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Shape dependence of the deuteron radius
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The expansion of the square of the ratio of the deuteron radius to the triplet neutron-proton
scattering length is generalized to include the D-state component of the deuteron wave function.
Although more than 98% of this ratio is independent of the potential model, the remainder is
discussed in terms of the dependence on the deuteron D state and the nonlocality of the potential.
The convergence for ddFerent expansion parameters, all of which can be directly obtained from
experimental data, is investigated and an optimal choice is proposed.
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I. INTRODUCTION

Several recent papers discuss the expansion of the ratio
of the radius of the deuteron to the triplet neutron-proton
scattering length in terms of a dimensionless parameter.
This parameter is related to one of the triplet efFective
ranges multiplied by the square root of the deuteron bind-
ing energy or the inverse triplet scattering length [1—3].
A similar expansion holds for a relativistic model involv-
ing the Dirac equation [4]. The study of such expansions
is motivated by the observation some years ago by Klars-
feld et al. [5) that the deuteron radius and the triplet
scattering length for a variety of realistic nucleon-nucleon
interactions exhibit a linear relation. The experimental
values of the deuteron radius and the triplet scattering
length determine a region that lies away from the line
by a significant amount (three standard deviations). By
introducing sufBciently large nonlocal components in the
interaction it is possible to remove the discrepancy be-
tween theory and the experimental data [6,3]. Wong [7]
considers models of quark and relativistic contributions
to the deuteron radius and finds that both effects are too
small to account for the difFerence. Recently new elastic
electron-deuteron scattering data were used to obtain a
revised estimate of the deuteron radius, reducing the dis-
crepancy between theory and experiment [8]. However,
the authors of Ref. [8] suggest that the new data are not
consistent with earlier data, and so a more definite state-

ment awaits further experimental results.
The expansions of the radius-to-scattering-length ratio

bring about a clear indication of the model dependence of
the deuteron radius. The first three terms of the expan-
sion (the second has a coefficient of zero) are indepen-
dent of the model of interaction; the subsequent terms
give the shape dependence. The coefficients of the shape-
dependent terms can be expressed in terms of shape pa-
rameters of the effective-range expansion of the triplet
eigenphase shifts and integrals involving the zero-energy
wave function of the system. The model dependence
manifests itself in those terms of the expansion that can-
not be expressed in terms of low-energy proton-neutron
scattering data or quantities describing the asymptotic
behavior of the deuteron wave function, which are known
experimentally. The experimental quantities we use are
listed in Table I.

In this paper we introduce a generalization of an earlier
expansion [3], so that it now includes the D state. This
is discussed in Sec. II along with some estimates of the
efFect of the D state on the deuteron radius. In Sec.
III the choice of the expansion parameter of the ratio
of the deuteron radius to the triplet scattering length
is investigated. Differences in effects due to equivalent
potentials are studied in Sec. IV. The final section is a
discussion of the shape dependence of the deuteron radius
in terms of experimental data.

Eg(Mev)
2.224575(9) 0.0268(7)

A, (fm ~ ) a~(fm) r v(fm)
0.SS46(S) 5.419(7} 1.759(5)

TABLE I. Experimental values for the deuteron binding
energy, mixing parameter, asymptotic S-state amplitude, the
triplet scattering length, and effective range (at zero energy).

II. GENERAL EXPANSION

In earlier work [1—3] the ratio of the deuteron radius
to the scattering length is written as an expansion of a
parameter proportional to an efFective range multiplied
by o., where the bound-state energy of the deuteron is
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Es = —h~a /m, m being the nucleon mass, or as an
expansion of an effective range times the inverse of the
triplet scattering length. There are three different defi-
nitions of the effective range, which, although nearly the
same, have differences between them of the order of o. .
In Ref. [3], in which the D state was not included, we

used z = zrpo. , where rp is the effective-range parameter
in the effective-range expansion

1 1 2 3 4k cot h = ——+ —rpk —P,rok +
Gg 2

(2 1)

