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Polarized deuteron capture by 3He and 3H at and above the fusion resonance region
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The absolute difFerential cross sections and vector and tensor analyzing powers for the
He(d, p) Li and H(d, p) He reactions have been measured both in the j = — fusion resonance

region [Ez(lab)=0.45 MeV and E&(lab)=0.1 MeV, respectively] and at E&(lab)=8.6 MeV for several
angles. In the fusion resonance region, a transition matrix element (TME) analysis of the observ-
ables leads to multiple solutions for both reactions, all of which indicate that the reactions proceed
predominantly through s-wave (El) capture, with small admixtures of Ml or E2 radiation. One
solution for each reaction is dominated by a large ( 90%) ssgz(E1) capture strength. Coupled-
channels resonating group model (CCRGM) calculations have been performed which favor these

solutions. In the CCRGM picture, the j =
2 fusion resonance in the capture cross section is a

consequence of the tensor force, which couples the s = —,d+ He (or d+ H) channel to the s = —,
p+ He (or n+ He) channel, enabling the reactions to proceed via the spin-independent (El) tran-

sition to the ground state. At Eq(lab)=8. 6 MeV, a TME analysis of the He(d, p) Li reaction yields
a single solution which has )80% s-wave (El) capture strength, whereas two TME solutions exist
for the H(d, p) He reaction with 45% and 65'% s-wave (El) capture strength. These data are also

compared to the results of the CCRGM calculations.

PACS number(s): 21.45.+v, 23.20.En, 23.20.Js, 25.40.Lw

I. INTRODUCTION

The d+ He and d+ H reactions have been studied in
considerable detail because of their potential for being
used as a fuel in an energy-producing fusion reactor.
In both reactions, the energy yield is enhanced by the

j =
2 resonance (called the fusion resonance) which

exists just above fusion reactor energies. Although the
d+3He reaction offers a cleaner source of energy since
only stable elements are involved in the reaction and no
neutrons are produced, current fusion technology relies
on the d+ H reaction due to the lower ignition tempera-
ture. In the d+ H reactors which are being designed and
studied today, the sHe(d, p)sLi reaction is being consid-
ered as a possible diagnostic for the plasma. The reaction
comes about from the deuterium fusing with He, which
is created in the d(d, n)sHe reaction. The p-ray yield
from this reaction, along with the previously measured
He(d, p) Li-to-sHe(d, p) He branching ratio, gives a di-
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rect measure of the fusion energy production rate of the
reactor [1].

The properties of the fusion resonances in Li and He
have been determined by studies of the sHe(d, p)4He and

H(d, n) He reactions [2—7]. The isotropic angular distri-
butions of the cross sections indicate that the resonances
are formed via 8-wave capture and therefore have posi-
tive parity. Since the spin of the deuteron (S = 1) can
couple with the spins of sHe or sH (S = 2i) to form chan-

nel spins of 8 =
2 or 2, the total angular momentum

(j = 1+ s) of the fusion resonance can only be j
or j =

2 . Phase shift analyses of the 4He(p, p)4He re-
action [8—10] have confirmed the original spin and parity

assignment of j =
2 which was obtained &om the uni-

tarity condition. (We have adopted the convention that
uppercase letters refer to the ground state and lowercase
letters refer to the scattering state. )

Shell-model calculations predict a 2 state (the fusion

resonance) above a 2 state at excitation energies above

the — first excited state [11]. Coupled-channels calcu-

lations disperse the strength of the 2 state because it
couples strongly to the a + N channel (where N = p
or n) [12,13]. The — state, however, couples to the
o. + N channel only through the tensor and spin-orbit
forces and therefore has a relatively narrow width [14].
Coupled-channels resonating group model calculations in
the fusion resonance region also require the presence of a
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tensor force to predict the strength of the sHe(d, p)4He
and sH(d, n)4He low-energy cross sections [15).

Capture reactions with polarized deuterons are well

suited for probing tensor-force effects in the j =
2 fu-

sion resonance regions of Li and He because of the con-
straints imposed by the spin-independence selection rule
for E1 radiation, which says that the dominant term of
the El operator does not affect intrinsic spin. As stated
above, this resonance is populated predominantly by 8-

wave deuterons in the s =
2 channel. The J

ground states of Li and He, on the other hand, are pre-
dominantly Psy2 states (using the notation 2s+iL~) as
seen in the L-S coupled single-particle model where the
ground states consist predominantly of a nucleon in the
L = 1 orbital above a closed 0+ He core. Therefore, in
keeping with the spin-independence selection rule, there
are at least two likely mechanisms for an El p-ray tran-
sition &om the predominantly 8 =

2 resonance to the
predominantly 8 =

2 ground state: (1) the s =
2
sreso-

nance can decay directly to the S =
2 component of the

ground state which may be present due to tensor-force
mixing in the ground state, or (2) the tensor force can
mix the 8 =

2 and 2 scattering states with the same j
allowing the transition to the 8 = 2i component of the
ground state.

The cross section for the sHe(d, p)sLi reaction was
first measured by Blair, Hintz, and Van Patter [16]. An
excitation-function measurement showed the fusion res-
onance at E~(lab)=0.45 MeV with an angle-integrated
total cross section of 50+10 pb. An angular distribution
taken at Ep——0.58 MeV was consistent with isotropy to
within 10'%%uo. Buss et al. [17] also measured an isotropic
angular distribution (at Eq=0 48 MeV) .but claim a lower
total cross section of 21 + 4 pb. Krauss, Suffert, and
Magnac-Valette [18] measured an excitation function at
90' and, assuming an isotropic angular distribution, ob-
tained a total cross section of 38 pb at resonance. Cross
sections and branching ratios of the sH(d, p)sHe reac-
tion measured below 1 MeV [19—23] find that the d+sH
fusion resonance lies at Eg(lab) =107 keV. Buss, Waffler,
and Ziegler [19]derived a total on resonance -cross section
of 60 pb.

Above the fusion resonance, the He(d, p) Li reaction
in the range Ep ——2—26 MeV has been the basis of many
studies [24—28]. Tombrello, Spiger, and Bacher [24] sug-
gest the existence of a broad state at 20 MeV with a
possible spin assignment of 2 or 2, whereas Schroder

and Mausberg [25] also consider a spin assignment of 2
Del Bianco et aL [26] found no clear evidence for the ex-
istence of any state at this energy. King [27] measured
an excitation function from 17 MeV& E,&,. & 26 MeV as
well as several angular distributions within this energy
range. The analysis of the po and pi transition strengths
was consistent with a 2 state around 18 MeV and a

state around 20 MeV. Similar levels have been seen
in He [28]. If such states do exist, then the current ex-
periments at Eg(lab)=8. 6 MeV (E;L, ——21.5 MeV and
E;H, ——21.9 MeV) lie on the high-energy sides of these
20 MeV resonances.

The analyzing powers of the He(d, p) Li and the
sH(d, p) 5He reactions have not been measured previously,
although brief summaries of our current experiments
have already been published [29,30]. This paper presents
the results of our recently concluded study of these re-
actions. Cross sections and vector and tensor analyz-
ing powers of the sHe(d, p) Li reaction have been mea-
sured with a deuteron beam at Eg(lab) =0.8 MeV, which
was stopped in the target (thus integrating over most
of the fusion resonance), at Eg(lab)=0. 6 MeV, which
lost 0.3 MeV in the target (therefore spanning the full
width at half maximum of the fusion resonance), and at
Eg(lab)=8. 6 MeV. Cross sections and analyzing powers
of the sH(d, p)sHe reaction have been ineasured with a
deuteron beam at Eg(lab)=0. 4 MeV, which was stopped
in the target, and at Eg(lab)=8. 6 MeV. The results of
Legendre polynomial and transition matrix element 6ts
to the data are presented as well as coupled-channels res-
onating group model calculations which were performed
in both energy regions. Finally, conclusions about the re-
actions and the role of the tensor force will be discussed.

