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Deep pionic bound states in a nonlocal optical potential
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Pion-nucleus bound states are investigated in momentum space using a microscopic optical
potential with energy dependences and nonlocalities arising from elementary potential models. We
confirm the existence of deep, hybrid Coulomb-nuclear ls, 2s, and 2p bound states, but 6nd them
to be considerably broader ( 20—300%) than reported previously for other potentials and slightly

( 7%) more bound. Although the states still remain nonoverlapping, their larger widths may affect
experimental searches.

PACS number(s): 36.10.Gv, 03.65.Ge

I. INTRODUCTION

When an optical potential is used as a model of a pi-
onic atom, the imaginary part of the potential simulates
the nuclear absorption of the pion. If the absorption is
very strong, the effect of the potential is nonperturbative
in that an increase in the imaginary part may lead to a
decrease in the imaginary part of the binding energy (the
level width) [1]. In this case, the increase in the imagi-
nary potential reduces the wave function in the nuclear
interior which reduces the wave function's overlap with
the nucleus, and consequently reduces the level's width.
Thus an optical potential with a large imaginary part is
"repulsive" since it excludes the wave function &om the
nucleus and may lead to narrow states.

Recently, theoretical studies by Friedman and Scoff [2],
Hirenzaki et aL [3], and Toki and Yamazaki [4,5] have
pointed out that the optical potential for deeply bound
levels of pions in heavy nuclei is suKciently absorptive for
there to exist narrow states. While these states are "qua-
sibound" because they decay, they are also "quasistable"
(and thus observable) because their widths are smaller
than the energy-level spacings. For example, Pb has
the (ls, 2p) states bound by (7, 5) MeV with widths

0.5 MeV —in contrast to the 20 MeV widths ex-
pected if lowest-order perturbation theory were valid. In
contrast to nuclear bound states in which the pion re-
sides within the nucleus, these deep states are hybrid
Coulomb-nuclear ones in which the pion's probability
density peaks just outside the nuclear surface.

Observing deeply bound pion states in heavy nuclei is
difBcult because the x ray cascade ends with the pion be-
ing absorbed before it reaches the deep levels. Because
transitions to the 1s level are seen experimentally only
for Z ( 12 and to the 2p level only for Z ( 30, alterna-
tive observational methods have been proposed. A recent
experimental search using the (n, p) transfer reaction did
not record the distinct peaks expected for a 1s or 2p tran-
sition in Pb [6], which indicated that the cross sections
are smaller, the widths larger, or the binding energies less
certain than predicted. Other suggested experiments in-
clude (n, d) pickup [7], (vr, p) radiative trapping [8], and
(7r, p) pickup [9].

with the parameters (bo, cp Bo, Cp) determined by global
fits to pionic atom energy levels. (For clarity we assume
an isoscalar nucleus and leave off the Lorenz-Lorentz fac-
tor. ) The key assumption behind (1) is that the 7rN and
mNN interactions are of zero range and that sr NT matrix
1s

(k, p it]k, p) oc bp + cpk k (2)

for off-shell values of the pion and nucleon momenta and
energies [10,11]. In contrast, we have investigated deeply
bound states pion supported by a theoretical optical po-
tential used previously only for pion scattering [10—12].
This potential has nonlocalities, unitarity off-shell behav-

iors, energy and momentum dependencies arising &om
separable pi-nucleon potentials, and a careful treatment
of relativistic kinematics. The xN amplitudes are derived
&om AN scattering data and used for the analytic con-
tinuation to subthreshold complex energies. In contrast,
the phenomenological potential (1) fits (bp, cp) to atomic
data and then assumes they are constant, even though
the predicted states are bound. by 10 MeV. Considering
the diKculty of experimentally observing deeply bound
pion states, we aim in this paper to confirm their exis-
tence and provide alternate predictions of their energies
and widths.

