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Classical mappings of the symplectic model and their application to the theory
of large-amplitude collective motion
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We study the algebra Sp(n, R) of the symplectic model, in particular for the cases n=1,2,3,
in a new way. Starting from the Poisson-bracket realization we derive a set of partial di8erential
equations for the generators as functions of classical canonical variables. We obtain a solution to
these equations that represents the classical limit of a boson mapping of the algebra. We show
further that this mapping plays a fundamental role in the collective description of many-fermion
systems whose Hamiltonian may be approximated by polynomials in the associated algebra, as is
done in the simplest versions of the symplectic model. The relationship to the collective dynamics is
formulated as a theorem that associates the mapping with an exact solution of the time-dependent
Hartree approximation. This solution determines a decoupled classical symplectic manifold, thus
satisfying the criteria that define an exactly solvable model in the theory of large amplitude collective
motion. The models thus obtained also provide a test of methods for constructing an approximately
decoupled manifold in fully realistic cases. We show that an algorithm developed in one of our
earlier works reproduces the main results of the theorem.

PACS number(s): 21.60.Ev, 21.60.Fw

I. INTRODUCTION

We have been engaged for a decade in an eKort to for-
mulate a theory of large amplitude collective motion with
the special aim of applying it to nuclear physics. The the-
ory has both a classical and a quantum dimension. The
classical aspect has been most fully developed and de-
scribed in a review [1]. The quantum aspect is presently
in a stage of vigorous development [2,3], supplanting the
early work on this part of the theory [4,5]. At the same
time a program of applications to problems of nuclear
structure has been undertaken [6—9].

Early in the latter work, we became aware of a paucity
of solvable models with some physical content. The use-
fulness of such models is that they provide a testing
ground for the algorithms that would later be applied
to more realistic models. For our initial investigation we
selected a well-known model of monopole vibrations [10],
exactly solvable because the Hamiltonian is a polynomial
in the generators of the algebra Sp(1,B) [or SU(1,1)]. We
studied this model in two ways. First, by utilizing the
classical limit of the algebra, we were able to produce an
exact solution of the time-dependent Hartree equations
(derived previously by rather less transparent techniques
[ll]) and by means of this solution a decoupled collective
Hamiltonian for the monopole vibration. Second, and
more important, we could check if the same Hamiltonian
emerged from the application of the theory of large am-
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plitude collective motion. The monopole model provided
us with an apparently ideal test of the soundness of our
algorithms. This test failed initially, forcing us eventu-
ally to recognize and correct an incompleteness in our
previous theory.

The first goal of this paper is to show that the method
developed for the algebra of Sp(1,B) can be extended
to the algebra of Sp(n, R). In particular, we work out
fully the cases n=2 and n=3. The former leads to a
Hamiltonian with three collective coordinates, describ-
ing the interaction of a monopole degree of freedom with
a quadrupole tensor in two spatial coordinates and is
thus only of interest as a toy model. On the other
hand n=3 leads to a Hamiltonian with 6 degrees of free-
dom describing both a monopole and a three-dimensional
quadrupole. This defines the model as not only one of
physical interest per se, but also because of its connection
with the syrnplectic [12] and pseudosymplectic [13] mod-
els. The latter, in particular, provides a possibly useful
truncation scheme for shell-model calculations for other
than the lightest deformed nuclei.

Although not one of the aims of the present paper, this
identification will allow us on a future occasion to com-
pare the quantum consequences of the collective Hamil-
tonian to be derived in this paper with the results of an
exact diagonalization carried out for the original many
body Hamiltonian. In fact such a comparison has broader
implications than the accuracy achieved for the special
Hamiltonian considered, since it has been demonstated
that Hamiltonians consisting of suitably chosen polyno-
mials in the generators can give a rather precise fit to the
low-energy spectra and other properties of even deformed
nuclei [13].

The second aim of this paper is to demonstrate that
the extended algorithm formulated in connection with
the monopole model also provides correct results for the
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generalized models.
The presentation is organized as follows: In Sec. II we

give a brief summary of the properties of the algebra of
Sp(n, R) needed in the ensuing development as well as
a discussion of the model Hamiltonians to be studied.
In the following three sections we then study separately
cases n=1,2,3. We describe in each instance the mapping
of the algebra onto a classical symplectic manifold, which
is tied to the existence of a manifold of solutions of the
time-dependent Hartree equation and an associated de-
coupled collective Hamiltonian. We then show how the
same collective Hamiltonian can be derived &om our the-
ory of large-amplitude collective motion. The material
for the monopole case is a rearrangement with difFerent
emphasis of results presented previously [6]. All other
results are new. In Sec. VI, we make suggestions for fur-
ther work, involving both applications and extensions of
the results of this paper, as well as the study of possible
connections with previous research. Two appendixes, A
and C, contain important details of the calculations that
would impede the How of the argument in the main text.
In Appendix B we review brieHy the generalization of the
theory suggested by our previous study of the monopole
model and indicate how it applies to the more general
cases.