II. EXPERIMENTAL TECHNIQUES

In the present work, polarized beams were produced
at the Triangle Universities Nuclear Laboratory (TUNL)
using both the Lamb-Shift Polarized Ion Source [31]
and, in the later stages, the new Intense Polarized Ion
Source [32]. The beam polarization obtained from each
source was measured using, respectively, the quench-ratio
method [5] and a polarimeter utilizing the sHe(d, p)4He
reaction [33]. Capture p rays were detected in two 25.4
cmx25. 4 cm NaI(T1) spectrometers [34] with active and
passive shielding, and with known eKciencies and line-
shape response functions [30].

For the He(d, p)sLi reaction study above the fusion
resonance region, an 8.85 MeV beam &om the accelera-
tor was used to create 8.6 MeV deuterons at the center of
the target. This beam was pulsed at 5 MHz in order to
allow time-of-Bight discrimination between neutron and
p-ray events in the NaI spectrometer. The gaseous 3He
target [35] was operated at a pressure of 69.0 kPa with a
1.27 pm Nickel beam-entrance foil and a 2.54 pm Havar
beam-exit foil. Lead and tungsten shadow bars were used
to prevent the NaI spectrometers from directly viewing
these foils and allowed the spectrometers to see a region
of gas which was 3.58 cm long when the spectrometer
was at 90, corresponding to a target thickness of 0.301
mg/cm and a solid angle of 23 msr. As an additional
monitor of the experiment, an Ortec transmission-mount
500-pm-thick solid-state detector was placed in the tar-
get chamber at 30' and was doubly collimated to view
the center of the target. For the H(d, p) He experiment,
the beam was pulsed at 4 MHz and was passed through a
tritiated titanium target which contained approximately
240 pg jcm2 of tritium. Again, shadow bars were used to
reduce background, but it was not possible to mount a
monitor detector inside the target chamber due to geo-
metrical constraints.
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Por the experiments in the fusion resonance regions, it
was necessary to degrade the beam energy using Havar
foils since the accelerator cannot produce beams below

2 MeV. In order to set the beam energy, the deuteron
beam was scattered from a thin ( 10 pg/cmz) ~zC foil
into a calibrated solid-state detector located at 0„=30 .
The procedure for creating a 0.8 MeV beam began by
rotating four Havar degrading foils (6.35 pm thick) into
position between the target and. the detector. The ac-
celerator voltage was then adjusted to give a 0.8 MeV
deuteron peak in the solid-state detector spectrum. The
foils were rotated out of position, giving an undegraded
scattered-deuteron peak with an energy of 3.43 MeV. Fig-
ure 1 shows the spectra for the undegraded and degraded
scattered-deuteron peak. To obtain these same condi-
tions for the capture experiments, the beam energy was
adjusted such that a 3.275 MeV scattered-deuteron peak
was seen in the solid-state detector spectrum, indicating
that the incident beam energy was 3.43 MeV. Finally,
these same Havar degrading foils were transferred back
to the capture setup to ensure uniformity in foil thick-
ness. The above procedure was also used to produce
deuteron beams with energies of 0.8 6 0.09, 0.6 6 0.08,
and 0.4+ 0.1 MeV, where the uncertainties are given by
half of the FWHM of the peaks seen in the solid-state
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FIG. 1. Upper panel: Solid-state detector spectrum from
the C(d, d) C reaction. Lower panel: Spectrum from the
above reaction where Havar degrading foils have been placed
in front of the detector. The resultant deuterons have an
energy of 0.8 MeV.

detector spectra. The uncertainty in the centroid energy
is estimated to be +0.02 MeV, based on the uncertainty
in the calibration of the solid-state detector.

In order to determine the gas pressures needed for the
He target for measurements in the fusion resonance re-

gion, the solid-state detector was placed inside a small
vacuum chamber with a Havar entrance foil and the
whole assembly was placed inside the scattering chamber.
The scattered-deuteron energy was set by evacuating the
chamber and adjusting the accelerator voltage such that
the deuterons incident on the solid-state detector had
the proper energy. The chamber was then pressurized in
small increments with He until the deuterons reaching
the detector had lost the desired energy in the gas. Us-

ing this procedure, it was determined that 414 kPa of sHe

gas would completely stop the 0.8 MeV deuteron beam in
the target and that 156 kPa of gas would degrade the 0.6
MeV beam to an energy of 0.30 6 0.14 MeV, where the
uncertainty represents half of the FTHM of the deuteron
peak as seen in the solid-state detector spectrum. As be-
fore, the centroid uncertainty is estimated to be +0.02
MeV.

The 3He target for the experiments in the fusion reso-
nance region consisted of a 2.54 cm long cylindrical gas
cell [36]with the degrading foils described above mounted
as the entrance window. The cell was filled with either
414 or 156 kPa of research grade 99.95% pure sHe gas.
These gas pressures correspond to target thicknesses of
(1.54 + 0.14) x 10zo atoms/cmz and (5.82+0.15) x 10~s

atoms/cmz, respectively. The errors in the target thick-
nesses were calculated &om the uncertainties in the tar-
get length, gas pressure, and gas temperature. Note that
the target length uncertainty is much smaller when the
beam is stopped in the back wall of the target cell than
when it is stopped in the gas. Accurate beam-current
integration was achieved by electrically isolating the gas
cell and applying a suppression voltage to prevent the
escape of secondary electrons. Background spectra were
obtained by replacing the He with an equal pressure of

He to maintain the energy loss of the deuterons through
the gas. Although beam depolarization in the gaseous
3He target was a concern, previous measurements have
shown that this is not a large effect [36].

For the H(d, p)sHe experiment, a 3.375 MeV deuteron
beam was passed through a 25.4 pm Havar foil to degrade
the beam energy to 0.4 MeV with an energy spread of 0.2
MeV FWHM. The beam was pulsed at 4 MHz to create
a time-of-Hight condition which was used to reduce the
neutron background. The beam was then stopped in a
tritiated titanium foil which contained approximately 1
mg/cm of tritium. Background spectra were measured
using a pure titanium target of comparable thickness and,
after normalizing them using the Ti(p, p)Ti yields from
the solid-state spectra, they were subtracted &om the
spectra obtained with the tritiated foil.

