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First-forbidden P decay: Meson-exchange enhancement of the axial charge at A ~ 16
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Calculations are presented for four relatively strong first-forbidden P decays in the region A =
11—16 in order to study the very large mesonic-exchange-current enhancement of the rank-zero
components. The p capture on 0 is considered on the same footing. The wave functions
utilized include up to 4~ excitations. Two-body exchange-current matrix elements are calculated
as well as one-body impulse-approximation matrix elements. The resultant enhancement factor
that multiplies the impulse-approximation axial-charge matrix element is thereby determined by
comparison to experiment to be c,„~ = 1.61 6 0.03 from three P decays and ts capture on ' 0,
which is in excellent agreement with meson-exchange calculations in the soft-pion approximation.

PACS number(s): 21.60.Cs, 23.40.—s, 21.10.Dr, 27.20.+n

I. INTRODUCTION
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FIG. 1. The four AJ = 0 decays of interest to the present
study. Each level is labeled by J and E (in keV). Each P
branch is labeled by the percentage branching ratio (or decay
rate) and log fot value.

This is one of several articles describing theoretical cal-
culations of first-forbidden P decay observables and other
related weak-interaction variables with as high accuracy
as is currently possible. Recent results have been re-
ported for A = 50 [1], and the A = 133—134 [2] and
A = 205—212 [3] regions. Here we report on the four
A = 11—16 decays of Fig. 1 and Table II. The main mo-
tive is to add understanding of the very large enhance-

ment over the impulse approximation of the rank-zero
(RO) axial-charge matrix element MoT observed especially
in the lead region [10].

The four P decays of Fig. 1 are the known decays in
light (A ( 37) nuclei that are fast enough to provide
potentially reliable information on the medium enhance-
ment of Mo . In addition to these four decays, an impor-
tant part of this study is a consideration of the inverse of

N(0 ) l ~ isO(0+), namely, y, capture on i 0 lead-

ing to the 0 Erst-excited state of N with —for the 6rst
time —a calculational precision comparable to that rou-
tinely used in P-decay studies [11].

The light nuclei have always been and will continue
to be the premier testing ground for our views on the
structure of nuclei. Our main emphasis here will be on
A = 16 nuclei. 0 has a fascinating and complex struc-
ture since Ohu, 2', and 4~ excitations are manifestly
apparent among the low-lying levels. The (0+2+4)Ru
model of Brown and Green [12] was an early, success-
ful, and important description of these states. Recently,
we described a large-basis shell-model diagonalization of

0 in a (0+2+4)hu basis and isN in a (1+3)the basis
[13]. Similar wave functions will be used in the N(0 )
m isO(0+) P and p calculations. The P decays of

C 1
C 1 and Be will be treated in the more truncated

(1+-3)the ~ (0+2)ku space (A = ll, 15) or the (2+4)b'av
M (1+3)hey space ( C) with the effects of 4~ or 5hcu

added perturbatively.
In Sec. II we give a review of the shell-model interac-

tions used in the present study. In Secs. III A and IIIB
we describe the calculation of the one-body (impulse ap-
proximation) matrix elements, which enter in these rank-
zero processes, and how they are combined to give the-
oretical rates. The two-body (meson exchange) matrix
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elements are considered in Sec. III C. In Sec. IV we de-
scribe the isN(0 ) ++ sO(Q+) transitions and in Sec.
V we take up the P decays of i C, iiBe, and sC. Fi-
nally, in Sec. VI we discuss the conclusions concerning
the enhancement factors for P and p capture.