A~~ = GqQ j,
'~ = a'a~

(2.i)
(2.2)

(2.3)

An equivalent set of generators, more useful for the
purposes of this paper is given in terms of single-particle
coordinate and momentum operators, x; and p, , respec-
tively, related to the boson operators in the standard way,
namely,

1 (*'+»')
2

1a' = (x; —ip;).
2

(2.4)

(2 5)

The alternative set of generators takes the form

Q;j =z,xj, (2.6)

where the subscript identifies the destruction and the su-

perscript the creation operators. One standard set of
generators is composed of three distinct bilinear forms in
these operators,

II. ALGEBRAIC AND DYNAMICAL
PRELIMINARIES

K;~ = p;p~,

1Lv = 2(&'&~ —&j&*)

(2.7)

(2.8)

A. The algebra of Sp(ni R) 1 1.S,, =
2 (x,pj + xjp, ) —2ib;, , (2 9)

The defining algebra of the group Sp(n, R) is given
most simply in terms of n boson pairs, a;, a', i = 1 n, satisfying the set of commutation relations,

[Q;, , Kki]

[Q,j,L.i]
[Q*, , Ski]

[K...L.i]
[K;~, Ski]

[L;, , Ski]

[L', , Lki]

[S;j,Ski]

(ibjk Si+ b, i S*k + b'k S,i + 4Sjk)
+i(bjkL*i + b, iL*k + b*kL, i + 4Ljk),
—,i(bl jQik —bjkQil + bit Qjk —bikQjl),
—,i(big Q*k + b, kQ'i + b'iQjk + b*kQ, i),

2i (baK~k + bj&K,k
—b*kKji —bjkK, i),

2i(b;iKjk —+ b, iK*k + bikKji + b, kK;i),

(bi' Ski —jb, iS'k+ b*iS,k
—bjkS, i),

,' (b'kL, i + b, iL'k ——b'(L, k —b, kLi),
2i(b;kL&i + bj&—L;k + b;iL, k + b, kL;i).

(2.iO)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

C2 = —
2 (Qij & Kij }+ Sij Sij —LijLij ~ (2.is)

B. Dynamical preliminaries

In terms of these generators, the second-order Casimir
invariant is given by the expression

used above to denote the various generators. We shall
therefore refer to these quantities in the text below by
the corresponding lower-case letters, Q;j -+ q;j, etc. We
shall be concerned with a many-body realization of the
algebra, for which we shall use the second-quantized for-
malism. Thus, if @(x), @t(x') satisfy the anticommuta-
tion relations,

In the body of this paper we shall find it convenient
to assign a di8erent meaning to the upper-case symbols (@(x),gt(x')} = b(x —x'), (2.19)
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where x stands for the n-dimensional vector (zq. . .x„)
and any additional intrinsic variables such as spin and
isospin that are included in the dynamics, then the op-
erators Q,~. , K,~, etc. , where, for example,

III. THE MONOPOI E MODEI ASSOCIATED
WITH THE ALGEBRA OF Sp(1,R)

A. Classical mapping and Hartree solution

Q,~
= f dxf (x)SgtP)x), (2.20)

H = —,'(K+ Q) + —,'~QQ, (2.21)

that is the sum of an harmonic oscillator part and of a
"monopole-monopole" interaction. The considerations to
be applied to this Hamiltonian can be generalized to one
in which we add any polynomial in the operator Q, but
we shall quote detailed results only for the Hamiltonian
(2.21).

Consider an arbitrary Slater determinant describing N
fermions. We shall be interested in the expectation value
of (2.21) in this state, evaluated in Hartree approxima-
tion, i.e. , to the leading order in N, the number of par-
ticles. Using angular brackets to denote this average, we

have in this approximation

are the set of generators of Sp(n, R) relevant to the
fermion many-body problem. Below we shall also sup-
press the boldface for the quantity x.

We shall be concerned further with studying the clas-
sical limit of Hamiltonian operators belonging to the en-
veloping algebra of Sp(n, R) for n=1,2,3, i.e. , Hamiltoni-
ans that are polynomials in the generators of these alge-
bras. Consider the one-dimensional case, where we have
just three generators, Qqq, Kqq, and Sqq, that we rename
by dropping the subscripts. We then study a Hamilto-
nian,

G w G(Q, P), (3.1)

and in particular,

Q~Q. (3 2)

The Hartree expectation value of any member of the en-
veloping algebra is thereby also mapped.

(ii) The associated density matrices have the diagonal
form

p(»z'IQ P) = ).@~(zlQ P)&a(x'lQ P) (33)

As stated in the Introduction, the results to be pre-
sented in this section have appeared in our previous work
[6]. What we aim for here is a more systematic presen-
tation with enhanced emphasis on the significance of the
results. We do this by collecting the results into a theo-
rem.

Theorem: For a class of many-Fermion Hamiltonians
belonging to the enveloping algebra of Sp(1,R), of which
Eq. (2.21) is a prototype, there exists a two-parameter
family of Slater determinants, de6ned by density matri-
ces p(zx'~Q, P) that describe states belonging to an irre-
ducible representation. These states (i) induce a mapping
of Sp(1,R) onto a symplectic manifold (Q, P) in which the
generators, G, are mapped as classical dynamical vari-
ables, i.e.,

(H) =H = -(K+Q)+-' Q,
where, e.g. ,

(2.22) where the sum is over the N occupied orbitals, h. Fur-
thermore @s(x]Q,P) can be written as a product

Q=(Q) (2.23)
ys(x~Q, P) = exp(iPz )y/, (x, Q), (3 4)

(C, ) =C, = —QK+S'. (2.24)

The most important idea that informs the next sec-
tion is that we consider Q to be a classical collective
coordinate and associate it with a corresponding canon-
ical molnentum, P. The Hartree approximation to the
generators then defines a classical limit of the algebra in
which the commutators are replaced by Poisson brack-
ets. These are a set of partial difFerential equations for
the classical generators, Q, K, and S, that determine the
latter as functions of Q and P. This mapping will not
only determine the Hartree average as a function of Q
and P, but will allow us to associate this classical boson
mapping with a solution of the time-dependent Hartree
equation. The concepts mentioned here will be rendered
precise in the next section and then extended to two and
three dimensions in the following sections.

i.e., the Hartree average of any generator will be denoted
by the same symbol without a hat. As a further instance,
the Hartree approximation to the Casimir invariant of
Sp(1,R) is

and Ps is the solution of a constrained Hartree equation

&ada = (& —»')4s,
'R = —,'(p'+ z') + rQz',

de(Q, P = 0) dV

dQ dQ

(3.5)
(3.6)