In order to measure the cross sections and analyzing
powers of both capture reactions with the TUNL Lamb-
Shift Polarized Ion Source, the beam was polarized along
the quantization axis ( (longitudinal out of the source)
into State 1, 2, or 3 where the polarization [5] in State 1 is

pq = Q and pqq = Q; for State 2, pq = 0 and pqq = —2Q;
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for State 3, pg = —Q and pl~ = Q. q represents the
&action of the beam which is polarized as measured with
the quench-ratio method. When the quantization axis is
rotated perpendicular to the reaction plane by a Wien
filter, the cross section and analyzing powers are given
by

beam momentum when measuring T2p(8). The analyzing
powers were obtained by measuring the polarized cross
section +J (8) using the above polarization moments and
the unpolarized cross section «(8) for a left and right
detector. The expressions for the analyzing powers then
become

.(8) = —.'[ .(8) + .(8) + .(8)l
A (8) = '

3pg ( oz,p(8)

~R~(8) ~

~Rp(8) )
* (6)

A„(8) =—1 ( oi(8) —os(8)
Q (oi(8)+op(8)+os(8)) ' (2)

~r,J (8) ~Re (8)
(7)

where

1 ~oi(8) + mrs(8) —2o2(8) )
q ( oi(8)+o2(8) +os(8) )

' (3) ~2 o~(8)I'

&u («(8)

~'(8) = «(8) [1+~2p&(i)Aw(8) + —,'PR(i)Aww(8)]

denotes the polarized cross section in state i (i = 1, 2, 3).
The sHe(d, p)sLi observables o (8), A„(8), and A„„(8)
at 8.6 and Q.8 MeV were determined, as were the
H(d, p)sHe observables at 0.4 MeV, by making sequen-

tial measurements in States 1, 2, and 3, and then solving
the above equations. Each measurement typically lasted
&om 1 to 2 hours with eight runs total at each angle, two
each for States 1 and 3, and four runs in State 2 in order
to optimize the statistical error.

A pure vector-polarized beam from the Lamb-Shift
source with the quantization axis oriented perpendicular
to the reaction plane was used to measure A„(8) for the
sH(d, p)sHe reaction at Eg(lab) =8.6 MeV. In this mode
A„(8) is given by

A„8 1 o+(8) —o (8)
q o+ (8) + ~—

(8)
' (4)

where o+(8) and o (8) denote cross sections measured
with spin up and spin down, respectively. Similarly, a
pure tensor-polarized beam was used to measure T2p(8)
for this reaction at 8.6 MeV according to the expression

~2 oi(8) —op(8)

Q 2o, (8)+ op(8)' (5)

where ~0 denotes the unpolarized cross section and o.
q is

defined above.
To measure A„(8) and A„„(8)at 0.6 MeV, and T2p(8)

at 0.8 MeV for the sHe(d, 7)sLi reaction using the In-
tense Polarized Ion Source, the beam was polarized us-
ing the Strong Field 2, 3 ~ 5 transition [32]. The the-
oretical maxima for the beam moments are pq ——3 and
pt q

———1, respectively. Typically, the actual polariza-
tions are about 80% of these values. Since the polariza-
tion of the beam out of this source was measured with a
polarimeter [33], it is natural to describe it in terms of the
polarization moments pq and pqq [5], where the quantiza-
tion axis g is perpendicular to the reaction plane in the
case of measuring Aw(8) and A„„(8),and parallel to the

where the I. and R subscripts refer to the left and right
detectors, respectively. In the case of T2p(8), they are
equivalent.

III. THE FUSION RESONANCE REGION

A. General discussion and formalism

~(8) = 2I'siy2(E1) I'+ 4I'ssy. (&1)I'

A„(8) = 0, (10)

and

We shall first give an overview of the general techniques
of analysis common to both reactions under study, fol-
lowed by specific discussions for each. Our analyses be-
gan with fits of Legendre and associated Legendre poly-
nomials to the observables as defined in Ref. [37]. Accord-
ing to this formalism, the highest-order Legendre polyno-
mial in the series is given by twice the maximum multipo-
larity of the p rays. Odd terms in the series are indicative
of interference between difFerent multipoles of opposite
parity. Further information can be extracted &om these
data by performing a transition matrix element (TME)
analysis. The formalism of Seyler and Weller [37] is used
to express the reaction observables in terms of the re-
duced transition matrix elements (TME's), where the
TME's are labeled by their continuum state quantum
numbers (2'+iE~ in 8 scoupling) and -the multipolarity
(EA or MA) of the outgoing p rays. The relevant TME's
are then fit simultaneously to all of the observables at a
given energy, giving a model-independent interpretation
of the reaction.

In the fusion resonance region, 8-wave capture is ex-
pected to dominate the reaction due to suppression of
higher partial waves by the angular momentum barrier.
By considering 8-wave capture only, the expressions for
the observables in terms of the TME's become:
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Aw„(8) = 0.632] sx/2(El)]] s3/2(E1)f cos(b) + 0.800] s3/Q(El))

2(2 ax/2 (El) ]2 + 4]4ss/2 (El) ]

where b is the relative phase between the two transition
matrix elements. In the 2 fusion resonance region, it
is expected that the ss/2(El) transition matrix element
will dominate the reaction. If the reaction proceeds by
pure ss/2(E1) capture then A»(8)=0.2, whereas if it
proceeds by pure si/2(E1) capture then A»(8)=0.0.
Thus measuring A„„(8) provides sensitivity to the ad-
mixture of the two transition matrix elements.

In practice, it is necessary to include p-wave terms (ei-
ther Ml or E2) in the above expressions in order to fit
any fore-aft asymmetry which is present in the data. Un-
fortunately, an unconstrained inclusion of p-wave capture
introduces too many free parameters into the Gtting pro-
cess. In order to maintain a reasonable number of &ee
parameters, the j dependence of the p-wave transition
matrix elements has been suppressed in our analysis.

B. The sHe(d, y)sLi reaction

Observables were measured in two energy ranges about
the fusion resonance of Li. The absolute cross section
o(8), the vector analyzing power A„(8), and the tensor
analyzing powers A„„(8)and T2o(8) were measured for a
deuteron beam at Eg(lab) =0.8 MeV, which was stopped
in the target (thus integrating over the entire fusion reso-
nance). The same quantities excluding Tzo(8) were mea-
sured for a deuteron beam at Eg(lab)=0. 6 MeV which
lost 0.3 MeV in the target (integrating over the FWHM
of the fusion resonance). Typical spectra including a con-
volution fit [30,38] and typical summing region are shown
in Fig. 2 along with background spectra where He was
substituted for He in the target chamber. The measured
observables are plotted in Fig. 3.

The observables in both energy ranges were Bt with
Legendre and associated I egendre polynomials. Unfor-
tunately, it is not possible to extract the cp and ep coefE-
cients &om A.„„(8)without a measurexnent of T2o(8) also,
due to the nonorthogonality of the Legendre and sec-
ond associated Legendre polynomials. Therefore, for the
Eg(lab)=0. 6 MeV measurement, A»(8) was fit with or-
dinary Legendre polynomials. The results are presented
in Table I. The 6nite odd coeKcients indicate E1-M1
and/or El-E2 interference. The small k=3 and 4 coeffi-
cients suggest that the contributions &om E2 radiation
are small. In fact, Legendre polynomials with A; ) 2 are
not statistically justified in fits to any of the observables
except o (8)T22(8), where

1 1
T»(8) = — Aww(8) — T-(8)

since either y2 (y2 per degree of freedom v) is not sig-
nificantly improved or is already less than unity for the
fits with k & 2. Previous angular distribution measure-
ments [16,17] of the cross section in the fusion resonance
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FIG. 2. Upper panel: A p-ray spectrum from the
He(d, p) Li reaction at Eq(lab)=0. 8 MeV. Also shown is

a background spectrum which is obtained by replacing the
He gas target with He. Lower panel: The resultant back-

ground-subtracted spectrum. The dashed line is the result of
a line-shape 6t to the data. Vertical lines denote a typical
summing region.

region have indicated that the cross section is isotropic
to within 10'%%uo. The cross-section measurements of the
present experiment have been determined to be consis-
tent with isotropy to within 5% in a Legendre fit to Ao
only.