In this paper we include the D state and take b to be the
eigenphase shift of Biedenharn and Blatt [9]. We there-
fore label the shape parameter P, rather than P. This
is an important consideration, since we will note later
that the shape dependence of the expansions is in part
due to the dependence on P, . Although the scattering
length and effective range are the same in the eigenphase
or "bar" phase representations, the quantity P, and its
counterpart in the "bar" phase representation are not the
same. (See, for example, Ref. [10].) The effective range
in this case can be expressed in terms of the zero-energy
wave function

rD = — (u +'co )r dr.
4 0

(2.7)

Let us define

T—:8r~/a, '. (2.8)

(2.9)

This quantity is the generalization of u2(r) in the pure
S-state case. Then the deuteron-pole effective range can
be written

rd = -e ' " —p(n, r) dr -=Ip(o.).
2 0

(2.10)

We also need

We shall show that the expression for this quantity for a
pure S-state deuteron, as given in Ref. [3], can be gener-
alized to the case in which there is a D-state component
in the wave function.

We define the quantity

rp = 2 (uo uo ~o)dr-2 2 2

0
(2.2) I2(n) = e "—p(n, r) r dr.

0
(2.11)

The deuteron radius can then be expressed in terms of
Ip(a) and I2(o.),i.e.,

1 f p(a, r)r2dr
4 f p(n, r)dr

1 f e 2 "r2dr —I2(cx)

f, e-' "dr —Io(n)
1 1 —4ccs I2 (n)

8o,2 1 —2aIp(cr)

(2.12)

(2.i3)

(2.i4)
+~2

+2(1+ g ))
OO (rg=2

~

e (2.3)
Thus

where up and mp are the S- and D-state components of
the zero-energy wave function, and up is the free zero-
energy wave function with the same asymptotic form as
up. The normalization of the wave function is chosen so
that up ——1 when r = 0.

One could also use the parameter y = 2o;rg, where
rg is the effective range at the the deuteron bound-state
energy. An expression similar to that of Eq. (2.2) holds
for rg [11].That is,

1 2

n A2(1+ r12)
' (2.4) 1 —4o.s J(n) Ip (o.)

n'a, [1 —2o.Io(n)]
' (2.15)

where now the subscript n of u and tu refers to the fact
that the wave functions are those at the deuteron binding
energy. The quantity g is the usual mixing parameter,
and the wave function is normalized so that

where we have defined the dimensionless quantity

J(~) = I2(~)/Io(~). (2.i6)

f (u +w )dr=i.
0

(2.5)
Equation (2.15) is exact and has the same form as the
single-channel expression. Using Eqs. (2.10) and (2.6) in
Eq. (2.15), we obtain

A third possible expansion parameter is z = ~or [12],
where r can be expressed in terms of the scattering
length aq, i.e.,

1 ——,'mores J(cx)
1 —hard

(2.17)

1
(na, )

~ =1 ——car =1 —z.
2

(2.6)

Bhaduri et aL [1] used a fourth alternative as the ex-
pansion parameter, which is the triplet zero-energy efFec-

tive range divided by the triplet scattering length.
The deuteron root-mean-square radius is given by rD,

where

This last expression can be expanded in powers of o., or
in terms of a more convenient dimensionless parameter
such as x, y, or z, defined above. In a later section we
show that an expansion in z converges at least as rapidly
as the other possibilities. Thus we make the expansion
in terms of z, although formally we could choose either
of the other two parameters just as well. We note that
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arg = ar [1+2P,(ar ) + ]

= 2z(1+ 8P.z'+. . .),

(2.18)

(2.19)

J = Jp+ J,z+ --, (2.20)

where the next term is of the order of z . We also make
expansions of J and P in z:

bIo = b p(a, r)dr
p

1
2( (g Ps —PD),

(2.30)

(2.31)

where Pg and PD are the S- and D-state probabilities.
Similarly we have

P, = Pp+ Pgz+ (2.21) 4I2 = Ap o., r r dr (2.32)

Writing a power series in z for T,

T = ) d„z",
n=p

(2.22) where

, (4q'r2-4r'),
g2 1+~2

(2.33)

we obtain the coefficients of the first few terms explicitly,
2 1 22 2 1 22r u dr and r = — r~m2dr. (2.34)

T = 1+z + (2+ 16Po —4Jo)z

+(4+ 32Po + 16Pi —4Ji)z + (2.23)
Obviously the sum of r„and r is rD.