(3.7)

i p = [R, p]. (3.8)

We turn to the proof of part (i) of the theorem. The
Hartree average of a product of two generators, Gi and
G2,

(GgG2) = Gg(Q, P)G2(Q, P) (3.9)

can be identified as the leading term in the convolution
of these two operators under a Wigner transform with

Here H is the Hartree Hamiltonian and H~ is the classical
collective Hamiltonian defined in (2.22). These results
identify the density matrix (3.3) as a solution of the time-
dependent Hartree equation
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respect to the collective variables Q, P. For a consistent
evaluation of commutators, however, we need the next
term in the convolution,

pendent of the orbit label. To see this, let us calculate the
time derivative of the classical variable Q in two ways,
directly &om the classical equations of motion,

([G» &2)) ~ 'Pi(Q~ P)~ &2(Q~ P)]»~ (3.10) Q= =4PQ,
i9P

(s.2i)
where the Poisson bracket is to be evaluated with respect
to the single canonical pair (Q, P) F.rom Eqs. (2.10)—
(2.17) we thereby obtain the Poisson bracket algebra

and by actually evaluating the Hartree approximation of
the quantum equations of motion,

[Q Sl=

[Q, K] =

S = 2Q,

=4S,

(3.11)

(3.12)

Q = —i([Q, H]) = 2(S)
88=2 dxx p xx.
Bx

(3.22)

[K, S] = —2K. (s.is)

Treated in turn, these differential equations yield the
relations

In obtaining this last result, we have assumed that the
orbitals Ph are real. Equations (3.21) and (3.22) yield
the solution

8 =Px . (3.23)

with

S =2QP,
K = 4QP + y(Q),

(3.14)

(3.15) To find the orbitals ph introduced in Eq. (3.20), we
back up a notch by defining

Qd = —X(Q).dx= (3.16)
@h = exp

~

i —dt' eh [Q (t')]
I A)0

(s.24)

Thus

x(Q) = &/Q. (s.i7)

The extra adiabatic phase in (3.24) drops out of the den-
sity matrix, but must be included in order that g satisfy
the time-dependent Hartree equation,

The constant C can be obtained by evaluating the
second-order Casimir invariant in the Hartree approxi-
mation. %e find

(CR) = —C = N /4, — (3.18)

where the pair of equalities express the results of two
separate procedures. On the one hand the value —C
is obtained by direct substitution of the mapped gener-
ators. On the other hand the specific value N4/4 is-
obtained by calculating the Casimir invariant for a sim-
ple state in the irreducible representation, as explained in
Appendix A. Finally, we record that the collective Hamil-
tonian, which is the Hartree value of the many-particle
Hamiltonian, maps to

(3.25)

Taking into account both the explicit and the implicit
time dependence contained in (3.25), the latter is re-
placed by the equation

W'h . Wh&hQh+iP +iQ (3.26)

Substituting the classical equations of motion for the
time derivatives and inserting the form of @h, the result-
ing equation has terms of zero, first, and second order in
the momentum P. The terms of second order are found
to cancel, whereas the terms of zero and first order give,
respectively, the equations

II& —2QP'+ —,'Q+ -', ~Q'+ N'/8Q,
= 2QP'+ V(Q), (s.i9)

~h4h = (& —»')4h,

4Q
4h

~ 2
BQ Bz

(3.27)

(s.28)

gh(x~Q, P) = exp[i8(x, P)]gh(x, Q), (3.2o)

i.e., the dependence on the collective momentum is inde-

and we have also displayed the collective potential en-
ergy. Note, however, that the singular term in the latter,
that has a tantalizing resemblance to the scalar Berry po-
tential [2), originates in the many-particle kinetic energy.

We turn next to part (ii) of the theorem, which pro-
vides a construction of the manifold of density matri-
ces associated with the classical mapping just given. We
show first that the single-particle wave functions of which
the density matrix is composed are of the form

We deal first with (3.27). By means of the definitions

i (pR + —2~2)

uR = 1+ 2(rQ —A),

(3.29)

(s.so)

(3.27) becomes

eh4h = R4h, (s.si)

with the normalized solution, in terms of solutions Ph'
for the simple harmonic oscillator with unit mass and
unit &equency,
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&~(~) = ~"&~ '(~~~) (3.32) V(Q) = —,'Q+ ', r-.Q'+ C/Q. (3.39)

It remains only to verify (3.28). This can be done, us-

ing the explicit form of w, derived from Eq. (3.30) by
substituting the value of A = (dV/dQ) from Eq. (3.19),
namely,

(3.33)

This completes the proof of the theorem.

B. Application of the theory of large amplitude
collective motion

V(Q) —= (H) = t [-( +* ) ]+ — Q . (3.34)

This equation can be transformed into a more useful ver-
sion, as follows: We first calculate the sum of the single-
particle energies,

It is not the purpose of this section to review yet again
the theory of large amplitude collective motion. It has
been described exhaustively in the works referred to in
the Introduction. In so far as the present discussion
is concerned the principal aim is to find the collective
Hamiltonian from this theory. The first step of the pro-
cedure is to assume that the collective variable is the
expectation value of a one-body operator. For the model
Hamiltonian, Eq. (2.21), with a separable interaction, the
logical starting choice is always determined by the ingre-
dients of that interaction. In the present instance, the
choice is the Hartree expectation value of Q, or in other
words it is determined by the mapping Q ~ Q. This
leads automatically to the constrained Hartree equation
solved in part (ii) of the theorem.