We work in momentum space and identify bound-state
energies with the complex energy poles of the T matrix
for the combined Coulomb plus nuclear potentials. This
analytically continues the energy dependence of the op-
tical potential to the complex bound-state energy a
procedure for which there is no coordinate space equiv-
alent. Inversely, there is no precise, direct-momentuxn
space treatment of the Ericson-Ericson potential (1) due

to its singularity as k = A.
" -+ oo [10,11]. Furthermore,

it is not possible for us to simply remove the nonlocal-

Most calculations of pion bound states use the phe-
nomenological Ericson-Ericson potential:

—4m'p' '(r) [bop(r) + co V p(r) V'

2p

+Bop'( ) + & & p'( )&]

0556-2813/94/49(2)/878(8)/$06. 00 49 878 1994 The American Physical Society



49 DEEP PIONIC BOUND STATES IN A NONLOCAL OPTICAL. . . 879

ities in our calculation in order to make a comparison
with the potential (1)—they are inherent in the poten-
tial. We have, however, in the previous pion-nucleus
scattering calculations [10—12] demonstrated the signif-
icant sensitivities to off-shell and few-body effects, and
since the bound-state shifts and widths are essentially
proportional to the pion-nucleus scattering lengths and
voblmes, we expect similar sensitivities for bound states.

In Sec. II A we describe the optical and electromagnetic
potentials; in Sec. IIB we describe the computational
method, and in Appendix A we establish the numerical
precision of the computation and examine the importance
of the relativistic wave equation. In Sec. IIIA we make
comparisons to the experimental energies and widths of
shallow states, and in Sec. IIIB we examine the deep
states supported by our potential.

(k'i V@ik) = V '"'(q) + V (q) + U@~
) (k', k)

+U"'(k', k), (3)

II. THEORY

A. The optical potential

The pion-nucleus interaction is described by the sum
of electromagnetic plus optical potentials:

16~
18'

40'
44Ca

108A

208pb
209B.

Rp
2.608
2.634
3.669
3.70
5.32
6.624
6.609

a„
0.513
0.513
0.584
0.55
0.52
0.549
0.545

Gap

-0.051
0.0
-0.102
0.0
0.0
0.0
O.Q

R
2.608
2.72
3.669
3.82
5.47
6.624
6.88

0.461
0.447
0.584
0.505
0.473
0.549
0.5

-0.051
0.0
-0.102
0.0
0.0
0.0
Q.O

Vcoul( )

V (q) =—

Z~p&(q)
2X Q

Zcrzp~(q) (2t2 + 1)(t2 —1)'~'
3t'[q'+ (2t/~. )']

Here the momentum transfer g = k' —k, the Coulomb
potential V " is for a nucleus of finite size, the pro-
ton form factor is p~(q), the order-Zcr vacuum polariza-
tion (Uehling) potential [13,14] is V++, and the electron
Compton wavelength is A, . The first order optical po-
tential is evaluated in the impulse and factored approxi-
mations:

TABLE I. Parameters used in xnodi6ed Wood-Saxon den-
sities (R and a in fm).

U&~ (k', k) = Z(k', pp —cI t " k, pp) pz(q) + N(k', pp —q t ", k, pp) p„(q),
l

(k', p'ltlk, p.) =,). P(- g. .),
27I D~ lalsga

g'(~)Qp(P, rc)

o' & tp p u) —E (~) —E)v(lt;) +i&

(6)

Here a = ilj labels the AN eigenchannel (i = xN isospin,
l = orbital, and j = total angular momentum), o is the
sign of the potential, and ~ and ~' are the initial and final
nN COM momenta. We take the nuclear form factors

p„,„(q) as Fourier transforms of Woods-Saxon densities
[10] with the size parameters given in Table I (these are
the standard set used by Friedman et al. [15) with an
extension to Pb [16]). The Fredholm determinant (8) is
modified to include Pauli blocking by using an angle-
averaged Pauli operator qp. Since our model has fi-
nite range AN interactions, inclusion of a Lorentz-Lorenz
term is inappropriate [12,17].