We now expand J(a),

P('")-~ +~ (1+, )
= p, (a, r) + 6p(a, r),

(2.24)

(2.25)

where

2

p, (a, r) =
S

(2.26)

and

(2.27)

The function p, (a, r) can be used to provide an estimate
of eÃects due to the S-wave component of the deuteron
wave function, whereas b,p(a, r) yields D-state effects
through g and m . We write

I„(a) = I„,(a) + b.I„(a), n=0, 2, (2.28)

where

I„,= [e
" —p, (a, r)] r"dr

0
(2.29)

The D-state contribution to Ip is

This expansion gives exactly the same formula as the
one for S-state interactions [12], but the P; and J; will,
of course, have diferent values because of the D state.
Even with the D state included the first two terms of
the expansion of T remain independent of the model of
interaction.

It is of interest to determine the magnitude of the ef-
fect of the D state on the expansion. In Ref. [6] it was
shown that the inclusion of the D state, while keeping
the binding energy fixed, tends to increase the deuteron
radius. We use Eq. (2.17) to analyze this in greater de-
tail. Let us separate the S- and D-state dependence of p
of Eq. (2.9) by writing

I2, f AI2 b,Is
(2.35)

Surprisingly the terms involving the function m are dom-
inant in contributing to the changes; the contribution
due to u is multiplied by g which is proportional to a4.
(a = 0.2316 fm i for the deuteron. ) In EIs, therefore,
the quantity g Pp goes as a for small a. By model cal-
culations we find that P~ is proportional to a for small
o, . This is readily seen from the expression of PD for the
Yamaguchi potential with tensor force given in Ref. [13].
One comes to the same conclusion by using the asymp-
totic form of the deuteron wave function cut ofF inside a
nonzero radius as approximating the deuteron wave func-
tion. Finally we used the Reid hard-core potential [14]
and reduced the tensor force strength gradually. The re-
sulting variation in the deuteron binding energy and the
PD clearly shows a linear relation between PD and n.
Thus the PD term is dominant in the expression for AIp.
Similarly, in AI2 the quantity g r„ is proportional to o. ,
but r is proportional to o..

An estimate of the D-state contribution to T can be
found by considering the results of the Reid hard-core
potential [14]. Including both S and D states, we obtain
T = 1.055. When p, is used instead of p to calculate J,
T = 1.040. We emphasize that this di8'erence is about
half of that obtained when the r2 part is simply dropped
&om rD in T. Thus the D state causes an increase of
about 1.4%%up to T or about 0.7% to rD. This result is
consistent with the model calculations in Ref. [6].

If the expansion of this ratio, Eq. (2.22), converges
rapidly enough so that the term with coefBcient d4 and
the following terms can be neglected, the D-state con-
tribution to J and to P can be translated as a D-state
contribution to the coefBcient d3. We show later that
for realistic potentials the truncation of the expansion
after the dq term is a reasonable approximation. Using
the acid hard-core results to make a typical estimate,
we obtain Ads(J) = —4AJ = 1.22, where AJ is the
contribution to J in Eq. (2.35) due to the b, Io 2 terms.
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III. CHOICE OF EXPANSION PARAMETER

In Sec. II we developed a power series in the parameter
z, but we indicated that x and y were also appropriate
choices. Besides the expansion given in Eq. (2.22), we
introduce the power series

at
a„x" (3.1)

n=o
OO

T= "D =) c„z"
a n=o

(3 2)

(3.3)

= ) e„y". (3.4)

Bhaduri et aL [1] use a different expansion parameter,
namely, rp/at. For the sake of comparison with the other
series we take ( = rp/(2at) and consider also the series