The next step is to compute the many-particle Hartree
energy associated with the filling of these orbits with
N particles. We outline the calculation, in which this
Hartree energy is identified as the potential energy, V(Q),
of the system. We have first

BP = 2(S) = 2S. (3.40)

Since we have already solved for the value of S from the
PB form of the algebra, we may substitute from (3.14)
into (3.40) and verify the value B = 4Q found previ-
ously. (We are not depending on the theorem. If we did
not know S as a classical dynamical variable we would
calculate it now. ) According to the general theory, the
fact that B depends only on Q verifies that we are deal-
ing with an exactly decoupled mode. This means that
we have chosen the collective coordinate correctly, i.e.,
self-consistently.

We shall next attempt to convince the reader that we
have not engaged in slight of hand. We can do this by
complicating the model in what appears to be a minimal
way, but taking it outside of the algebra Sp(1,R). We do
this by adding to H a term 2 rc4Q4, where Q4 is the many-

body version of the operater q4 ——x . Even if we crank
only with z, we now find that the potential energy is a
function both of Q and of Q4, so that the minimum num-
ber of collective variables that we can introduce is two.
We must therefore apply the procedure followed above to
calculate the mass to the two-dimensional domain with
kinetic energy, T, given by

The last term is the solution of the homogeneous version
of (3.38), depending on the same constant that appeared
in Eq. (3.17).

The next stage in this procedure is to calculate the col-
lective mass, B, defined by writing the collective kinetic
energy in the form 2BP . We shall calculate B in two
(equivalent) ways. The first, that we have not used in our
previous work, is connected to the work done in proving
the theorem of the previous section. Its deceptive sim-
plicity carries special instruction to which we shall return
below. The procedure is to make use once more of the
two values of Q found in Eqs. (3.21) and (3.22), without
assuming that we know the coefficient of P . This yields
the equality

T = -B P + B PP4+ -B P4P4. (3.41)

= tr[-'(p + z )p) + r.Q —Q(dV/dQ).

We then invoke the virial theorem, in the form

(3.35) We shall not carry this through in detail, but, in fact,
it is a perfectly straightforward exercise and yields the
mass matrix

which allows us to replace (3.35) by the expression

(3.36) B"=4Q,
B =8Q,
B = 16Qs,

(3.42)

(3.43)
(3.44)

dV
tr[2(p +x )p]=u Q —rQ +Q (3.37)

V(Q) = Q + rQ —Q—3 2 dV
(3.38)

of which the solution is

When the latter is now substituted into (3.34), the result
is a di8'erential equation for the potential energy,

where Qs is the Hartree average of x . The point is that
in the classical collective Hamiltonian, Qs is independent
of the two variables introduced previously. Thus the ef-
fort to decouple a finite symplectic manifold has failed.
There is no cure for this ailment. Thus we might try
to introduce Qs as an additional collective variable by
cranking on x and thus bringing it into the potential
energy. By extension with what has been found above,
however, the augmented kinetic energy will bring in still
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IV. MONOPOLE PLUS TWO-DIMENSIONAL
MODEL ASSOCIATED WITH THE ALGEBRA

OF Sp(2,R)

A. Classical mapping and Hartree solution

We turn to the problem of stating and proving a the-
orem that generalizes the results of the previous sec-
tion. We first specify the model to be studied. Here
it is convenient to replace the coordinate generators, Q;~.

by a monopole Qp, and a two-dimensional quadrupole,
Q;, i = 1, 2, where

Oo = f0'(*)i(*t+*')0(*)

O~ = f0'(*)l(*i —*~)4(*)

ps = f0'(*)*i*aW(*)

(4.1)

(4.2)

(4.3)

The Hartree expectation values of these operators will
be interpreted as their classical maps. We consider one
further definition, namely,

higher powers of x.
The method of calculating the collective mass devel-

oped in our previous work [6] that gives the same result
as above is described in Appendix B.

where the sum is over occupied orbitals, h, . Furthermore
Q~(z~QP) has the form

Qh(z(Q, P) = exp[i8(z, P)]gg(z, Q),
S(z, P) = 2(z, +z2)PO+ 2(z, —z2)P,

+&z&2P2,

(4.8)

(4 9)

~12 QlP2 Q2P1 ~ (4.10)

Next we consider the PB relations of the coordinates with
the "deformation" generators, S;~. We thereby obtain
nine differential equations which have the solutions

and Pg is the solution of a constrained Hartree equa-
tion that wiO be specified and solved in the course of the
demonstration. Altogether, these results will establish
that the density matrix (4.7) is a solution of the time-
dependent Hartree equation in the density-matrix form.

We turn to the proof of this theorem. Since the tech-
nique is a relatively straightforward generalization of the
proof given in the previous section, we shall be sparing of
details, except in so far as these bring in something novel
compared to the previous case. The first step is to re-
place the commutator algebra by a Poisson-bracket (PB)
algebra. One new aspect is that we have an angular-
momentum generator, Lq2. The PB relations between
the coordinates and this quantity determine it to have
the (not surprising) value

Kp ——
2 (Kll + K22).

As the model Hamiltonian we choose

(4.4)
Sll = (Pl + Pp) (Ql + Qp) + P2Q2

S22 (Pl Pp)(Q1 Qo) + P2Q2

S12 ——QOP2 + Q2PO

(4.11)
(4.12)

(4.13)

II = (Kp + Qp) + 2&OQOQO + 2&2(QlQ1 + Q2Q2).

(4.5)

G m G(Q, P). (4.6)

As in the previous section, the Hartree approximation
of any generator, the corresponding classical variable,
will be denoted by the same symbol without a hat, the
map of a product will be the product of the maps, but the
map of a commutator will be i times the Poisson bracket
of the two maps in the same order. We can now state
the theorem that generalizes the one for n = 1.

