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Modeling complex nuclear spectra: Regularity versus chaos
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A statistical analysis of the spectrum of two-particle-two-hole doorway states in a finite nucleus
is performed. On the unperturbed mean-field level sizable attractive correlations are present in such
a spectrum. Including particle-hole rescattering effects via the residual interaction introduces repul-
sive dynamical correlations which generate the Suctuation properties characteristic of the Gaussian
orthogonal ensemble. This signals that the underlying dynamics becomes chaotic. This feature turns
out to be independent of the detailed form of the residual interaction and hence re8ects the generic
nature of the Buctuations studied.
PACS number(s): 24.60.Lz, 05.45.+b, 21.60.Jz, 24.60.Dr

Theoretical models aiming at the quantal description
of an excitation and subsequent decay of a collective state
in a many-body system are usually based on a division of
the full Hilbert space into two sectors Si and S2, spanned
by the vectors

l 1) and l2), respectively. At the same time,
the Hamiltonian is represented as H = Ho+ V, such that
(llHpll') = e,bii, (2lHpl2') = ezb22, and (llHpl2) = 0.
When V is taken into account the above relations no
longer hold. By diagonalizing H in the basis l2) and re-

defining l2) one can still have (2lHl2') = ezbz2, however.
A collective state

l f) such as a plasmon or a nuclear

vibrational mode is defined as an eigenstate of H in the
subspace Si.'l f) = gi fill). In the full space, including

Si and Sz,
l f) is, however, no longer an eigenstate of H

but rather a wave packet which begins to "leak" into the
space S2. This constitutes a mechanism for dissipation.
Thus, for the time-dependent state one has

lf(t)) =) f, (t)11)+) f.(t)I2) [f.(t=o) =0]

and the Schrodinger equation for fi and f2 reads

. d fi Hip Hi2'
dt fz Hzi~ H22'

Applying a procedure similar to the Nakajima-Zwanzig
projection technique [1], i.e., solving the second of those
equations for f2(t), inserting into the first one for fi(t),
and assuming that the basis l2) is already defined such
that (2lHl2') = e2bz2, yields
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t
fi(t) ) Hii'fi'(t) = ) defi~(t —T)vii~(r))

1' gt 0

where

uii (r) = —s).HizHzi exp( ie27—) ~

2

(4)

The right hand side (rhs) in Eq. (3) is a generalized
nonlocal collision term which compensates for the formal
elimination of the space Sz. The matrix elements Hiz ——

(llHl2) describe the degree of mixing between Si and Sz
after inclusion of V. The internal structure of space Sz is
represented by the eigenvalues ez of the full Hamiltonian
H in this space.

In nuclear physics the space Si is typically spanned
by one-particle-one-hole (lplh) states generated from
the mean-field Hamiltonian Hp. Diagonalizing the full
nuclear Hamiltonian in such a basis gives the random
phase approximation (RPA) boson excitations. Ideally,
the space Sz, absorbing such an excitation, should con-
tain all possible npnh states. Then, after diagonalization
of H, the space S2 would refiect the entire complexity of
the spectruni of a compound nucleus. This, however, is
neither possible for practical reasons (too many states)
nor does it seem necessary for physical reasons. The nu-
clear Hamiltonian involves predominantly two-body in-
teractions and thus couples the 1plh RPA bosons chie8y
to the 2p2h components in the space S2. In this way,
the 2p2h states play a special role of "doorway states"
[2]. For these reasons, the space Sz is usually specified in
terms of the 2p2h states alone [3]. The resulting methods
are known as extended RPA and are believed to account
for the spreading width of collective modes. Moreover,
since the spectr»m of such states is already very dense in
energy, the interaction in the 2p2h space is usually ne-
glected which corresponds to using the unperturbed 2p2h
energies e2 as ez in Eq. (4).

0556-2813/94/49(2)/867(4)/$06. 00 49 867 1994 The American Physical Society



S. DROZDZ, S. NISHIZAKI, J. SPETH, AND J. %'AMBACH

At this point one should recall that "nuclear dissipa-
tion is a process occurring in a closed system, and very
likely a consequence of chaotic motion" [4]. Evidence
supporting the connection between dissipation and chaos
comes both &om classical [5] and from quantum [6] con-
siderations. In light of the introductory remarks such a
link seems indeed to be present. The fluctuation proper-
ties of the spectra of compound nuclei are consistent [7]
with those of the Gaussian orthogonal ensemble (GOE) of
random matrices [8]. The same fiuctuation properties are
identified theoretically [9] as well as experimentally [10]
for those quantum systems whose classical counterparts
are chaotic. Similar conclusions can be drawn Rom the
study of open phase space, scattering phenomena [11].
It is thus natural to require that modeling the space S2
should preserve this fundamental property of the com-
pound nucleus. Because of the special role played by the
2p2h states, the purpose of the present letter is to quanti-
tatively explore the problem of whether and under which
conditions already the basis of such states can support
the GOE fluctuation characteristics.