The contribution to P, for a zero-energy bound-state sys-
tem will lead to another contribution to dg due to the D
state, b,ds(P, ). The value of ds for the Reid hard-core
potential can be estimated by varying T for different but
small values of z. Different values of z are obtained by re-
ducing the strength of the tensor component of the Reid
potential. Thus for this potential the value of d3 is 1.77.
Clearly the D state contributes signi6cantly to this co-
efficient. This is consistent with the earlier estimate of
0.7% contribution to re, since the third term in the ex-
pansion of T contributes altogether only 1.5'Fp. Similar
contributions arise from nonlocal interactions. Later in
this paper we report on d3 for the Yamaguchi potential
without D state (ds ———2.7407) and with a 4'%%uo D state
(ds ———1.6964).

It is remarkable that the D state contributes in the
lowest order shape-dependent term, i.e., the d3 term. The
quantities Jp and Pp are zero-energy limits, and in this
limit both the D-state probability PD and the asymptotic
mixing parameter g vanish. At zero energy, however, the
wave function does contain a finite D-state component,
but the ratio of D-state to S-state probabilities vanishes,
since the S-state wave function becomes unnormalizable.
Since the corrections in J and P, due to the D state vary
as o. to the lowest order in o., they both contribute to
d3

—1.3704
0.0046
1.1900
-0.4463
—0.2896

b„
—1.3704
0.1960
0.7?85

—0.9996
-0.1028

this potential in the other variables yield nonzero higher
coefficients. Clearly the variable z provides the best con-
vergence. In order to test this for a different potential,
we use the central Yamaguchi potential [15] for which all
the coefficients can be calculated explicitly. The results
are given in Tables II and III.

Since we have given an explicit expression for the ex-
pansion up to the z4 term in Eq. (2.23), we consider the
convergence of the series beyond the x4, y, or z4 term.
Prom Tables II and III it is evident that the series ex-
pansion of T in z gives the smallest contribution from
the higher-order terms. Note that for 0, = 0.2316 fm
(Rom the binding energy of the deuteron), the values of
z, y, and z are almost equal, i.e. , z = 0.199, y = 0.201,
and z = 0.200.

The series in ( converges much less rapidly than the
one in z (its convergence is comparable to the series in y),
although it must noted that if experimental data are used
to obtain values for the expansion parameters, ( (= 0.16)
is smaller than z (= 0.20). Furthermore it appears that
from the third term on all the terms are negative, so that
the series truncated after the second term gives an upper
bound.

In Ref. [12] we considered a number of difFerent model
central potentials and found that, with the exception of
the Hulthen potential, all the potentials yielded id4i (
idaho. The reason for the exception is discussed in Ref. [12].
The Eckart potential was not included in that study, and
provides another exception to the rule. In general, how-

ever, we can say that for most model interactions the
series expansion in z for T converges at least as rapidly
as the power series in x, and more rapidly than the series
in y or (.

To investigate the effect of the D state on the ex-
pansion we use the Yamaguchi potential with the tensor
force [13]. Even with the tensor force, analytical expres-
sions are given for all the quantities needed to evaluate

TABLE II. CoefFicients of the series given in Eqs. (3.1)
and (3.2) for the Yamaguchi potential. For both cases the
coefBcients for n = 0 are 1, for n = 1 are 0, and for n = 2 are
I
2

T=) n„j,".
n=o

(3 5)
TABLE III. Coefficients of the series given in Eqs. (3.3),

(2.22), (3.4), and (3.5) for the Yamaguchi potential. For all
cases the coefBcients for n = 0 and n = 2 are 1 and for n = 1
are 0.