The two-body T matrices and momenta in (6) are re-
lated to ofF-shell ones in the mN COM by a Lorentz co-
variant prescription which determines p, w, and m . We
include nucleon recoil by making the "optimal" choice for
the momenti~m of the struck nucleon,

k (A —1)q
Po ~ +

A 2A
(9)

which is optimal in producing the best factored approxi-
mation and the most consistent off-energy-shell kinemat-
ics. We include additional recoil and Fermi motion effects
by use of a three-body model in which a pion of momen-
tum k scatters from a nucleon of momentum pp outside
of a passive core of momentum P = —(k+ p+ pp). This
leads [12) to a xN subenergy for (6) of the form:

~s~(E) = (k" + k~ —P")
[E+m + mg —Eg i(P) —Eg] —P,

(1o)

w'here E~ is an effective core-nucleon binding energy we

keep fixed at 20 MeV.
The second-order potential

(2), 4s A2 g, (~)g, (r') gp(m) gp(~')
2p, ~(2w)s g2(~p) g2(~p)

1 „1
g.(~) = , + „, g~(~) =

( , + „.). (12)
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includes, phenomenologically, contributions from all
higher-order processes in p such as virtual nuclear ex-
citation and pion annihilation. It is important for pio-
nic atoms, since its imaginary part produces the levels
widths (the imaginary part of U(i) vanishes along the
subthreshold real-energy axis). This form is a generaliza-
tion of the separable form used for U( ), corresponding
to a finite-ranged force (we take Ko ~ 0 for subthreshold
extrapolation). Unfortunately, it was impossible for us to
reliably determine U( ~ microscopically, or to analytically
continue the energy dependence of phenomenological Bp
and Cp to subthreshold energies.

nl EsE(anal) EsE(num)
1S -1.4809 -1.4810
2S -0.3702 -0.37025
2p -0.3702 -0.37024

@RSE @KGE(P) @KGE(m )
-1.5161 -1.5234 -1.5287
-0.3761 -0.3772 -0.3785
-0.3714 -0.3717 -0.3730

TABLE II. EKect of different treatments of relativity on
point-Coulomb binding energies for x Ca atom. Com-
pared are the analytic Schrodinger equation, the numeric
Schrodinger equation, the relativistic Schrodinger equation,
the Klein-Gordon equation with reduced mass, and the
Klein-Gordon equation with pion mass. All energies in keV.

B. Computational method
The normalization constraint 1 = j /&2(k) k~dk implies

We solve the relativistic Schrodinger equation [1S]

K(k)gi(k) + — Vj(k, k'; E)gi(k')k' dk' = E@i(k),
7l p

e lk —Im tk kdk

0 = Re g&(k) Irn gi(k) k dk.
p

(i9)

I@) = G~VEI&)

Q((k) = — Vj(k, k', E) Ql(k')k' dk', (15)

(i4)

where K(k) = gm2 + k2 + gm&~ + k2 —m —m~
is the relativistic kinetic energy, and Vi(k, k; E) is the
energy-dependent pion-nucleus potential after partial
wave projection. To incorporate the appropriate bound-
ary conditions —even for the general case of coupled and
open channels —we transform (13) to an integral equation
involving the Green's function [19]:

This normalization condition on the square of the com-
plex wave function —as opposed to the modulus squared—follows kom the Gamow-state formalism of Hernandez
and Mondragon [21]. By requiring the overlap of
Re Q~(k) and Im gi(k) to vanish, it often introduces an
oscillation in Re Q~(r). The coordinate space wave func-
tion is obtained via the Bessel transform:

i/2

gi(r)—: =i'
I

—
I Qi(k) j((kr) k dk. (20)(~)

III. RESULTS

where for bound states there is no incident wave IP) in
(14) and no +i& in G@. If we consider V@,K, and G@
as operators or their matrix representation, we see that
a solution of the eigenvalue problem (13) is equivalent to
demanding nontrivial solutions of (14), namely,

(1 —G~V~) I&) = 0 ~ detli —G~V~I = 0. (i6)

W~(k*)] = [II~ —E] '
l@~(k*)l. (17)

Solving (16) is equivalent to determining the energies of
the poles of the x-nucleus T matrix.

We search for solutions of (16) in complex energy space
after removing the Coulomb singularity with the Lande
subtraction technique. In contrast, the momentum space
formulations of Kwon and Tabakin [13] and Cieply et al.
[20] directly solve (13) as an eigenvalue problem (Kwon
and Tabakin use the Lande subtraction, and Cieply et
aL use the Vincent-Phatak cutofF). In further contrast,
Kalbermann et al. [17] have solved a Coulomb plus non-
local nuclear potential problem as an integrodiKerential
wave equation in coordinate space (a technique which
would not include the full energy dependence of a sepa-
rable AN T matrix).