Theorem: For a class of many-Fermion Hamiltonians
belonging to the enveloping algebra of Sp(2,R), of which
Eq. (4.5) is a prototype, there exists a six-dimensional
family of Slater determinants, defined by density ma-
trices, p(«, «'~ Qp, Pp, Ql, Pl, Q2, P2), that describe states
belonging to an irreducible representation, which (i) in-
duce a mapping of Sp(2, R) onto a symplectic manifold

(Qp Pp Ql Pl & Q2 P2)—:(Q, P) in which the generators,

G, are mapped as classical dynamical variables, i.e.,

A simple check on these results is that the sum of Sqq
and S22 must be a rotational invariant. We find

Sll + S22 2PQQ0 + 2P1Q1 + 2P2Q2 (4.14)

Pll ——(Qp + Ql)(PO + Pl) + (Qo —Ql)P
+2Q2P2(P0 + Pl) + Xll(Q)1

P22 = (Qp —Ql)(PO —Pl)'+ (Qp+ Ql)P2'

+2Q2P2(Pp —Pl) + X22(Q), (4.16)
P12 ——2QOPpP2+ 2Q1P1P2+ Q2(PO —Pl + P2)

+X12(Q). (4.17)

(4.15)

Here, X;~(Q) are three unknown functions of Q that re-
main to be determined for a completion of the mapping.
Notice in passing that the classical kinetic energy,

With the above results, we can determine the momen-
tum generators, K,~, by considering the nine PB relations
of the coordinates with these generators, which are de-
termined by the known values for S,~ and Lq2. We thus
find

The mapping of products and commutators is as previ-
ously specified.

(ii) The density matrices have the diagonal form

K =
2 (Pll + P22) = Qo(PO + Pl + P2 )

+2PO(Q1P1 + Q2P2) + 2 (Xll + X22) ~ (4.18)

~(z z'IQ P) = ) .0~(zlQ P)&~(z'IQ P) (4 7) is rotationally invariant, provided the sum of the last two
terms on the right-hand side has this property.
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~X12

&Qo

X12
+Q2

&X12

~Q2
ctX12

&Q2

X12)

X12 'l

(4.19)

(4.20)

(4.21)

where X =
2 (X11+X22). These equations have the solu-

tions

For the determination of the unknown functions, y,.~,
we study the PB relations of the deformation generators
S;z with the momentum generators K;z. As an exam-
ple, the three relations involving S,~ and P12 yield the
differential equations

$(z~P) = 2(z1+ z2)Po + 2(z1 —z2)P1 + z1z2P2.

(4.29)

In analogy with Eqs. (3.24) and (3.25), we introduce
the orbital that is the solution to the time-dependent
Hartree equation, @g, leading to the equation

~„1/„+i ) I P„+Q„~ I

= &1/h, (4.30)
W~)

P)

where the time derivatives are to be replaced by the clas-
sical equations of motion and the Hartree Hamiltonian,
'R, has the form

& = 4+ eo + ~oeoqo + ~2(nq1+ eq2) (4 31)

C
X12 Q2 q2 q2 ~

—Cqo
q2 Q2 q2'

(4.22)

(4.23)
~akim = {&—) .&,q,) 4r (4.32)

As before terms of second order in the classical momen-
tum variables cancel. The zero-order terms yield the con-
strained Hartree equation

whereas the remaining differential equations are compat-
ible with the above and in addition yield

(4.33)

&Q1
X—=

2 (X11 X22) (4.24)

C2 ——2C. (4.25)

On the other hand, we calculate the Hartree value of the
invariant directly, as done in Appendix A. We thereby
obtain (for a special representation)

C=9N . (4.26)

We complete part (i) of this demonstration by display-
ing the collective Hamiltonian that emerges from these
considerations:

Hc = Qo(Po + P1 + P2 ) + 2Po(Q1P1 + Q2P2)

+v(Q), (4.27)

V(Q) =Q. +-,' .Q.'+-,' .(q'+q')+
{4.28)

In order, finally, to determine the constant C, we cal-
culate the map, C2, of the second-order Casimir invariant
in two ways. On the one hand we substitute the maps of
the individual generators into the appropriate expression
and thus find

cos Hx1+ sin Hz2,
—sin 8X1 + cos OZ2)

—(~,' —(u 2) /D1,
—4A12/D1,

&Qo(qo —Q1)
DP D02

&Qo(qo + Q1)
Dp D02

&Qoq2
)

0

Q2 Q2 Q2

cos 28

sin 28

2

A12 ———

Dp

(4.34)

(4.a5)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

The first-order terms yield three equations that state, in
analogy with Eq. (3.28), the identity, when acting on Pg,
between certain linear operators in the collective coordi-
nates and corresponding linear operators in the single-
particle coordinates. The statement and proof of these
identities is given in Appendix C in order not to interfere
with the flow of the main argument.

We turn then to the solution of the constrained Hartree
equation (4.32). The operator that appears on the right-
hand side of this equation will be called 'R. The cross
terms in the potential energy can be eliminated by an
orthogonal transformation to the intrinsic system,

For part (ii) of the theorem, we must construct the
density matrix that solves the time-dependent Hartree
equation. The first step is to separate @(zlq, P) into two
factors, as done in Eq. (4.8). From the time derivatives of
the coordinates, calculated in two equivalent ways, from
the classical equations of motion and kom the Hartree
averages of the quantum equations of motion, we obtain
three equations, one for each coordinate, that general-
ize the single equation obtained by combining (3.21) and

(3.22). These yield the solution

D1 —— 16A12 + ((d1 —cd&)

~1 = I|-"I/(Qo+ q)'
~2 = I&l/(Qo —q)'

These equations transform A to the form

2($1 + ~1Z1) + 2(P2 + 2Z2)&

where

(4.42)

(4.43)

(4.44)

(4.45)
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q = /qi+q~ = qi. (4.46) theorem, that we display in matrix form,

The last of these expressions shows that the intrinsic sys-
tem is the one in which Q2 vanishes.