In our analysis the mean-field Hamiltonian Ho, gener-
ating the single-particle states, is specified in terms of a
local Woods-Saxon potential [12] including the Coulomb
interaction. As a residual interaction V we adopt the
zero-range Landau-Migdal interaction

I (rl r2) +0 (f +f rl ' r2+g+1'02+9 01 02 1 r2)

xh(rg —r2), (5)

which provides a good description of low-energy nuclear
excitations. In extended RPA calculations with this in-
teraction (including unperturbed 2p2h states only) the
basis of single-particle states is typically specified [13] by
four major shells, two below and two above the Fermi sur-
face. Consistently, in the present study we use the basis
of similar size. We employ the set of empirical Landau-
Migdal parameters as given in Ref. [14] (f = —0.1,
f' = 0.6, g = 0.15, and g' = 0.7 with Ce ——392 MeV fm )
and perform the calculations for Ca.

In spherical nuclei, such as 40Ca, the total angular
momentum J and parity x are good quantum numbers
which determines the selection of the basic 2p2h states,
active in the decay of a given RPA boson excitation. All
three types of the matrix elements generated by the resid-
ual two-body interaction in the basis of 2p2h states are
shown diagrammatically in Fig. 1 and the angular mo-
mentum coupling scheme is also indicated. The single-

+ )i&& )~&~ +

(c)
FIG. 1. Diagrammatic representation of the two-body

matrix elements in the space of 2p2h excitations with explicit
indication of the angular momentum coupling scheme.

particle basis of four major shells in the Woods-Saxon
potential allows realistic estimates [13) of global spread-
ing widths because the number of the corresponding 2p2h
states is already of the order of 10 —10, depending on
the multipolarity of an excitation with the maximum of
11720 for J = 3 . The matrix of such a size cannot,
however, be diagonalized with satisfactory precision. A
manageable number (2696) of 2p2h states is found for
J = 0+ and, therefore, our further discussion will be
limited to this multipole. The states are not coupled to
the good isospin T because the Hamiltonian, as specified
above, explicitly violates the isospin symmetry. A com-
paratively weak violation of this symmetry is known [15]
to correlate the T = 0 and T = 1 states which allows to
combine the relevant spectra for a statistical analysis.

The most obvious measure of spectral fluctuations is
the one expressed in terms of the nearest-neighbor spac-
ing (NNS) distribution. It reflects the local correlations
between the levels. A standard procedure of analysis is
to normalize the spectrum such that the fluctuations on
different energy scales are directly comparable. Here we
perform the corresponding unfolding [16] by approximat-
ing the integrated density of states with polynomials up
to the order of 12. This guarantees stability of the result
and is equivalent to normalizing the level density to l.
Before unfolding we discard the 50 lowest states in order
to eliminate those states which are located far &om their
main concentration. For the same reason we discard the
50 highest-lying states.

We find three qualitatively different situations as il-
lustrated in Fig. 2. Part (a) shows the NNS distribu-
tion for the spectrum of unperturbed 2p2h states cou-
pled to J = 0+. Such a spectrum is not generic and
is characteristic for a narrow class of integrable systems
involving extra correlations in the Hamiltonian [17]. The
pronounced peak for small nearest-neighbor separations
illustrates a strong tendency of states for clustering. Ac-
tually, in most cases these are even exact degeneracies.
They reflect the fact that within the single-particle basis
used there are many more two-hole (hh) states than the
number of different energies available. Analogous parti-
tioning is even more restrictive on the two-particle (pp)
side. Including the interaction in the pp [diagram (a)
in Fig. 1] and hh [diagram (c)] channels removes those
degeneracies and, as shown in part (b) of Fig. 2, imme-
diately brings the spectrum to the known universality
class of generic integrable systems [17] characterized by
a completely uncorrelated sequence of eigenenergies. As
a consequence, the NNS follows a Poisson distribution.
This result essentially does Dot depend on precise values
of the parameters of the residual interaction. Already,
a comparatively weak perturbation (for instance 20%%up of
the original strength) produces a similar picture. An im-
portant element which makes the spectrum uncorrelated
is that, at this level, the ph interaction is still switched
off and, therefore, the 2p2h Hilbert space remains a sim-
ple product of two subspaces (pp and hh) and the corre-
sponding energies are the sums of the two independent
components. In this case, the total angular momentum J
can be written as J = J„+Jp„where the pp total angu-
lar momentum J„andthe hh angular momentum Jg are
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constants of the xnotion. For given J one thus has a set
of independent sequences with good quant»m numbers

Jz and Ja in the 2p2h space. Each such sequence may,
of course, already be correlated.