Once the eigenenergies are known, we solve for the mo-
mentum space wave functions by using inverse iteration
[13] on the Schrodinger equation (13):

TABLE III. ER'ect of diferent treatments of relativity on
point-Coulomb binding energies (in MeV) for n Pb atom
via Schrodinger equation, relativistic Schrodinger equation
(numeric), and Klein-Gordon equation (which has no s states
for Za ) -').

nl
1s
2s
2p
3s
3p
3d
4S
4p
4d
4f

EsE
-24.97
-6.243
-6.242
-2.775
-2.775
-2.774
-1.562
-1.561
-1.562
-1.560

ARSE
-42.53
-9.224
-6.584
-3.659
-2.921
-2.824
-1.930
-1.632
-1.592
-1~ 574

@KGE

n
-6.607

-2.929
-2.829

n
-1.636
-1.593
-1.577

As indicated in Tables II and III of Appendix A, the
predictions of pion-point Coulomb bound-state energies
from the relativistic Schrodinger equation and the Klein-
Gordon equation using a reduced mass dier by less than
1%. While we also found that ignoring (V i't)2 term in
the Klein-Gordon equation may have a several percent
effect (consistent with that found for K s2S [13]), in
a practical sense this may not be important once the
parameters of the U( ~ are 6t to data.
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TABLE IV. Theoretical and experimental shifts and widths in keV.

State
8 1S()

2p 0
1s 'SO

Ca
2p Ca
3d Ag
4f MPb

4f 209Ii.

Ref.

[22]
[23]
[22]
[24,25]
27]
25]
27]
28]

ReE]
-219.98
-59.06

-215.76
-374.60
-374.78
-922.07

-1582.19
-1622.21

&1pott

-14.57
13.4 x 10
-18.87
1.86
1.92
2.27
2.28
2.53

&exp

-15.4 6 0.1
14.8 + 1.6 x10
-19.9 + 0.1
1.86 6 0.08
1.58 6 0.02
1.97 + 0.03
1.67 6 0.02
1.83 + 0.06

n,.aa

8.14
5.5
7.40
1.62
1.84
1.24
1.1
1.31

l exp

7.92 + 0.32
6.8 + 0.4 x10
6.33 + 0.43
1.62 + 0.11
1.60+ 0.07
1.41+ 0.05
1.17+ 0.05
1.24+ 0.14

Average experimental values.

A. Shallow states

Bo ——(—0.074 + 0.067i)m

Co ——(0.051 + 0.069i)m
(21)

While our ultimate interest is deeply bound ls and 2p
levels in heavy auclei, we need first test and tune our
potential by examining shallow pionic atom states. Ac-
cordingly, we adjusted the annihilation strengths Bo and
Co by fitting the ls and 2p levels in pionic isO [22,23]
and the 2p level in 4 Ca [24,25]. This procedure avoids
anomalies associated with the 3d levels [26], and deter-
mines

experimental searches. Our widths, however, are signifi-
cantly larger and may well change the chance of success
of an experimental search.

The difFerences among the models' predictions iacrease
with binding. Consequently, the origin of the differences
may lie in the energy dependencies of the potentials, the
wave equations used, or the extrapolations in the com-
plex energy plane. Since the difFerences are much greater
for I' than Re E, the models for the annihilation potea-
tial must also be important (we use a finite range model,
the others do not). This is a much greater optical model
dependence than (0.4, 15)% ia (Re E, I') found by Nieves
et al.