In consequence of the above transformation, the solu-
tion of the constrained Hartree equation is

4'h(&& Q) (~1~2) 4» (M~1+l)4'hq (~~2&2).

(4.47)

Together with the material relegated to Appendix C this
completes the proof of the theorem.

B. Appbcation of the theory of large amplitude
collective motion

( 2Qp 2Q1 2Q2 )B= 2Q1 2Qp 0
(2Q2 0 2q. ~

(4.53)

V. MONOPOLE PLUS QUADRUPOLE MODEL
ASSOCIATED WITH THE ALGEBRA OF Sp(3,R)

A. Classical mapping and Hartree solution

As explained in the previous section, this establishes once
more that we have an exactly decoupled manifold. Again
the alternative calculation within the framework of our
theory of collective motion is summarized in Appendix
B.

3 2 -2 BV — BVV=2Q. +-(.Q.'+ .Q', )-Q.~
-Q ~-,2 P 1

(4.48)

with the solution

V = Qp + 2 (~pqp + ~2q1) + (4.49)

In a general coordinate system, we should replace Ql by

gql + Q2. Thus we recognize also in the present context
that V is a scalar.

Consider next the kinetic energy, in the form

Following the procedure outlined for the one-
dimensional case, the Grst step is to compute the collec-
tive potential energy. Because in the intrinsic kame the
Hartree Hamiltonian is a sum of two harmonic-oscillator
contributions (with different &equencies), the procedure,
including the use of the virial theorem, for obtaining
a differential equation for the potential energy follows
through without a hitch. Here it yields the partial difFer-

ential equation

etc. ,

~. =-.(*.+*.+ .)
1 2 2 2

«1 = —3(&1+&2 —2&3)
1 2 2 2

«2 =
2 (&1 —&2)
1 2 2

go1 —&1&2q

go2 = &1&3&

Qo3 = &2&3)

Sa 3 (2 1Pl + &2P2 + 2 3P3) ~

Sdl 3 (Zlpl + X2p2 2Z3p3) ~

(5.1)

(5.2)

(5.3)
(5.4)

(5 5)
(5.6)

(5.7)

(5.8)

In this section, that indeed quotes the results of most
future interest to us, we shall drop the pretensions of
formality adhered to in the previous sections. Except
for very few points emphasized below, the results to be
proved as well as the techniques used to carry out the
demonstrations should be evident by now. We divide the
generators into monopole and quadrupole parts. In order
to keep better track of the signi6cance of the variables,
we adopt an alphanumeric subscript notation, illustrated
by means of the one-particle operators,

T = 2B""P„P, (4.50)

where the indices take the values 0, 1,2. We illustrate the
two steps that enter into the calculation of the mass ma-
trix elements B"".As one of three equations for the time
derivatives of the coordinates, calculated in two ways, we
have

Ha
Q 1 ~11 ~22 =B "P„. (4.51)

[ql, ~11 —~22] = ~(~11 —~22)
BP1

= 2qp ——B ', (4.52)

As one of six equations necessary to complete the calcu-
lation, we have

~. = —.(», + p, +».),1 2 2 2

kdl = —3(»+ p2 —2p3)

(5.9)

(5.10)

etc.
Associated with these one-particle operators are sec-

ond quantized operators, designated by the same sym-
bols in the upper case and carrying hats, and the Hartree
maps of these, designated by the upper case but hatless.
By means of the PB algebra these are expressed as func-
tions of six canonical pairs, (Q„P,), . . . , (Q 3, P 3). The
resulting espressions, which were calculated with the aid
of the program, MATHEMATICA, are too long to quote in
their raw form. To obtain more concise expressions, we
revert to a spherical tensor notation

that combines a known PB relation with a derivative of
(4.51). The completion of the procedure just exempli-
fied yields the mass matrix previously determined by the Q. = — (Q..+'Q..),

2

(5.11)

(5.12)
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Q i —— (Q2 —iQs),
2

Q2 = (Qz2+ iqoi)~
2

1
Q — = (Q~ —Qo ),

2

(5.13)

(5.14)

(5.15)

for Q, and similar definitions for S and K. In the fol-

lowing expressions, the classical limit of Q is denoted
by =, and the conjugate momenta are denoted by II
We use Q, and P, for the monopole coordinate and its
momentum. The spherical components of S are denoted
by Z, etc. Finally, L will refer below to the standard
spherical components of the angular momentum vector.

We thus find that

I. = i~iO [=- x 11]",
S, =-(=- 11+Q.P, ),

2-
(5.16)

(5.17)

[=- x 11]"'+,'P, =- -+ q.ll, (5.18)

X

C2

42
[11 11]1'1 =-+ -,'P, =- II+ 4Q, II II

9

+pq, P, +y„

[II x 11]1'1 x = —-' [11 x 11]"& x -=

+
'

[ll x 11]~'1 x -= —'~P, [=- x 11]"'
5 m 9

+4P,':- + X, (5.2o)

—CBq ln (4Q, —4:-:"Q, —Is(:")), (5.21)
—

—,CB= ln (4Q, —4:-:"Q, —Is(:-)j, (5.22)

(5.19)

35
[

](2)2. (5.23)
8

3 3

—sp, qs —2) 4:- = 9C,
m

2(K, + Q, ) + 2KpQ, + 2r2- - + 2KI.L L.
(5.25)

(5.24)

gh (xIQ, P) = exp[i8(x, P)]gg(x, Q), (5.26)

The above expressions contain the standard notation for
angular momentum coupling. We recognize y, and X
as the singular functions that arise in the determination
of the momentum generators. Here the partial signs rep-
resent derivatives with respect to the variables written,
and C is the integration constant that has appeared anal-
ogously in the calculations for lower dimensionality. A
complication that has not appeared previously is the oc-
currence of the cubic invariant, I3, constructed from the
tensor = . Finally, from the given form of the collective
Hamiltonian, H~, it is obvious what starting many-body
Hamiltonian was used. Compared to the corresponding
two-dimensional case, we have only added an angular mo-
mentum coupling.