The results of a simultaneous TME 6t to the observ-
ables measured with Eg(lab)=0. 8 MeV are given in Ta-
bles I and II and shown in Fig. 3. These fits included
the sx/q(El) and ss/2(E1) terms as well as the p(M1)
and p(M1) terms (where the j dependence of the p-wave
terms has been suppressed). Two statistically significant
solutions with identical g„= 1.25 have been found, one
with dominant s =

2
8-wave capture strength, the sec-

ond with nearly equal strengths for the s =
2 and 2

s-wave transition matrix elements. Unfortunately, from
the analysis alone, it is impossible to choose one solution
over the other.

In order to understand the physics of the
sHe(d, p) sLi reaction in the fusion resonance region more
fully, angular distributions of o(8), A„(8), and A„„(8)
were measured for a beam energy spread which integrated
only over the FWHM of this resonance (&om 0.6 to 0.3
MeV in the lab frame). A transition matrix element anal-
ysis which uses the same choices of TME's as the 6t to
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FIG. 3. Left side: Observables measured
for the He(d, 7) Li reaction at Eg(lab)=0. 8
MeV where the beam was stopped in the
target. The solid curves are the result of
two independent transition matrix element
fits to the data (see Table II). The two so-
lutions result in curves which are indistin-
guishable in the figure. The dashed-dotted
and dotted curves are from CCRGM calcu-
lations A (with the two-body tensor force)
and D (no tensor force). Note that the ac-
tual CCRGM cross sections are a factor of 4
higher than what is plotted. Right side: The
same reaction at Eq(1 sb)= 06 MeV where
the beam lost 0.3 MeV in the target. The
solid curve is from the TME Solution 1 in
Table II, and the dashed curve is from so-
lutions 2 and 3 which give identical results
(see Table II). The dashed-dotted and dot-
ted curves are from CCRGM calculations A
(with the two-body tensor force) and D (no
tensor force). Note that the actual CCRGM
cross sections are a factor of 4 higher than
what is plotted.
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TABLE I. Legendre polynomial coeiBcients for the He(d, p) Li reaction at E&=0.8 MeV and at E&=0.6 MeV and the

H(d, p) He reaction at Eq=0.4 MeV in the fusion resonance region from a TME fit to the data, and from the CCRGM
calculations. Calculation A uses the two-body potential. Calculation B uses the phase-shift fitted potential. Calculation C uses
the two-body potential with the tensor-force strength set to 0.75 times its two-body value. Calculation D uses the two-body
potential with no tensor force. As is given in units of pb/sr. Coefficients from a direct fit of Legendre polynomials to the data
are given in the footnote when they difFer by more than one standard deviation from the TME-Bt results.

He(d, p) Li
Eg——0.6 MeV

E&——0.8 MeV TME fit RGM
TME fit (Solution 2) A

Ao 1.85 +0.13 1.91 +0.16 8.78
a~ —0.035 +0.011 —0.025 +0.221 0.004
aq —0.065 +0.017 0.001 +0.007 —0.005

RGM
B

44.95
0.002

—0.006

RGM
C
4.46
0.006

—0.006

RGM
D
0.114
0.010

—0.050

Eg=0.4 MeV
TME Bt

—0.002+0.001
—0.010+0.020

H(d, p) He

RGM
A
126
0.000

—0.003

RGM
C

59.3
0.001

—0.002

RGM
D
0.528

—0.265
—0.008

by 0.031 +0.020 —0.018 +0.099 —0.030 —0.007 —0.047 —0.371
bg —0.010 +0.003 0.000 +0.002 0.007 0.007 0.007 —0.034

0.020+0.038
0.008+0.003

0.001
0.003

0.001 0.019
0.003 —0.026

cp —0.001 +0.001 0.000 +0.001 0.012 0.013 0.012 0.001 —0.004+0.002
ci —0.020 +0.006 —0.001 +0.011 0.012 0.002 0.017 0.003 —0.087+0.025
cq —0.242 +0.025 —0.300 +0.113 —0.310 —0.293 —0.321 —0.011 —Oa193+0.023

0.010 0.010 0.000
—0.003 —0.005 0.002
—0.295 —0.302 —0.011

eg —0.099 +0.010 —0.122 +0.046 —0.127 —0.120 —0.131 —0.004 —0.080+0.010

b2 ———0.005 + 0.008.
co ———0.030 + 0.012, eq ———0.046 + 0.006.

—0.121 —0.123 —0.004
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TABLE II. Relative contributions of transition matrix elements to the cross section from a TME Gt to the cross section and
analyzing powers of the He(d, p) Li reaction in the fusion resonance region. The phase of the s~~2(E1) matrix element has
been arbitrarily set to zero.

TME
's, ),(E1)
s3)2(E1)

'p(M1)
p(M1)

Solution 1
X'-=13

Intensity

0.03+0.03
0.89+0.03
0.01+0.01
0.07+0.02

Phase

260 +3'
pO

69'k2'
1?3'+2'

145 k3'
pO

66'k4'
—10'k2'

He(d, p) Li at Eq(lab)=0. 8—0.0 MeV TME fits
Solution 2

X'.=1.3
Intensity Phase

0.48+0.06
0.44+0.05
0.01+0.01
0.07+0.02

Solution 3
X'=1.8

Intensity Phase

'si/~ (El)
s3/g {El)
p(M1)

'p(M1)
'p(E2)
'p(E2)

0.19+0.17
0.67+0.15
0.10+0.03
0.04+0.02

0.00+0.01
0.00+0.01

68'+62'
67'+117'

He(d, p) Li at Eq(lab)=0. 6—0.3 MeV TME fits
175'+6' 0.01+0.07 174'+180'

0' 0.99+0.08 0'
89'+5'

—24'k9'

0.45+0.07
0.52+0.05

0.02+0.04
0.01+0.01

8'+20'
0'

—84'+95'
—85'+132'

the E~ ——0.8 MeV data finds, rather than the two previ-
ous solutions, one unique solution with a y2=1.4 whose
errors nearly span both previous solutions (see Table II).
If E2 radiation (instead of Ml) is introduced into the
fits to account for the asymmetry of the data, then the
set of two solutions is recovered. These fits do not have
quite as good a y2 (=1.8) although they are acceptable
from a statistical point of view. The results of these fits
are given in Tables I and II and plotted in Fig. 3.

A consistent picture of this reaction in the fusion res-
onance region is provided by the TME solutions which
feature a dominant ssg2(E1) matrix element. In inte-
grating just over the peak of the resonance, the reaction
proceeds almost completely via the ss~2(E1) transition.
However, when a larger energy region is sampled, contri-
butions from other transitions (either Ml or E2) become
non-negligible.

C. The H(d, p)sHe reaction

The background-subtracted spectra obtained from this
reaction were fit with the line-shape response function of
the NaI detector. A convolution with a Breit-Wigner
function to account for the resonant ground state was
not necessary to obtain adequate fits in this case. The
relative cross section 0 (8)/Ao, the vector analyzing power
A&(8), and the tensor analyzing power A„&(8) were mea-
sured and are plotted in Fig. 4.

The angular distribution of the observables described
above were fit by expansions in terms of the appropri-
ate Legendre and associated Legendre polynomials. The
results are listed in Table I. As expected from charge
symmetry, these results are similar to those from the
sHe(d, p) Li reaction. Fits with k ) 2 were not sta-
tistically justified, indicating no significant contributions
by E2 radiation. The k = 1 coe%cients suggest that a
small amount of E1-M1 interference is present.