II. THE WAVE FUNCTIONS

Shell-model calculations were performed with the shell-
model code OXBASH [14]. With OXBASH, spurious center-
of-mass motion is removed by the usual method [15] of
adding a center-of-mass Hamiltonian 0, to the inter-
action. The shell-model studies start with the recently
constructed interactions of Warburton and Brown [16],
which are based on interactions for the Opl80d shells de-
termined by a least-squares fit to 216 energy levels in
the A = 10—22 region assuming no mixing of nkvd and
(n+ 2)hu configurations. The OplsOd part of the inter-
action cited in Ref. [16] as WBP results from a fit to
two-body matrix elements (TBME) and single-particle
energies (SPE) for the p shell and a potential represen-
tation of the Op-(lsOd) cross-shell interaction. The WBP
model space was expanded to include the Os and Oflp
major shells by adding the appropriate Of lp and cross-
shell ls0d 0f1Ii-two-body matrix elements of the WBMB
interaction [17] and all the other necessary matrix ele-
ments &om the bare G-matrix potential of Hosaka, Kubo,
and Toki [18]. The Os, Of, and 1p SPE were determined
as described in Ref. [16). Thus the WBP interaction is
constructed in a similar manner to the Millener four-
shell interaction described in Ref. [19],but reproduces the
binding energies of low-lying &1hu levels in the A = 16
region with 2—3 times greater accuracy.

Unless a complete model space is used for a given di-
agonalization, the wave functions can contain spurious
components. For a (0+2)tuu calculation in isO, the first
four oscillator shells comprise a complete basis, while
for a (0+2+4)hu calculation the first six shells must be
included for completeness [13,20]. We began our shell-
model studies by diagonalizing the (0+2+4)her 0+ T = 0
and (1+3)hu 0 -3 T = 1 states of isO in model spaces
comprising both the 6rst six and first four oscillator
shells. As discussed in Ref. [13],negligible difference was
found in the wave functions and observables of interest
between the calculations within these two model spaces.
Thus the calculations reported here were performed in
the four-shell m.odel spaces —we emphasize that the re-
sults in six-shell model spaces would be essentially iden-
tical.

In Ref. [13]several methods for constructing the mixed~ spectra were explored, each of which gave a reasonable
level scheme for A = 16. Since that work we have further
explored the sensitivity of other observables such as the
electron scattering form factors &om the ground state of

0 to 0+, 2+, and 4+ excited states and the Ml decay of
low-lying 1+ T = 1 states [21]. We found that the method
of lowering just the 4' configurations for the positive-
parity states tends to produce too much mixing of the
4~ components into those states around 12—18 MeV,
which are known —&om experimental observables —to

be mostly 2hcu. The gap method turns out to be better in
this regard because it simultaneously lowers the 2' con-
figurations with respect to the 4' con6gurations. The
needed reduction of the Op —lsOd gap —initially 6(0p-
IsQd) = 11632 keV —for the WBP interaction is 3.0
MeV, which means that the 2k' states are shifted down
by 6.0 MeV and the 4k' states are shifted down by 12.0
MeV. It is worth noting, as discussed in Ref. [13], that
the amount that the 4hz configurations need to be low-
ered is essentially equal to the shift of the ground state in
going from the Ok@ space to the (0+2+4)bur space. Thus
the view can be taken that the shifts are not &ee param-
eters but with a given Ru truncation can be determined
self-consistently. When the negative-parity T = 1 states
are treated in a (1+3)her space it is perhaps reasonable to
shift the 3hcu con6gurations down by 12.0 MeV and the
lb' con6gurations down by 6.0 MeV, and doing so gives
excellent agreement with experiment for the energies of
these states relative to the positive-parity T = 0 states.
Note that this is not the same as the pure gap method,
which would involve shifts of 9.0 and 3.0 MeV for the
3k' and l~ configurations, respectively. Nevertheless
we will refer to this as the gap method since the struc-
ture of the negative-parity states are exactly the same
in either case (since the structure only depends upon the
6.0-MeV shift difference between the 3~ and 1~ config-
urations). We refer to the results obtained with the fitted
potential for all matrix elements and the gap method as
WBP.