To further understand the physics of the nonlocal op-
tical potential and test the momentum space calculation,

We do not expect a potential with as few parameters
as ours to give the same level of agreement as a phe-
nomenological one with various strength and size param-
eters determined in a global search. In Table IV and
Fig. 1 we show a comparison between the strong inter-
action shifts predicted by our potential (the +'s) and
various pionic atom data [22—25,27,28]. We see very
good agreement for the heavier auclei, good agreement
for the lighter nuclei, and an incongruently large de-
viation for isO (recall, we fit Bo and Co to isO and
4 Ca). Ia general, our level of agreement is comparable to
the Gnite range, momentum space calculations of Cieply
et aL [20] —even though the potentials and calcula-
tional frameworks difFer. For example, Cieply et al. find
B = (—0.093+i0.042)m, C = (—0.125+0.090i)m
the difFerences with (21) probably refiecting the difFer-
ences ia U(i& and in the data fit.

I
-104)

20 -o

(b)

Pionic Atoms
Shifts

+ Theory
o1s "0

o1s "0
a2p Ca
v2p Ca
+3d Ag
D 4f Bi

I ~ I . I . I

50 100 150 200 250
A

Widths

B. Deep states

In Table V and Fig. 2 we show the predicted ener-
gies and widths of the deeply bound ~ Pb states.
The EFM results are for the pure electromagnetic interac-
tions (Coulomb + vacuum polarization [29]), the Eip qq

ones for the combined EM plus optical potentials, and
the r1, r2, and r3 ones for the r-space calculations of
Toki et aL [5], Nieves et al. [30], and of Konijn et al.
[31]. Even though our optical potential difFers signifi-
cantly &om these others, we see that our calculated bind-
ing eaergies are only slightly larger ( 7%) —probably
not large enough to change the chance of success of any

8.0 —h

)
4)

40

+ Theory
01s '0

o1s "0
z 2p Ca
v2p Ca
e 3d Ag
I& 4f Bi

00
0 50 100 150 200 250

A

FIG. 1. Comparison of optical potential predictions and
measurements of shifts (top) and widths (bottom) for the
indicated shallow levels of pionic atoms. Data are from
Refs. [22—28].
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EEM Elpott
1s -12302 -7240
2s -4492 -3043
2p -5957 -5399
3s -2262 -1682
3p -2707 -2488
3d -2831 -2916
4s -1352 -1067
4p -1538 -1436
4H -1594 -1639
4f -1579 -1582

E
-6959
-2962
-5162
-1642
-2418
-2854
-1045
-1408
-1606
-1575

-67?8
-2902
-5105
-1613
-2395
-2858
-1026
-1394
-1606
-1582

E~3
-6924
-2954
-5138
-1633
-2408

-1394

r„.„r„,r., r„.
754 632 409 63
208 183 140 13
619 410 275 154

88 78 65 5
201 151 99 52
125 91 56

45 40 35
90 71 46 24
73 52 31
1.1 1.0 1.0

TABLE V. Theoretical energies and widths in keV for
Pb. The subscripts r1, r2, and r3 denote r-space

calculations of Topi et al. [5], Nieves et al. [30], and Konijn et
aL [31].

lar in both shape and magnitude to those of Toki et al.

[5], and should yield similar predictions when used in a
DWIA calculation of the formation rate of the state.

In Fig. 4 we plot the probability density [32] ]ui (r) [

[rgi(r) ]
for 1s, 2s, and 2p states in Pb when there is only

the EM potential (dashed curves) and when there is the
EM plus nuclear potentials (solid curves). Although the
wave function is repelled out of the nucleus for these three
states, it is attracted for 3d and higher states [5]. This
variation in attraction with levels, and the fact that the p
states are attracted inwards in lighter nuclei, confirm ear-
lier findings with local coordinate space potentials [33].

C. Nuclear bound states

we have also constructed the r-space wave functions of
the deeply bound states via (17)—(20). In the top of Fig. 3
we display the modulus of the momentum space wave
function for the ls state in Pb, and in the bottom of the
figure we display the corresponding Qt (r). In the compar-
ison to the pure Coulomb wave function, we see that the
optical potential introduces structures into Q(k) similar
to those in the potential, and that the strong interaction
repels Q(r) from the nuclear interior. Even though this
is a 1s state, we also note a node in Re g(r) —a conse-
quence of the normalization condition (18) and (19) for
complex wave functions. These wave functions are simi-

10

Wavefunctions

p space
}

10

We have found that the pion-nucleus optical potential
is attractive enough to produce broad pion-nucleus res-
onances, but not attractive enough to actually bind the
pion within the interior of the nucleus. Yet we uncov-
ered some interesting features of the pion-nucleus opti-
cal potential by progressively increasing its strength and
watching the hybrid Coulomb-nuclear state slowly move
closer to the nucleus until it becomes a nuclear state at

8.0

Q)

4.0
I)
K

Pb Deep States

Binding Energies

0
l

al. , t=O

al. , &=I

et al. , l~o
et al. , I=!