The results of a simultaneous TME fit to the observ-
ables are given in Tables I and III and shown in Fig. 4.
As indicated from the Legendre fits, it was necessary to

D. CCRGM calculations

One of the problems encountered when modeling nu-
clear reactions is that of effectively manipulating the
large number of degrees of freedom. The coupled-
channels resonating group model (CCRGM), which was
first proposed by Wheeler [39] accomplishes this by clus-
tering nucleons into bound substructures which have no
internal degrees of freedom. The total wave function is
then described as a linear combination of cluster wave
functions multiplied by their respective relative-motion
wave functions [40]. These wave functions are totally an-
tisymmetrized in order to adhere to the Pauli principle
and are optimized according to the prescription of the
variational principle. Thus, the calculations can be im-

proved by expanding the model space to include more
clusters or more sophisticated internal cluster wave func-
tions.

In the current CCRGM calculation, sLi (or sHe) is
described by d+sHe and p+4He (or d+sH and n+4He)
cluster wave functions. The proton and neutron are de-
scribed simply as point particles. The d, H, and He
cluster wave functions have a more complicated radial
expression of the form:

@(r) = E|;e "", (12)

with one or two terms in the sum for each cluster. The C,
and 6; coefricients for the present case were obtained us-

ing the Ritz variational principle [41] and therefore yield
upper bounds on the binding energy of each cluster.

introduce a small amount of M1 radiation in order to
fit the fore-aft asymmetry of the data, most notable in
the A„„(8) data. As with the He(d, p)sLi data in the
fusion resonance region, two statistically significant solu-
tions with nearly identical g~=2.6 have been found, one
with dominant s =

2
s-wave capture strength, the sec-

ond with s =
2 and 2 s-wave strengths, which contribute

nearly equally to the capture cross section.
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For the description of the sLi ground state, three
cluster configurations have been used: (p+4He)~=i~2,
(d+sHe)s=i~s, and (d+ He)s=s~z, where the cluster
pairs are in a relative P state and their total angular
momentum is J = 2. Three cluster configurations have
similarly been defined for sHe where a neutron has re-
placed the proton and H has replaced He. The radial

FIG. 4. Observables measured for the H(d, p) He reaction
at Eq(lab)=0. 4 MeV where the beam was stopped in the tar-
get. The curves are the results of transition matrix element
fits to the data. The solid and dashed curves represent solu-
tions 1 and 2, respectively, of Table III. The dashed-dotted
and dotted curves are from CCRGM calculations A (with the
two-body tensor force) and D (no tensor force).

wave function for each cluster pair is then described by

~uI,m) = (4,4,)YL, e '", (13)

where o. denotes the cluster configuration, L = 1, and the
4; represent the internal cluster wave functions obtained
using Eq. (12). The coefficient p in the exponential de-
termines the distance between the two clusters. For a
bound nucleus, p can also be used as a &ee parameter
in the variational calculation. However, the Li and He
ground states are unbound in the N+4He channel (where
N is a proton or neutron) so that if the distance between
the 4He and N clusters is used as a free parameter in the
variational calculation, the result is an infinite separation
between them. It was therefore necessary to fix the dis-
tance between the clusters to values that reproduced the
binding energy of sLi and sHe reasonably well. The cal-
culated binding energy of Li is —20.75 MeV, which un-
derestimates the experimental value of —26.33 MeV (de-
termined from the peak of the ground-state resonance).
For He the calculated binding energy is —20.66 MeV,
which underestimates the experimental value of —25.18
MeV. This variational calculation was carried out using
the formalism of Ref. [42] with a phenomenological soft-
core nucleon-nucleon potential [41].

The overlap integral of each cluster configuration with
the total ground-state wave function is defined as

Overlap integral = (a(A = 5)
(14)

(o.in) Q(A = 5iA = 5)

where ~a) represents one of the three cluster-
configuration wave functions and ~A = 5) represents the
total Li or He ground-state wave function. Accord-
ing to the CCRGM calculations, the sLi and sHe nu-
clei are almost entirely ()SS.8%) in the (N+ He)
configuration, which is consistent with the shell-model
description. Nonzero values for the (d+ He) =i~ and
(d+sH)a=i~2 overlaps are due to the nonorthogonality
of the two 8 =

2 configurations in each calculation.
Although the (d+sHe)s=s~s and (d+sH) = ~ overlaps
increase if the tensor-force strength is increased, their
contribution to the total wave function in any case is
negligible ( 10 %). The scattering wave function is
described by the same cluster configurations which were
used to describe the ground states; however, all values of
j that are allowed by the angular-momentum coupling
algebra are included.

In order to determine the position of the 2 resonances

TABLE III. Relative contributions af transition matrix elements to the crass section from a TME
fit to the cross section and analyzing powers of the H(d, p) He reaction in the fusion resonance
region. The phase of the ssyq(E1) matrix element has been arbitrarily set to zero

TME
s,yz(E1)
ss/z(E1)

'p(M1)
'pyf1)

H(d, 7) He at Es(lab)=0.4—0.0 MeV
Solutian 1
g„=2.61

Intensity Phase
0.03+0.03
0.88+0.05
0.05+0.05
0.04+0.02

TME 6ts
Solution 2
y„=2.58

Intensity

0.44+0.16
0.50+0.17
0.04+0.03
0.03+0.02

Phase

67 + 21'
00

—23' + 2l
—158' + 5
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FIG. 5. The d3~2 phase shift for the He(d, d) He reaction.
The data are taken from Refs. [8—10]. The curves represent
CCRGM calculations with different tensor-force strengths. In
the 6gure, S-0 and T are factors which multiply the spin-orbit
and tensor-force two-body strengths, respectively.

in the CCRGM model calculations, phase shifts were cal-
culated for the He(p, p)4He and 4He(n, n)4He reactions.
The calculated 2ds~2 phase shift for the 4He(p, p)4He
reaction is compared to the experimentally determined
phase shifts [8—10) in Fig. 5. In this figure, T and 8-
0 denote the &action of the two-body tensor force and
spin-orbit strength, respectively, used in the calculation.
The fusion resonance is clearly evident although an in-
crease in the tensor-force strength to T = 1.75 times the
two-body strength is necessary for agreement with the
size of the effect seen in the data. Even then the position
of the resonance, which is determined primarily by the
central force, is not correct.

In order to calculate the electromagnetic transitions,
the scattering wave functions were calculated at the
model-determined resonance position. The calculation of
the electromagnetic transition matrix elements were then
corrected for the discrepancy between the experimental
and theoretical on-resonance p-ray energies. Transition
matrix elements for the sHe(d, p) Li and the sH(d, p) sHe

reactions were calculated at the 2 fusion resonance (see
Tables I and IV) for El, Ml, and E2 transitions us-
ing the two-body potential (calculation A for each reac-
tion) and the phase-shift fitted potential (calculation B
for each reaction). Additionally, M2 transitions were cal-
culated for the He(d, p) Li reaction but were found to
have negligible strength. Calculation A is shown in Figs.
3 and 4. Both of these calculations yielded nearly identi-
cal analyzing powers, which reproduce the measured ana-
lyzing powers of both reactions. Although these calcula-
tions were performed at the peak of the fusion resonance,
energy averaging over the resonance, in accordance with
the experimental conditions, does not change the theoret-
ical results for the analyzing powers substantially since
almost identical results were obtained at other energies
in the averaging region. However, unlike the analyzing
powers, the cross-section calculations overestimate the
data dramatically (see Table I), even when energy av-
eraging is considered. When compared to the measured
on-resonance cross sections of Refs. [16,17], calculation A

for the sHe(d, p) Li reaction still overestimates the cross
section by a factor of 2 and 5, respectively. It is interest-
ing to note that a factor of 2 reduction in the calculated
cross section can be obtained by reducing the tensor-force
strength to 0.75 times its two-body value (calculation C).
This reduction does not lead to any appreciable discrep-
ancies with the measured analyzing powers.