In addition, we have further explored the interaction
V2~ that mixes nhcu and (n+ 2)Ku configurations. In
Ref. [13] this interaction (40 Op-lsOd TBME) was gener-
ated &om the potential obtained from the fit described
above (WBP). However, since the core-polarization cor-
rections may be different for 1k' and 2~ matrix ele-
ments, the use of a common potential may not be en-
tirely correct. As an alternative we have explored [21]
the use of the Bonn G matrix [22] for the mixing inter-
action V2~. We find that the bare G matrix cannot re-
produce the energy-level spectrum 0 with any amount
of 2~ and/or 4fuu shift, but that the interaction was ac-
ceptable in this regard if it was renormalized by a factor
of 0.8. Such a renormalization seems reasonable because
the core-polarization corrections are found to reduce the
average V2" matrix elements of the bare G matrix by
about this amount [23]. We will refer to results obtained
with V2~ replaced by 0.8 times the Bonn G matrix as
WBN. For this interaction the needed reduction in the
Op-180d gap was found to be 3.5 MeV so the 2' and 4hz
components are lowered by 7 and 14 MeV, respectively.
As for the WBP interaction, the spirit of the gap method
was retained for the odd-parity states in that the differ-
ence between the 3~ and lb' shifts was set at 7 MeV.
However the absolute shifts were arbitrarily set so as to
minimize the difference in the experimental and theoret-
ical excitation energies of the low-lying T = 1 quartet.
This, of course, has no inBuence on the wave functions of
the states.

The main reason for exploring the use of the Bonn V
interaction was that the WBP interaction did not provide
a satisfactory description of the electron scattering form
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factors and of the Ml decay of the low-lying 1+ T = 1
states. The WBN interaction does considerably better in
this regard and, in fact, provides the most satisfactory de-
scription of these phenomena of any realistic interaction
that we are aware of [21]. Thus the results given here for
the WBN interaction are the preferred ones. The WBP
results are given to provide a measure of the sensitivity
to the interaction used.

unit of time is the second and of length A~, —the elec-
tron Compton wavelength divided by 2~. The decay rate
A (= 1/r) has the units of sec i. G is the standard weak-
interaction constant. The P-decay phase-space factor is

Wo 1

f = C(W)E(Z, W)(W —1) 2W(Wp —W) dW,

(2)

III. THE WEAK INTERACTION PROCESSES

A. P and p, rates

Q2

Ce
(la)

- 2

I & .(o) I' ~ (e')
[M ] (,b)

2z 1+(u/My Ac, gg(0)

All quantities are in natural units A = c = m, = 1. The

Note that all the numerical results given in this subsec-
tion are relevant to N ~ O. The relationship between
experiment and theory is given here in a way that dis-
plays the similarity between 0 m 0+ P decay and 0+
—+ 0 p, capture. It follows closely the treatments of
Behrens and Biihring [11] for P decay and Nozawa, Ku-
bodera, and Ohtsubo (NKO) [24] for both P decay and
p, capture but especially the latter:

where C(W) is the shape factor, F(Z, W) is the Fermi
function, TV is the electron energy, and R'0 the total dis-
integration energy —both including the rest mass. The
allowed phase-space factor, fo is given by the integral of
Eq. (2) with the shape factor C(W) = 1. For a pure
rank-zero (RO) decay as is involved here, C(W) = f/fo
= ]Ms~] where the Mo (o. = P, p) of Eq. (1) are com-
bi.nations of matrix elements. We choose to give all ma-
trix elements in fm; thus Ac, appears in Eq. (1). The
axial-coupling constant g~(qz) is a function of the four-
momentum transfer q. For nuclear P decay q = 0 to a
good approximation. We incorporate g~(0) (—:g~) into
the matrix elements. Hence it does not appear in Eq.
(la) and normalizes the q-dependent ratio g~(qz) in Eq.
(1b). In Eq. (1b), Cn is a second-order relativistic cor-
rection (see Appendix A), u is the muon-neutrino energy,
(1+u/My) i is a recoil correction with My being the

2
mass of the final nucleus, and [Pi, (r)[„ois the probabil-
ity of finding the p, at the origin (see Appendix A):

, (Znm"„)'
I4i. (0)l =&zl&i (0)I'~. -t = z

nucleus

TABLE I. Quantities needed in the evaluation of the N(0 ) ~ ' O(0+) P and p matrix
elements and decay rates.