10'
E

~ 10'

10

10 I ~ I

0.0 0.4 0.8 1.2 1.6
p(fm )

0.0 '

1

O.s
i

(b
Z O.4 t

Widths

0

al. , l=O

al. , I=I
et al. , l=o
et al. , I=I

Ct

0,14

-(bj

0.10 -',

0.06—

0.02

-0.02
0

r space

Coulomb + strong, Reilr
—- — Coulomb+ strong, Imilr-
——— Coulomb only

10 20 30 40 50
r (fm)

o.o '

1

I

2 3

FIG. 2. Energy levels (top) and widths (bottom) of various
deeply bound m. Pb states. The solid curves derive from
the present p-space potential, the others from the r-space po-
tentials of Topi et ol. [5] and Nieves et aL [30].

FIG. 3. Momentum-space wave function Q~(p) and coordi-
nate-space wave functions Ql(v ) for w Pb 1s state. Dashed
curves derive from the EM potential alone, solid curves also
contain the optical potential, and the dot-dashed curve shows
Im @q(r) for the total potential. A logarithmic scale is used
for Q~ (p) to show details of nuclear efFect. In the lower part of
the Sgure, the exclusion of the wave function from the nucleus
of radius 7.1 fm is evident, as is the node introduced into
the wave function.



DEEP PIONIC BOUND STATES IN A NONLOCAL OPTICAL. . . 883

0.10

I

ooo '

E
0.04

/

o.oo '

0.04—

0.00
0

—Coulomb + Strong——Coulomb Only

1s

2S

20
r {fm)

I

40

m-Pb Probability Density The procedure (22) results in the potentials shown in the
right-hand side of Fig. 5. Although this procedure has
pitfalls near the nodes of u~(r), the deduced potentials
are seen to be realistic enough to always have their imag-
inary parts absorptive. We see in the lower right-hand
corner that ReV,~„;„(r) for the normal 2p state in Ca
has a long-range attraction and a short-range repulsion.
As the potential strength is increased, this potential ac-
quires an oscillation in the surface —much like the one
expected From the V p(r)V' term in the Ericson-Ericson
potential (1). In the upper right-hand corner of Fig. 5,
we see that ReV,~„;„(r)for the normal 1s state in Pb has
a central attraction in addition to a middle-range repul-
sion. As these potentials are made stronger, the nuclear
state gets formed in the inner attractive regions.

IV. CONCLUSIONS
FIG. 4. Probablity density (u&(r)(:—~r@&(r)( for the 18,

2s, and 2p m Pb states. Dashed curves contain only the EM
potential, and solid curves EM plus optical potentials. The
exclusion of the wave function from the nucleus of radius 7.1
fm is evident, although the node in the real part of the wave
function at 2.5, evident in Fig. 3, is not.

about 8—15 fold normal strength.
The existence of nuclear state with increased potential

strength is expected for p states in Ca where the level
shifts in Table IV are attractive, but may be a surprise for
s states where the level shift is repulsive (increasing the
strength of a potential does not usually change its effect
from repulsion to attraction). To unravel the physics of
the normal strength optical potential, we used the radial
wave function u~(r) = rQ~(r) to deduce an equivalent
local potential which produces this same u~(r) when used
in a nonrelativistic Schrodinger equation:

h2 d2u((r)
equiv

(2pE l(l + 1))
I n f' )

2

O. 0
0)

-2

Momentum Space
Diagonal Potential

I
' I '

I

R V-
——— Im V

4
x10

1s Pb

Coordinate Space
Equivalent Potential

I

0

~i200 —,t

Re V
——— ImV

1s Pb

-2

0—

-10-

0 100 200 300
p (MeV/c)

-20
I

0 5

Zp Ca
I ~ I

10 15 20
r (fm)

FIG. 5. The diagonal momentum space potentials V(p, p)
(left) and equivalent local coordinate space potentials
V,~; (r) (right) for the ls state in Pb (top) and the 2p
state in Ca (bottom).