In calculations A, B, and C for the He(d, p) Li reac-
tion, the as~2(El) transition matrix element dominates
the capture cross section, contributing 98.5%, 99.8%, and
97.1% of the cross-section strength, respectively. Like-

wise, for the sH(d, p)sHe reaction, this transition ma-
trix element contributes 99.6% and 99.2% for calcula-
tions A and C. This effect is also responsible for the
insensitivity of the analyzing powers to the different
values of the tensor-force strength, resulting in analyz-
ing powers that closely resemble the predictions &om
Eqs. (10) and (ll) for the reaction proceeding only
through sq~2(E1) capture. The mechanism responsi-
ble for this large amplitude works via the tensor force

which couples the (d+ He)'. s&~z scattering channel to the

(p+ He)'.
s&z scattering channel, allowing the transition

TABLE IV. Results of the coupled-channels resonating group model calculations in the fusion resonance region for calculation
A using the two-body potential, and calculation D using the two-body potential with the tensor force turned off. Calculations B
and C for each reaction are similar to calculation A. Transition matrix elements d, g2(E1), d3gz(E1), pqg2(M1), p3/g(M1),
pqgq(M1), p3Iq(Ml), p~y2(Ml), p~gq(E2), p3~2(E2), and p~~2(E2) were also calculated but are predicted to be essentially

zero.

A

CCRGM calculations
He(d, p) Li

D A
H(d, p) He

TME

gs~( lE)

s3)~(E1)
d, g~(E1)
d, gg(El)
d~(2 (El)
p, /2(E2)
ps~i (E2)

Intensity

0.013
0.985
0.000
0.000
0.000
0.000
0.001

Phase
96'
70

—50
—55'
—45'
123
—89'

Intensity

0.913
0.001
0.001
0.006
0.000
0.013
0.064

Phase
—84
—98
133'
126'
—40
—58'

93

Intensity

0.004
0.996
0.000
0.000
0.000
0.000
0.000

Phase
—85

—128
87'
89'

103
102'

—114'

Intensity

0.991
0.001
0.000
0.000
0.006
0.000
0.001

Phase
96'
82

—83
—91
106
—77

66'
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FIG. 6. A typical p-ray spectruxn from the He(d, p) Li
reaction at Eq(lab)=8. 6 MeV. The curve is &om a convolution
fit to the data as described in the text. The spectrum is cut
off below 16 MeV.

to the S =
&

ground state to proceed via the dominant
spin-independent term of the El operator. To further
examine the sensitivity of the calculation to the tensor
force, a fourth calculation (calculation D) was performed
with the tensor force turned ofF (see Figs. 3—5). In this
case the tensor analyzing powers nearly vanish, the vec-
tor analyzing power becomes quite large, and the cal-
culated cross section underestimates the measured cross
sections by a factor of 16. These results differ from those
of calculations A, B, and C due to the dramatic reduc-
tion in the strength of the ss'2(EI) transition matrix

TABLE VI. Transition matrix element relative intensities
from a TME fit to the cross section and analyzing powers of
the He(d, p) Li reaction at Ez——8.6 MeV. Only one statisti-
cally sigui6caut solution (with y„= 0.7) has been found. The
phase of the s3'q (El) matrix element has been arbitrarily
set to zero.

TME

s, /2(E1)
4ssg'(El)
'J(E2)
'p(E2)
'd(E1)
'd(E1)

Intensity

0.15+0.02
0.65+0.03
0.00+0.00
0.00+0.00
0.18+0.02
0.02+0.01

Phase

53 + 5'
00

133' + 6'
179' 6 13'
199' + 3'
72' 64'

element which now contributes jess than 1% of the cal-
culated cross-section strength.

IV. Eg——8.6 MeV

A. The sHe(d, y}sLi reaction

Three reaction observables were measured at this en-
ergy [o(8), A„(8), and A„„(8)]. A typical p-ray spec-
trum is shown in Fig. 6. A p-ray spectrum with no gas
in the target chamber was also taken to determine the
background due to the entrance and exit foils. No back-
ground was detected in the energy range of interest. The
p-ray spectra &om the sHe(d, p) sLi reaction were fit with
a convolution of the NaI line-shape response function and
a Breit-Wigner one-level approximation [38].

Legendre fits to the three measured observables [o'(8),

TABLE V. Legendre polynomial coefBcieuts for the He(d, p) Li reaction and the H(d, p) He reaction at E&=8.6 MeV
from a TME fit to the data and the CCRGM calculations. Calculation E uses the two-body potential. Calculation F uses
the modi6ed potential which has been adjusted to reproduce the He(p, p) He phase shifts. Calculation G uses the two-body
potential with no tensor force. Ao is given in units of pb/sr. CoeKcients from a direct fit of Legendre polynomials to the data
are given in the footnote when they differ by more than one standard deviation from the TME-fit results.

Ap

ag
a3
a4

TME fit
2.15 +0.082

—0.140 +0.014
—0.205 +0.024
—0.025 +0.012

0.000 +0.000

He(d'p) Li
RGM

E
4.96
0.018

—0.086
0.323
0

RGM
F
7.82
0.025
0.070
0.201
0

RGM
G
3.07
0.002

—0.189
0.500
0

TMEfit
1.00+0.016

0.087 +0.020
—0.201 +0.019

H(d p) He
RGM

E
45.556
—0.009
—0.077

RGM
G
19.996
—0.008
—0.368

bg

b2

b3

b4

—0.015 +0.018
—0.023 +0.009

0.007 +0.003
0.000 +0.000

—0.107
0.122

—0.012
0

—0.053
0.127

—0.003
0

0.021
—0.034
—0.025

0

—0.009 +0.009
—0.076+0.006

0.002
0.114

0.005
—0.014

Cp

cy

0.229 +0.019
—0.036 +0.005
—0.198+0.015

—0.004
—0.036
—0.273

—0.143
—0.059
—0.344

0.018
—0.004
—0.006

—0.049 +0.010
—0.043 +0.009
—0.068 +0.006

0.009
0.003

—0.306

0.033
0.002

—0.012

—0.111+0.006 —0.004 —0.024 —0.005 —0.023 +0.002 0.002 —0.009

ai ——0.062 + 0.013, b2 ———0.053 + 0.014, cp ———0.035 + 0.009, cq ———0.025 + 0.031.
a4 ——0.010 + 0.034, b4 ———0.006 + 0.005.
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FIG. 7. Left side: Observables measured
for the He(d, p) Li reaction at Eq(lab)=8. 6
MeV. The solid curve is the result of a tran-
sition matrix element fit to the data (see
Table VI). The dashed-dotted and dotted
curves are from CCRGM calculations E (with
the two-body tensor force) and G (no ten-
sor force). Right side: Observables measured

for the H(d, p) He reaction at Eq(lab)=8. 6
MeV. The solid and dashed curves are from
transition matrix element Gts corresponding
to solutions I and 2, respectively (see Table
VII). The dashed-dotted and dotted curves
are from CCRGM calculations E (with the
two-body tensor force) and G (no tensor
force). Note that the actual CCRGM cross
sections are a factor of 10 higher than what
is plotted.
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A.„(8),and A„„(8)jhave been performed. The results are
given in Table V. The finite odd coeKcients indicate E1-
Ml and/or El-E2 interference while the non-negligible
as coefficient suggests some contributions from El-E2
interference.

