 0.16 and the ex-
cited one at a2p 0 and o,32 0.15. The results for
N 134—138 and the neighboring isotones with Z 84—
90 are similar. This particular o.3pgp projection has been
selected since the corresponding isomeric minimum lies
lowest in energy. To present more precisely the total en-
ergy behavior around this interesting minimum several
energy cross sections have been done.

Figure 2 presents the cross sections of the total energy
surface corresponding to the a3„, o.4„, and a5„depen-
dence, suggesting that the exotic octupole deformation
&32 —0.15 remains a dominating deformation compo-
nent in the Rn. A similar result remains true also for
several neighboring nuclei.

Let us consider first an ideal case of a nucleus with
&32 P 0 and all other deformations vanishing (small de-
viations of o.~p from zero will imply possible small de-
viations from the ideal-case prediction). Such a nucleus
posesses, as one can easily show, a very high geometrical
symmetry composed of 24 symmetry elements. They are,
besides the trivial identity operation, three "signature-
type" twofold rotations about each of the principal axes,
R (s), R„(s), and R, (vr); six fourfold rotary-reflexion
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Total Energy Surface the nucleonic wave functions corresponding to the three
irreducible representations and therefore also three dis-
tinct symmetries, let us schematize a construction of the
related irreps using the (ln l j m)) basis, one of the most
standard ones in nuclear structure physics. For that pur-
pose we define a coordinate system in such a way that
the z axis coincides with one of the threefold axes and
remains at the same time the m-projection axis for the
(ln I j m)) basis. We see immediately that the corre-

sponding R', (2m/ 3) = exp[i(2z'/3) j,'] operation reduces
to a multiplication by the phase factor exp[i(2z'/3)m].
After some transforrnations, and using the above phases,
we distinguish three subsets of the whole (ln l j m))
ensemble:

FIG. 1. The total-energy surface calculated for the
Rn$36 nucleus in function of the o;go and n3q deformations.

(A comparison of the results in Figs. 3 and 4 indicates that
a priori the best chances for the ms' g 0 isomeric minimum

occur at Z = 90 and N = 136 and not at Z = 88. Indeed,
calculations show that the corresponding minima are deeper
and the corresponding potential barriers are higher in thorium
as compared to radium nuclei. However, those corresponding
to the Z = 90 case are unstable with respect to the hexade-
capole deformation and thus the conditions for the fourfold
degeneracy of the nucleonic levels will not be optimal there).

operations along the three principal axes, denoted some-
times S (z/4) and S (3vr/4), S„(z/4) and S„(3'/4), and

S, (z'/4) and S,(3'/4); eight threefold symmetry axes
passing through the center of the nucleus; and finally
six plane reHections.

These symmetry elements form a classical group tra-
ditionally denoted Tp. To ensure that the fermion trans-
formation properties are satisfied in the quantum case,
one usually introduces [8] a special "symmetry" element

Q such that Q2 = 1. With the help of this special
element one requires that, e.g. , the n-fold symmetry
operation R"(2z /n) = Q and Rz" (2z /n) = 1. The
corresponding extended group composed of 25 elements
is called "fermion Tg" or Tg (cf. Ref. [8]). The Tg
group posesses three irreducible representations (irreps),
one four-dimensional one, and two nonequivalent two-
dimensional ones.

To illustrate the di8'erences in the intrinsic structure of

(ln i j = i + -' ~ = 2' 2' 2' 2 ' 2 ' ")) (2)

(3)

(ln t j m = —,', —,', —2s, ".)) . (4)

The ensembles (1) and (2) span the bases of two
nonequivalent two-dimensional representations denoted
E and E' while some special combinations of all of them
contribute to the G (four-dimensional) representation.

The results of the diagonalization of the deformed
Woods-Saxon Hamiltonian are presented in Fig. 3 for the
neutrons where the single-particle levels are plotted in
function of the a3~ deformation. A similar illustration
for the protons is presented in Fig. 4. Both figures sug-
gest that the isomerism of the as2 type illustrated in the
present article may repeat itself for the proton-neutron
(Z vs N) combinations corresponding to Z ~ 56, 70, 90
and similarly N 70, 90, 112, 136. In addition, the shell
closures at Z = 50, 64, 82, and 100 and those at N = 64,
82, 100, and 126 are likely to be unstable or suscepti-
ble to the as2 deformation, thus increasing the chance
of observing some manifestations of the Tg symmetry
in nuclei. The corresponding detailed calculations are in

progress.
Figures 3 and 4 illustrate at the same time the con-

tent of the irreps of the Tg group in the nucleonic or-
bitals which, at the zero deformation, are labeled using
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FIG. 2. The total energy cross sections in
function of the cr3„, Q.4„, and o.q„deforma-
tions at the ns2 = 0.15 local (isomeric) equi-
librium characteristic for several isotopes and
isotones of the Rni36 nucleus. Observe that
the isomeric minimum turns out to be stable
against any single-multlpole distortion. (The
couplings between various components have
been studied and will be published elsewhere.
The prehminary results confirm the tendency
to stabilize the isomeric minimum in ques-
tion. ) Calculation results for ass (not dis-

played) confirm also the stability against this
degree of freedom as well.
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FIG. 3. Neutron single-particle levels in function of the oc-
tupole a3q deformation. This diagram is illustrative of the
isomeric minima like the one in Fig. 1 at crao 0 snd asa f 0.
The solutions corresponding to the three irreducible represen-
tations sre marked by G (fourfold degeneracy), solid lines; E
(twofold degeneracy), dashed lines; sud E" (s twofold degen-
eracy related to an irrep nonequivalent to E), dotted lines.
Observe the gaps in the spectra corresponding to the strong
octupole a3q effects at N = 90, 100, 112, 126, and 136.

the traditional spectroscopic notation. One can read, for
example, that the sq/a and pq/2 levels are related to the
E and E' representations, respectively; the hs/a and gs/z
orbitals both contain two members of the G representa-
tion (eight states); while the remaining two states belong

I ««««& I ««««& I ««««& I «& I ««& I «««« & [ &
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FIG. 4. Similar to Fig. 3 but for the protons. The strong
cl32 oct upole effects are expected at 2 = 56, 64, 70, and 90 .

again to E (in hs/z) and E' (in g«/a), etc.
In summary, the existence of an island of low-lying nu-

clear shape isomers manifesting (at least approximately)
the high symmetry of the spinor-Tp group is predicted
at 84 & Z & 90, N 136 nuclei. Similarly, a possible
instability of 64 Gd82 with respect to o.32 exotic octupole
deformation (which expresses the spinor-Tz symmetry)
is suggested. The isomers of this symmetry should pro-
duce (in an ideal case) the single-particle or quasiparticle
spectra with an exact fourfold degeneracy.
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