Our calculations confirm the existence of deep, hybrid
Coulomb-nuclear 1s, 2s, and 2p bound states. However,
we find their widths to be significantly greater (20—300 Fo)
than reported previously for quite different potentials
[2,5,8], and their binding energies to be slightly ( 7%)
greater. Although the states remain nonoverlapping, our
larger widths may afFect experimental searches. Because
the differences among models increases with binding, the
model dependence appears to arise from our inclusion
of energy dependencies in the optical potential, complex
energy extrapolations, and our treatment of the 6nite-
range annihilation term, the latter afFecting the widths
in particular. Our wave functions are similar enough to
those of Toki et at. [5] so as not to yield major changes
in atomic formation rates.

The major uncertainty in this work is the efFect of pion
annihilation on the optical potential. At present, theory
does not appear capable of predicting these higher order
terms to the precision needed for comparisons with pionic
atom level, and so the potential strengths are adjusted
phenomenologic ally.

We have also looked for nuclear bound states of pi-
ons internal to the nucleus. We found only resonances
and had to increase the strength of the potential at least
eightfold before bound states appeared. In the process,
we discovered that at normal strength the real part of the
effective local potential for a ls pion in Pb has an inner
attraction in addition to a strong, outer repulsive bar-
rier. Likewise, a 2p pion in Ca is found to have an inner
repulsion in addition to an outer attraction. It is these
attractive parts which bind the pion within the nucleus
as the potential strength is increased.

From a computational viewpoint, we have shown that
pionic atom energies can be calculated accurately in mo-
mentum space with a microscopic, nonlocal, and energy-
dependent optical potential. We have done it by search-
ing for the poles of the T matrix for the combined
Coulomb plus nuclear potential, in contrast to more usual
eigenfunction methods [13,20].
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KGE 2 mc (Z~)
E„) mc

2n 2

mc'(Zo. )4 t' n 31
2n4 pl + -' 4) (A2)

SE for a point Coulomb potential. For the KGE, the
analytic solution has the expansion [34,35]:

APPENDIX A: RELATIVISTIC EFFECTS AND
NUMERICAL PRECISION

The spin-zero pion is usually described by the Klein-
Gordon equation (KGE):

E —V "' @(r) = —V' + (p+ V ~') g(r)

+ p, +2y, V ~' g(r), (Al)

where the approximate form on the extreme right is usu-

ally used [2,5,30] to avoid technical difficulties (Kwon and
Tabakin [13] have indicated how the quadratic term can
be handled in momentum space). As given in Eq. (13),we
solve the relativistic Schrodinger equation (RSE). In this
appendix, we indicate how predictions of these two equa-
tions differ &om each other and how much our numerical
solutions differ &om analytic ones for point-particle deep
states.

The Bohr energies are the mell-known solutions of the

To compare the KGE with the two-particle SE, we use a
reduced mass p, in the second term of (A2), and the pion
mass m„ in the first term.

Columns 2 and 3 in Table II indicate our numerical
precision by comparing the computed and analytic re-
sults for the SE (we know of no analytic results for the
RSE). We see that the numerical results are good out to
the fifth decimal place, and that the computed 28 and
2p levels are degenerate (as well they should be) within
numerical precision —even though the partial-wave po-
tentials are quite different. Columns 3 and 4 in Table II
and columns 2 and 3 in Table III indicate that relativistic
effects are significant: 2% for Ca-ls, 70% for z Pb-ls,
and 48'% for sos Pb-2s. In contrast, columns 5 and 6 in Ta-
ble II and columns 3 and 4 in Table III indicate that both
the RSE and the KGE using the reduced mass remove the
degeneracy with l and include similar enough relativistic
corrections for the differences to lie in the fourth signif-
icant figure. (The effect would be bigger for s states in
Pb, but the KGE point-Coulomb solution is pathological
for l = 0 and Zn ) —,'.)
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