At Eg 8.6 MeV, only——one TME solution (with g2 =0.7)
was found Rom a fit to the cross section and analyzing
powers A„(8) and As„(8). The fit indicates that the cap-
ture cross-section strength is dominated by 8-wave E1
capture with an admixture of 20% d-wave El capture.
The results of a simultaneous TME fit to all of the data
are given in Table VI and shown in Fig. 7.

300

250

l
I

I
I

I
I

I
I

I
I

I

'H(d, )'He

nearly equal y2=1.1. The results of these fits are given
in Table VII and presented in Fig. 7. In both fits, about
20% of the cross-section strength is due to the s3/2(EI)
matrix element. However, one fit indicates more than
40% of the cross section is contributed by d-wave capture
while the other fit suggests only a 15% contribution,
where most of the remaining strength is produced by the
31~2(EI) and p-wave (E2) transitions. Interestingly, al-

B. The sH(d, p)sHe reaction

For this reaction, background spectra were measured
and subtracted &om the spectra obtained with a tritiated
foil using the technique described in Sec. II. A typical
background-subtracted spectrum is shown in Fig. 8. The
background-subtracted g-ray spectra were fit with the
measured line-shape response function of the NaI spec-
trometers. No convolution was used in the fitting. The
cross section 0 (8), the vector analyzing power A„(8), and
the tensor analyzing power T2p(8) have been measured
and are plotted in Fig. 7.

Adequate Legendre polynomial fits were obtained us-
ing polynomials of order k & 2. The results are given in
Table V. TME its to the data yield two solutions with
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FIG. 8. A typical p-ray spectrum for the H(d, p) He re-
action at Eq(lab)=8. 6 MeV. The curve is from a fit to the
data.
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TABLE VII. Transition matrix element relative intensities &om a TME fit to the cross section
and analyzing powers of the H(d, p) He reaction at E&=8.6 MeV. Two statistically significant
solution (with X„=1.1) have been found. The phase of the ssyz(E1) matrix element has been
arbitrarily set to zero.

H(d, p) He at Eq(lab)=8. 6 MeV TME Sts
Solution 1 Solution 2

y =11 y =11
TME

s, /2(E1)
soggy(E1)

'p(E2)
'J (E2)
d(E1)

4d(E1)

Intensity

0.25 +0.03
0.20 +0.04

0.003 +0.002
0.02 +0.01
0.43 +0.05
0.10 +0.01

Phase

109 +15
0

134 +38
75 +14

356 +11
155 +24

Intensity

0.43+0.10
0.23+0.05
0.10+0.02
0.10+0.03
0.10+0.02
0.05+0.01

Phase

109+8
0
188 k7
91 k7
46 +12

220 +12

though two solutions were found, neither one closely re-

sembles the solution found for the sHe(d, p)sLi data al-
though a comparable solution was explicitly sought.

C. CCRGM calculations

Transition matrix elements have been calculated
for the sHe(d, p) Li and the H(d, p)sHe reactions at
Eg(lab)=8. 6 MeV using the two-body potential (calcu-
lation E), the phase-shift adjusted potential (calculation
F), and the two-body potential where the tensor-force
strength has been turned off (calculation G). All of the
parameters of the calculations are the same as those used
for the calculations in the fusion resonance region. The
results of these calculations are listed in Tables V and
VIII and are plotted in Fig. 7. At this energy, quali-
tative agreement with the measured cross sections and
analyzing powers was improved by turning oH' the tensor
force (calculation G). However, a comparison of transi-
tion matrix elements reveals that although the calculated
observables reproduce the data better, the relative in-
tensities of the transition matrix elements do not agree
with those extracted &om a TME fit to the data. In
fact, a nonzero tensor force is necessary to get even a
rough agreement between the data and theory for the

relative strengths of the TME's. For the H(d, p)sHe re-
action, calculation E (with 43% s-wave El capture and
57% d-wave El capture) suggests that the TME Solu-
tion 1 (with 45'%%uo s-wave El capture and 53% d-wave
El capture) is the physical one, although the spin de-
pendence of the two s-wave TME's is not reproduced.
As with the CCRGM calculation at the peak of the fu-
sion resonance, the ssy2(E1) transition matrix element
contributes strongly to the capture cross section via the
coupling of the [d+sHe (or sH)j'. s&~z scattering channel

to the (N+ He)'.
s&z scattering channel by the tensor2=3/2

force. For both reactions, calculation E predicts that the
ds~2(E1) TME contributes 4%%uo and 10'%%uo, respectively,

to the cross section via this same tensor-force coupling
mechanism, while the ds~z(EI) TME contributes 40%%uo

and 39'%%uo, respectively, to the cross section by coupling
directly to the N+4He channel. Small to zero amounts
of M1 or E2 radiation are predicted.

V. CONCLUSION

The experimental results reported in this paper
comprise the first study of the sHe(d, p) Li and the

TABLE VIII. Results of the coupled-channels resonating group model calculations at Eq(lab)=8. 6 MeV for calculation E
using the two-body potential, and calculation G using the two-body potential with the tensor force turned oH'. Calculation F for
each reaction is similar to calculation E. Transition matrix elements pqyz(M1), psy2(M1), pzyz(M1), psyz(M1), psy2(M1),
psyz(E2), and psyz(E2), were also calculated but are predicted to be essentially zero.

CCRGM calculations

E
He(d, p) Li H(d, y) He

TME".~.(EI)
ss)2(El)
doing (El)
ds)2 (El)
dgyz(E1)
dogo(E1)

4dsgz(E1)
'pi(2(E2)
'p3(2(E2)
pigz(E2)

Intensity

0.019
0.308
0.061
0.398
0.033
0.043
0.001
0.003
0.127
0.004

Phase

142
60

175'
165
—23
—85'
117
27'

157'
57

Intensity

0.034
0.000
0.101
0.647
0.000
0.000
0.002
0.009
0.205
0.000

Phase
—38'
—66'

4o
—14'

63
125'
111'

—155
—23

53'

Intensity

0.003
0.430
0.037
0.388
0.032
0.095
0.014
0.000
0.000
0.000

Phase
—33'
166'
—18
—29'
141'
71

—72
20

151
37

Intensity

0.008
0.000
0.088
0.896
0.000
0.000
0.007
0.000
0.001
0.000

Phase
142'
114'
161
151

—126
—75
—86'
182
—29

5o
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H(d, p) He reactions. Measurements were obtained at
Ed (lab) =8.6 MeV as well as for deuteron energies which
encompassed the fusion resonance regime.

The 8.6 MeV data appear to be better described by a
coupled-channels resonating group model (CCRGM) cal-
culation with the tensor force turned off. However, the
strong 8-wave E1 capture strength obtained in the tran-
sition matrix element analysis requires the tensor force
to be present, although this calculation fails to describe
our data.