To construct the density matrix, we write

8(x, P) = P,q. + II - q.

For the real orbitals, gh, we find

3

(~') '~'4~', '(V ~*x')

{5.27)

(5.28)

as the solution of a constrained Hartree equation, referred
to the intrinsic or barred system [cf. (4.44)]. For the
constrained Hamiltonian we write

-2 2
(dl —1 +—

3

1

~s
-2 — 2
(d2 1 +—

3

1

ys
-2 2
(d3 =1+—

3

r
I

rpQ,

r
I ~2Qo
l

I
rpQ,

r
I

~,qp
l
r

I
rpQ,

l
l

I
r.,qo

l

BV )
BQ, )
BV i
BQp )
BV l
BQ, )
BV )
BQp)
BV )
BQ, )
BV )
BQo)

+
I

K.q., —,— I, (5»)Bv )
B ~. )

Bv )—
I K2Qg, — I, (5.32)

Bq~. )
'

(5.3s)

Alternative expressions for the frequencies that may be
found by substituting the derivatives of the potential en-

ergy will not be recorded here.
In addition to the above relations and conditions, there

are also equations that relate certain linear differential
operators with respect to the collective coordinates to lin-
ear differential operators with respect to the intrinsic co-
ordinates. These were discussed for the two-dimensional
case in Appendix C, but will not be discussed at all for
this case.

B. Application of the theory of large amplitude
eolleetive motion

Following the procedure developed for the one-

dimensional case and previously also applied to the two-
dimensional case, we obtain a partial differential equation
for the potential energy. In stating this equation and its
solution we shall suppress the bar notation, understand-
ing that the collective coordinates refer to the intrinsic
system. We thus find

V = 3q. + 2[rpQ. + r2(qo+ Q„)]
OV OV BV—Q. Bq

—Qo Bq
—Q~, Bq

This equation has the solution

(5.34)

& = -', ) (p,'+ *,') + v. I KoQ. —B—'
l BQ.)

Bv& r — Bv 5
+qo

I
~2Qo —B- I+a~. I

&2Q~. —B- I
(5.29)

B o) l Bq~)
i ) (-2 + —2-2) (5.so)
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V = 2Q, + 2KoQ,'+ 2~2(Qo+ Qa, ) + g. , (5.35) APPENDIX A: EVALUATION OF
SECOND-ORDER CASIMIR INVARIANT

where y, is the singular scalar function displayed in Eq.
(5.21). In the present calculation, the quadratic and cu-
bic scalars I2 and I3 are found in the versions to which
they reduce in the intrinsic system, namely,

I2 ——Qo+ Qq, ,

Is ——— (Qo —3QoQ~, ).
3 3

(5.36)

(5.37)

There remains only the problem of computing the mass
tensor. This remains a simple algebraic task, if one ap-
plies the method first described for the one-dimensional
case. The calculation is simplest to carry out in terms of
Cartesian variables, but the equivalence of the result to
that given by Eqs. (5.19) and (5.25) can then be verified.
Nothing new is learned by repeating either the calcula-
tion or the results.

VI. CONCLUDING REMARKS

In this paper we have developed a new exactly solv-
able example for the theory of large amplitude collective
motion by looking at the classical limit of the algebra of
Sp(3,R) and a Hamiltonian defined within the enveloping
algebra of the algebra. Possibilities exist both for the ap-
plication and for theoretical refinement of the results of
this paper. A natural first application would involve the
requantization of the classical collective Hamiltonian and
comparison of the results of diagonalizing the resultant
Bohr Hamiltonian with the results of an exact diagonal-
ization of the corresponding many-particle Hamiltonian
[14]. A theoretical refinement would be to attempt to
upgrade the classical mapping to a full quantum boson
mapping [15]. This is probably not diKcult for the one-
and two-dimensional cases, but might prove laborious for
the interesting n = 3 case.

It would be inappropriate to conclude this paper with-
out mentioning possible connections with other work.
For instance there has been extensive research on the
unitary representations of the non-compact symplectic
algebras considered in this paper [16—18], that can be
viewed as exact boson mappings of these algebras. The
relation of our special mapping to this work may be worth
pursuing. Along a different line, we may be said to have
produced soliton solutions to a highly simplified class of
field theories, using Hamiltonian methods. It would be
interesting to investigate if our methods can teach us
something about the Hamiltonian approach to other soli-
ton models [19].

C2(ld) = — )
1 4= —N.
4

(N —i

) n
&o

(Al)

In this evaluation, as in the ones that occur below, it is
strictly the definition of the classical variables as Hartree
averages that intervene. Furthermore, we have utilized
the virial theorem for the harmonic oscillator described
by the Hamiltonian ~ (p2 + z2).

For the two- and three-dimensional cases we shall eval-
uate the Casimir invariant only for the closed shell and
for the representation containing the ground state. This
allows us to take the fullest advantage of circular and
spherical symmetries, respectively. We provide a few de-
tails for three dimensions only. We have

C2(3d) = —) Q;,P,,
i=1

1() Q,, (A2)

For N particles, this becomes

((slav)'~'

C2(3d) = —— ) —,'n

62l3N8l3
16

(A3)

Here we have used the fact that the level with energy n
has degeneracy 2n and that the number of shells needed
for N particles is (6N) i~ . These, of course, are approxi-
mate values needed to get the answer to leading order in
N.