(The o. 's in this paper are 2 times the o.„'s of Bhaduri
et aL)

First consider a purely 8-state deuteron. In Refs. [3,12]
we showed that for the sticky core potential the expres-
sion T = 1+ z is exact. This potential can therefore
be represented by the series (2.22) with dp ——d2 ——1
and all the other d„are zero. Series expansions of T for

—2.7407
0.3457
1.0096
1.0332
0.4796

d
—2.7407
0.6420
0.1866
0.0748
0.0358

—0.7407
—2.2840
—7.2538
—24.1127
—83.1479

—0.7407
—2.7531
—38.5679
—24.7334
—74.1737
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TABLE IV. Numerical values of coefficients in series (2.22)
for the Yamaguchi potential with tensor component [13].

d3
—1.6S64 1.0696

d5
0.0390 —0.7774

d7
—0.8450

IV. SIMPLE POTENTIAL MODELS

In this section we study the expansion of T in z for po-
tentials that are equivalent in some sense. The first pair
of potentials is the Eckart and the separable Yukawa,

the coeKcients. Using z as the expansion parameter, we
find again that do ——d2 ——1 and dq ——0. Further d„'s
are listed in Table IV. These coefficients are functions
of P, p, and t, the central force inverse range, the tensor
force inverse range, and the tensor force strength, respec-
tively. We have used the values of Ref. [13],which fit the
deuteron to old data. The magnitude of the coefficients
in this case also indicate good convergence of the expan-
sion.

The "goodness" of the z expansion is tested by com-
paring the deuteron radius calculated from the truncated
series with the exact value. The results are listed in
Table V. The expansion parameters, z, (, and x were
calculated by using the experimental a and az and fit-
ting the potential parameters accordingly, except in the
cases of the Reid and Moscow [16] potentials for which
the values of cr and ai determined by the potential were
used. Table V shows that truncation after the z4 term
gives excellent results, and truncation after the z term
already gives nearly exact results. The results with the
two Yamaguchi potentials illustrate the D state pushing
the deuteron wave function outward (thus increasing the
value of the deuteron radius). The deep square well with
the excited state at the deuteron energy has a wave func-
tion that is pulled toward the origin in contrast to the
D-state effect which pushes the wave function outward.
For the Reid and Moscow potentials the coefBcients d3
and d4 are obtained by making a least-mean-squares fit
to T —1 —z2 for difFerent z. Different values of z and T
are obtained by reducing the strength of the tensor part
of the potential. The last two rows of the Table V allow
a comparison of these results when different expansion
parameters are used.

which are phase shift equivalent; i.e., their phase shifts
are exactly the same at all energies. The second pair,
the Hulthen and the central Yamaguchi, have identical
bound-state wave functions. Finally, the square-well po-
tential and the separable square-well equivalent potential
have the same zero-energy wave functions. For each po-
tential we calculate Po, Py, Jo, Jy d3, and d4. For all but
the Eckart potential the exact expressions are contained
in Ref. [12]. For the Eckart potential Po ——Pi ——0, but
we have not been able to obtain expressions in closed
form for Jo and Ji. These quantities can be expressed in
terms of integrals which we evaluated numerically. The
results are given in Table VI.

We are comparing in each case the results of a sep-
arable and of a local potential, i.e., extreme limits of
nonlocality. The quantities Po and P~ are asymptotic
properties which will only give information on the en-
ergy shell. The quantities Jo and Ji on the other hand
are dependent on the details of the wave function, and
consequently will depend on the off-shell properties of
the interaction. Thus with the separable Yukawa and
the Eckart potentials we note that they give the same
scattering results, but their bound-state wave functions
are diff'erent. These two potentials give identical on-shell
results, but their ofF-shell properties difFer. The Yam-
aguchi and the Hulthen potentials have identical bound-
state wave functions, but they are not phase equivalent.
Hence the P's differ whereas the J's are identical. In
the case of the square well and the separable square-well
equivalent potentials, the zero-energy wave function is
the same. This make the Jo's the same for both poten-
tials, and the J~'s very close, indicating that at short
range the deuteron bound-state wave function does not
differ much &om the zero-energy wave function. The
P's are close in values but not quite equal. Although
the shape parameter P, can be obtained from the zero-
energy wave functions [9,10], which are the same for the
two potentials, P, also depends on the derivative of the
wave function with respect to energy evaluated at zero
energy, which is different for the two potentials.