In the case of the fusion resonance region, the CCRGM
model gives a good description of the data if a tensor force
having 0.75 times the two-body tensor-force strength
is included. Although this calculation overpredicts our
measured cross section by a factor of 2, it agrees with a
previous measurement of Ref. [16]. Increasing the tensor-
force strength increases the predicted cross section, but
the analyzing powers stay in good agreement with the
data. If the tensor force is turned off then the tensor
analyzing powers go essentially to zero and the cross sec-
tion is more than an order of magnitude too small. This
result indicates that the tensor force is the driving force
in the He(d, p)sLi and sH(d, p) He reactions at these

low energies. Since the He(d, p) Li-to-sHe(d, p)4He and
H(d, p) He-to- H(d, n) He branching ratios are Hat in

the region of the fusion resonance, the present study also
shows that the tensor force drives the energy-producing
(d, n) and (d, p) reactions. Furthermore, the effects of
the tensor force dramatically increase the feasibility of
using the He(d, p) Li reaction as a diagnostic tool for
deuterium-tritium reactors.

ACKNOWLEDGMENTS

The authors wish to thank Z. D. Huang, L. H. Kramer,
J. L. Langenbrunner, R. M. Whitton, J. Z. Williams,
and V. Wijekumar for their assistance in the collection
of the data presented here. We also wish to thank H.
M. Hofmann and M. Unkelbach for numerous enlighten-
ing discussions about the CCRGM calculations. These
calculations would not have been possible without their
generous assistance. This work was supported in part by
the U.S. Department of Energy, Office of High Energy
and Nuclear Physics, under Contract No. DEFG05-91-
ER40619.

[1] F. E. Cecil, D. M. Cole, F. J. Wilkinson III, and S. S.
Medley, Nucl. Instrum. Methods B10/ll, 411 (1985).

[2] T. W. Bonner, J. P. Conner, and A. B. Lillie, Phys. Rev.
88, 473 (1952).

[3] G. Freier and H. Holmgren, Phys. Rev. 93, 825 (1954).
[4] J. L. Yarnell, R. H. Lovberg, and W. R. Stratton, Phys.

Rev. 90, 292 (1953).
[5] G. G. Ohlsen et al. , in Polarization Phenomena in ¹

clear Reactions, edited by H. H. Barschall and W. Hae-
berli (University of Wisconsin Press, Madison, Wiscon-
sin, 1971),pp. 305 and 842.

[6] H. A. Grunder, R. Gleyvod, J. Lietz, G. Morgan, H.
Rudin, F. Seiler, and A. Stricker, Helv. Phys. Acta 44,
662 (1971).

[7] J. P. Conner, T. W. Bonner, and J. R. Smith, Phys. Rev.
88, 468 (1952).

[8] A. Houdayer, N. E. Davidson, S. A. Elbakr, A. M.
Sourkes, W. T. H. Van Oers, and A. D. Bacher, Phys.
Rev. C 18, 1985 (1978).

[9] G. R. Plattner, A. D. Bacher, and H. E. Conzett, Phys.
Rev. C 5, 1158 (1972).

[10] P. Schwandt, T. B. Clegg, and W. Haeberli, Nucl. Phys.
A163, 432 (1971).

[ll] A. G. M. Van Hees and P. W. M. Glaudemans, Nucl.
Phys. A396, 105c (1983).

[12] J. Burger, H. M. Hofmann, H. Kellermann, and T.
Mertelmeier, in Proceedings of the International Confer
ence on Nuclear Physics, edited by P. Blasi and R. A.
Ricci (Tipogra6a Compositori, Bologna, 1983), Vol. 1, p.
89.

[13] H. M. Hofmann (private communication).
[14] G. Bluge and K. Langanke, Few Body Systems ll, 137

(1991).
[15] G. Bliige and K. Langanke, Phys. Rev. C 41, 1191 (1990).
[16] J. M. Blair, N. M. Hintz, and D. M. Van Patter, Phys.

Rev. 9B, 1023 (1954).

[17] W. Buss, W. Del Bianco, H. Wafller, and B. Ziegler,
Nucl. Phys. A112, 47 (1968).

[18] L. Kraus, M. Suffert, and D. Magnac-Valet te, Nucl. Phys.
A109, 593 (1968).

[19] W. Buss, H. Wafller, and B. Ziegler, Phys. Lett. 4, 198
(1963).

[20] A. Kosiara and H. B. Willard, Phys. Lett. 32B, 99
(1970).

[21] V. M. Bezotsnyi, V. A. Zhmaylo, L. M. Surov, and M. S.
Shvetsoy, Yad. Fiz. 10, 225 (1969) [Sov. J. Nucl. Phys.
10, 127 (1970)].

[22] F. E. Cecil, D. M. Cole, F. J. Wilkinson III, and S. S.
Medley, Nucl. Instrum. Methods B10/ll, 411 (1985).

[23] G. L. Morgan, P. W. Lisowski, S. A. Wender, R. E.
Brown, N. Jarmie, J. F. Wilkerson, and D. M. Drake,
Phys. Rev. C 33, 1224 (1986).

[24] T. A. Tombrello, R. J. Spiger, and A. D. Bacher, Phys.
Rev. 154, 935 (1967).

[25] H. Schroder and W. Mausberg, Z. Phys. 235, 234 (1970).
[26] W. Del Bianco, F. Lemire, F. J. A. Levesque, and J. M.

Poutissou, Can. J. Phys. 4B, 1585 (1968).
[27] H. T. King, Nucl. Phys. A178, 337 (1972).
[28] F. Ajzenberg-Selove, Nucl. Phys. A490, 1 (1988).
[29] J. C. Riley, H. R. Weller, and D. R. Tilley, Phys. Rev. C

40, 1517 (1989).
[30] M. J. Balbes, G. Feldman, H. R. Weller, and D. R. Tilley,

Phys. Rev. C 45, R487 (1992).
[31] T. B. Clegg, G. A. Bissinger, and T. A. Trainor, Nucl.

Instrum. Methods 120, 445 (1974).
[32] T. B. Clegg, H. J. Karwowski, S. K. Lemieux, R. W.

Sayer, E. R. Crosson, and W. M. Hooke (unpublished);
D. C. Dinge, T. B. Clegg, E. R. Crosson, and H. W.
Lewis (unpublished); T. B. Clegg, W. M. Hooke, E. R.
Crosson, A. W. Lovette, H. Middleton, H. G. Pfutzner,
and K. A. Sweeton (unpublished).

[33] K. Stephenson and W. Haeberli, Nucl. Instrum. Methods



POLARIZED DEUTERON CAPTURE BY 'He AND 'H AT AND. . . 925

169, 483 (1980).
[34] H. R. Weller and N. R. Roberson, IEEE Trans. Nucl. Sci.

NS-28, 1268 (1981).
[35] S. E. King, N. R. Roberson, H. R. Weller, and D. R.

Tilley, Phys. Rev. C 80, 21 (1984).
[36] J. L. Langenbrunner, H. R. Weller, and D. R. Tilley,

Phys. Rev. C 42, 1214 (1990).
[37] R. G. Seyler and H. R. Weller, Phys. Rev. C 20, 453

(1979).
[38] M. J. Balbes, G. Feldman, L. H. Kramer, H. R. Weller,

and D. R. Tilley, Phys. Rev. C 4$, 343 (1991).
[39] J. A. Wheeler, Phys. Rev. 52, 1083 (1937).
[40] H. M. Hofmann, Resonating Group Calculations in, Light

NucLear System, Val. 273 in Lecture Notes in Physics
(Springer-Verlag, Berlin, 1986).

[41] T. Mertelmeier and H. M. Hofmann, Nucl. Phys. A459,
387 (1986).

[42] H. Eikemeier and H. H. Hackenbroich, NucL Phys. A1B9,
407 (1971).