The corresponding calculation for two dimensions
yields

Consider the one-dimensional case. The evaluation is
based on the idea that since the monopole-monopole in-
teraction belongs to the enveloping algebra, changing its
strength does not change the irreducible representation.
In particular, we may set the strength to zero. In that
case the ground state, that defines the representation of
interest to us, is the Slater determinant obtained by fill-

ing the lowest orbitals. Since in this state the Hartree
value of 8 vanishes, we have from Eq. (2.18)

C2(2d) = sN . — (A4)
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In future applications, we shall be interested in irre-
ducible representations associated with open-shell nuclei.
The generalization to such cases of the elementary cal-
culations just presented will be deferred to the occassion
when those applications are presented.
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APPENDIX 8: ALTERNATIVE COMPUTATION
OF THE MASS TENSOR

Q* = tr(q'p). (Bl)

It follows then that the component B'~ of the mass tensor
is given by the formula

= l'L ~m 'q i + ' ~ ~)
( )

— (~)

[q ~~ah q~ +&++j](&)

BV (;)+ab —+ab . ~ab-

(B2)

Remarkably, where the present formula contains the
cranked Hartree Hamiltonian, A, the previous, incorrect
formula contains just the unconstrained Hartree Hamil-
tonian &. Precisely because the single-particle orbits re-
ferred to in the above formula are the eigenmodes of the
constrained operator, and using completeness as well, the

In the body of the text we have described a new
method for computing the mass tensor of a decoupled
or approximately decoupled manifold. This method is
particularly convenient when the cranking operator or
operators can be represented in a basis of single-particle
operators that depend only on the coordinates, though it
can also be applied with a somewhat increased eÃort in
more general cases. Nevertheless, it is important to show
how the same results can be obtained by the methods
developed in our previous work. In fact, the monopole
model was instrumental in leading to a necessary gener-
alization of the theory of the mass tensor as it had been
presented and utilized by us. The generalization required
is presented in some detail in [6]. We do not wish to re-
peat the technical details here, but rather we shall "re-
mind" the reader of the basic idea and be content with
the quotation and application of the Anal result.

The theory of large amplitude collective motion is
based on the idea that starting &om a Hamiltonian,
quadratic in the momenta but otherwise arbitrary, one
can introduce a point transformation chosen so that in
the new coordinates the existence of a decoupled coor-
dinate manifold is either apparent, or in more realistic
cases can be demonstrated to be approximately true.
The restriction to a coordinate or point transformation
was based on the observation that this type of trans-
formation maintained exactly the quadratic dependence
on the momenta. However, the formulas derived from
this procedure failed to reproduce the correct mass in
the monopole example. Thereafter, it was discovered [6]
that for consistency to second order in the momentum
one had to replace point transformations by more gen-
eral canonical transformations, correct to second order in
the momenta. In the paper cited details were supplied
only for the case of one collective coordinate, but for the
separable Hamiltonians considered in the present paper it
is straightforward to generalize the result to any number
of collective coordinates. Below we describe the result of
this generalization.

We suppose that there is a set of self-consistent crank-
ing operators,

formula for the mass tensor can be transformed into the
simple formula involving double commutators,

B'~ = ztr(p[[q', Q], q~] +i m j) (B4)

For the cases treated in the text, the q' are coordi-
nate operators. Consequently 'R may be replaced by the
single-particle kinetic energy. It is then a trivial calcu-
lation to show that all the results of the text are repro-
duced.

APPENDIX C: SOME ADDITIONAL DETAILS
CONCERNING THE SOLUTION OF THE

TIME-DEPENDENT HARTREE EQUATION

B$ B$ B$
2Qo

Bq
+ 2Qi

Bq
+ 2Q2BQ

B4 B4
Xl Z2

Bzi BX2

(Cl)
B$ Bg B$ BP

2QiBq +2qpBQ ———ziB +z2B

B$ B$ B$ Bg
2Q2Bq + 2QoBq = —&2B —&i

B

(C2)

(C3)

To show that each orbital, Pg, given by Eq. (4.32) sat-
isfies these conditions, it is convenient to transform them
to the intrinsic system. In addition to the transformation
equations (4.34), . . ., we introduce polar coordinates

Qi ——Q cos 0,
Q2

——Q sin 0,
(C4)

(C5)

that are recognized as intrinsic coordinates, if we make
the identifications Q = Qi and O = —28. Straightfor-
ward calculation then permits us to replace Eqs. (Cl)—
(C3) by the equations

B4 B4
2Qo

Bq
+ 2Q

Bq
BP BP

2Q + 2Qp

2Qp BP

Q BO

B$
&1

BZ1

BP
+1

|9X1
BP

X2
BX1

B$
OZ2

Bg
+X2

BX2

Bg
1g

(C7)

(C8)

To verify the last set of equations, we utilize the ex-
plicit form (4.48) of the orbitals, as well as Eqs. (4.45) and
(4.46) that relate the barred frequencies to the collective
coordinates. We must also remember that the barred co-
ordinates are also functions of the collective coordinates,
according to the equations that are the inverses of (4.34)
and (4.35) and the relation between 8 and O. After some
algebra, we find that we can duplicate (C6) and (C7),

In the construction of the density matrix that solves
the time-dependent Hartree equation for the two-
dimensional case, we by passed the study of a set of
conditions that must be satisfied by the real orbitals P&
in addition to the constrained Hartree equation (4.32).
These conditions, here three in number, arise &om terms
linear in the collective momenta in the time-dependent
Hartree equation. They are of the form
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but in place of (C8), we deduce the result

8$ 8$ 8$
(C9)

which obviously describes correctly the rotational prop-

erties of an orbital, in view of the connection between
0 and e. To verify (C8), Snally, we calculate the "com-
mutator" of Eqs. (C7) and (C9) and indeed deduce the
desired result.

The corresponding calculations for three dimensions
will not be reproduced here.
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