V. DISCUSSION

The expansion of T in terms of the parameter z, which
can be directly related to experimental data, provides a
transparent method of delineating the model dependence
of the deuteron radius. Since the expansion of T in z con-

TABLE V. rD in fm calculated from T truncated after the z" term. The last column gives d3
for the potential mentioned. Note that in the last two rows the expansion parameter is t or z, as
indicated, rather than z.

Potential
Square well (central)
Deep square well
Reid hard core
Moscow
Yamaguchi (central)
Yamaguchi (with tensor)
Yamaguchi ((')
Yamaguchi (x)

z'
1.916
1.916
1.908
1.908
1.916
1.916
1.916
1.916

z2

1.955
1.955
1.946
1.946
1.955
1.955
1.941
1.956

Z3

1.950
1.922
1.959
1.960
1.933
1.942
1.938
1.933

4

1.950
1.943
1.960
1.959
1.934
1.943
1.936
1.933

exact
1.950
1.934
1.960
1.959
1.934
1.943
1.934
1.934

d3
—0.614
—4.216

1.77
1.96

—2.74
—1.70
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TABLE VI. The coefficients of P„J,and T with z as the expansion parameter for "equivalent"
potentials.

Potential
Separable Yukawa
Eckart
Yamaguchi
Hulthen
Separable square-
well equivalent
Square well

Pp
0.0000
0.0000

—0.0185
0.0381

—0.0360
—0.0327

Pl
0.0000
0.0000

—0.0247
0.1287

—0.0411
—0.0360

Jp
1.6250
0.8225
1.1111
1.1111

0.5228
0.5228

0.3750
0.4057
0.5926
0.5926

0.5586
0.5756

d3
—4.5000
—1.2899
—2.7407
—1.8346

—0.6667
—0.6138

d4

2.5000
2.3773
0.6420
4.9085

—0.0427
0.0764

verges rapidly, the model dependence can be expressed
as the remainder of the series after the first three terms.
We define therefore the quantity

6= T —1 —z, (5.1)

where T and z are calculated using Eqs. (2.8) and (2.6)
with rD, 0;, and aq of the potential or derived &om ex-
perimental data. Since T is approximately 1, 6 gives the
&actional model dependence of T and is approximately
twice the &actional model dependence of rD.

For all the (semi)phenomenological potentials consid-
ered by Klarsfeld et al. [5], and from which they obtained
the aq versus rD line, 6 averages 0.014, the values ranging
from 0.0124 to 0.0168. These are "realistic" potentials,
and therefore the D-state component is included in the
deuteron wave function.

With local 8-state potentials, such as the square well
or Eckart potential, either fitting the deuteron binding
energy, 6 is —0.0054. Combining this result with that
of the previous paragraph suggests D-state effects of
about 0.019. This estimate is consistent with that of
Sec. II. Furthermore the central Yamaguchi potential
gives —0.022, demonstrating again that nonlocal poten-
tials fitting the deuteron binding energy give smaller radii
for the deuteron. A local square-well potential with two
bound states, the excited state at the deuteron energy,
also has 6 = —0.022.

The model dependence of the deuteron radius is there-
fore about 1%%. The model dependences due to the D
state component of the deuteron wave function or the
nonlocality of the potential are both again of the order

of 1%. These two effects may cancel each other since a
larger D-state probability tends to increase T, whereas
increased nonlocality causes T to decrease. In any case
experimental data need to have at least a precision of this
magnitude in order to help resolve the model dependence.

The quantity 6 can be obtained directly &om exper-
imental data, that is, from the values of rD, 0;, and aq.
Using rD = 1.950 fm, given in Ref. [8] as the best value
from the analysis of Klarsfeld et al. [5], we obtain —0.0054
for A. For the estimate of rD based on more recent data,
namely, r~ = 1.961 fm [8], we obtain b, = 0.0063. Thus
even if the newer data stand up to future scrutiny, a lit-
tle less than half of the discrepancy between theory and
experiment remains.
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