The crucial step which brings us to the situation dis-
played in part (c) of Fig. 2 is the inclusion of the ph-type
matrix elements, represented by the diagram (b) of Fig. 1.
These xnatrix elements introduce such important correla-
tions that the resulting NNS distribution almost perfectly
follows a Wigner distribution, i.e., is consistent with the
GOE. In fact, including only this diagram and ignoring
the other two [(a) and (c)] gives the same result. Again
this feature does not depend significantly on the strength
of the interaction parameters. Varying them in a broad
range (factors between I/O and 2 for instance) leaves the
histogram in Fig. 2(c) essentially unchanged even though
the energy location of individual levels is very sensitive
to detailed values of the interaction parameters. This is
another con6rmation that the Buctuations, which we are
looking at, reQect the generic properties of the system.

The discussion presented above is based on the sub-
space of 2p2h states coupled to J = 0+. Sixnilar behav-
ior can, however, be expected for the other multipoles. In
smaller model spaces where the 2p2h diagonalization can
be done reliably for any multipole we see no qualitative

8.0

difference when performing a similar study. Of course, in
the smaller spaces, the mean-square deviations are larger
due to poorer statistics.

Because of the similarity of wave functions, the most
ixnportant doorway states for decay of a typical giant
resonance are those 2p2h states which are generated by
the single-particle basis of two major mean-field shells
on both sides of the Fermi surface. Those states have,
therefore, been discussed extensively above. To con-
clude about the degree of genuine chaoticity of the nu-
clear Hamiltonian projected onto the full 2p2h space one
needs, however, a more restrictive test. The point is that
including further single-particle shells in the diagonaliza-
tion may infiuence the higher-energy part of the spec-
trum studied above. Since such an extension cannot be
made in practice we go the opposite way. Out of the to-
tal of 2696 J = 0+ states we select a sequence of 400
states starting from 51st state. Such a sequence covers
the excitation energies up to about 30 MeV. Concerning
the overlap with the high-energy 2p2h states, not taken
into account in the diagonalization, we 6nd this choice
safe. The resulting NNS distribution and the A3 statis-
tics [18], the latter being a measure of the rigidity of the
spectrum, are shown in Fig. 3, including all diagrams of
Fig. 1. A comparison with the corresponding Poisson
and GOE predictions [8) is also made. We have verified
that using an analogous sequence of states on the unper-
turbed level reveals a similar clustering as in Fig. 2(a).
Furthermore, including diagrams (a) or (c) or both leads
to decorrelation seen already for a string of eigenvalues
of the same length. The presence of such a transition
means that the 6nal good agreement with the GOE does
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FIG. 2. Nearest-neighbor spacing distributions (his-
tograms) for the sequence of 2p2h states coupled to J = 0+
as a function of the normalized relative distance 8. The distri-
bution has been generated in a basis of four major shells (two
below the Fermi surface and two above) for a Woods-Saxon
potential with parameters corresponding to Ca. Part (a)
displays the unperturbed case, (b) corresponds to the results
from a diagonalization including diagrams (a) and (c) of Fig.
1, and (c) includes all the diagrams. The residual interac-
tion used is given by Eq. (5). The dotted lines represent the
Poisson and the solid lines the Wigner distributions.
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FIG. 3. Nearest-neighbor spacing distribution (histogram
in the upper part) and the b,a statistics (diamonds in the
lower part) for a sequence of 400 low-energy states (between
51 and 450) obtained from a diagonalization of the residual
interaction Eq. (5) in the basis of 2p2h states for J = 0+.
The dotted lines refer to the Poissonian spectrum and the
solid lines to GOE predictions.
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not involve any kinematical repulsion [19],but is entirely
due to the dynamical correlations violating integrability
and thus generating chaos.

In conclusion, already on the 2p2h level the spectral
Huctuations of the GOE can manifest themselves, pro-
vided the residual interaction is taken into account. This
means that already on the early stage of nuclear decay
the dynamics is associated with Huctuations typical for
classically chaotic systems. Most important in this con-
nection are the particle-hole rescattering effects which
correlate the states Rom both sides of the Fermi surface.
While the unperturbed 2p2h states certainly provide a
reasonable Grst approximation for the global energy lo-
cation of the doorway states, they fail completely in the
sense of Buctuations. This may have an inBuence on the
6ne structure of a resonance. The above aspect of nuclear
dynamics should also be kept in mind when addressing
the question [20] as to whether the nuclear collective mo-
tion is Markovian or not [21]. In classical terms a chaotic
system loses memory very fast because of exponential

instabilities. It is thus natural to expect that chaos sup-
presses the role of the history also on the quantum level.
Actually, the integration kernel in Eq. (3) involves a sum
of exponents [Eq. (4)] over the whole background spec-
trum. For a spectrum with a strong tendency to cluster-
ing many terms in such a sum may add up constructively
and thus amplify the r dependence in Eq. (4). The oppo-
site should apply to the GOE spectrum. In fact, a simple
estimate of such effects based on the spectra discussed in
this paper shows one order of magnitude reduction of
the amplitude of oscillations when going from the case of
Fig. 2(a) to Fig. 2(c). This is an important problem [22]
which demands a more systematic study.
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