Quantity

&Ce
P 'tt

'Y

MN
m1r

mp
mp

t"'/2m'

gw

~~(~')/~~(0)

fo/&c. '
—'(Zo.m„)'

Rz
a~(~')/~~(e')

E„(point nucleus)
Elc (point nucleus)

(1+~/My)
CR

De6nition
Fine structure constant

Electron Compton wavelength
Uniform charge radius

aZ/2r„
[1 —(oZ) ]'

Tz-averaged nucleon mass
Tz-averaged pion mass

Muon mass
Reduced muon mass

Weak-interaction factor (sec )
m„—Qp

—m + 2m@4)
Four-momentum transfer

G~/& [=—a~(0)]
[1+(e/M~)'] '
P-decay Q value

Phase-space factor
See Eq. (3)
See Eq. (3)
PCAC value

pm
(1 —p)m"„

Recoil correction
Relativistic correction

Value
1/137.036
386.159 fm
3.537 fm

3.187
0.99829
1837.41
270.128
206.768

0.99296m„
[8851(20)]

186.144
0.80051m„

184.998
1.261(4)
Q.99QO

20.624(5)
1.2574
548.10
0.91688
6.939

204.961
0.350
0.9937
1.04

Ref.

[26]
[26]

11]
as]
25]
25]

[26]
[27]
[27]
[27]
[25]

[28]
[29]

[24]

[24]
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TABLE II. Experimental data for AJ = 0 Srst-forbidden decays in the A ~ 16 region. tzgz is the total half-life and b„ the
branching ratio for the indicated Snal state. Qp is defined in Eq. (14). C(W) is the average shape factor, = f/fo [see Eq. (2)],
and is given by C(W) = PR Bi where Bi = lM~] is the rank R P moment. For the 2 m s transitions R = 0,1 and

the measured BI /BI ) listed in the sixth column is used to obtain Mo from C(W). For the 0+ ++ 0 transitions this step is
not necessary.

Transition
(s)

6„
(%)

Qp
(keV)

C(W)'~'
(fm)

B(i)/B( o)

1 1
(fm)

Ref.

"Be(-")~ "B(-' )

"C(-'+) ~ "N(-' )

' C(0+) m ' N(0 )

"N(o-) + "O(o+)

13.81(8) 31.4(18) 9381.3(60)

0.747(8) 0.68(10) 7891.7(43)

1.429(56) 100.0(0) 10539.5(23)

2.449(5) 36.8(8) 9771.68(80)

14.4(4)

32.S(4)

13.4(9)

58.4(11)

(0.29 13.3(11)

0.00

0.00

13.4(9)

58.4(11)

0.185(13) 29.6(11)

[4,51

[6]

[7]

[8,9]

In Eq. (3), m"„ is the reduced )(i mass and Rz is a
correction factor obtained by solving the Dirac equation
for the wave function of the muon in the field of a finite-
charge distribution (see Appendix A). Parameter values
(in natural units unless otherwise specified) relevant to
isN(0 ) E+ isO(0+) are given in Table I. Using these
parameters we find

AP = 1.4206 x 10 ]MoP] = 0.485 6 0.019 sec, (4a)

A„= 0.1210]Mo
l

= 1560 6 94 sec (4b)

where the experimental results on the right are taken
from Refs. [9,30]. The experimental rates lead to the
following experimental matrix elements:

1
MoP = 83.90[AP(s )]2 = 58.4+1.1 fm,

1
Mo ——2.874[A„(s i)] 2 = 113.5+3.4 fm.

(5a)

(5b)

Results for the I9-decay matrix elements for the other
three cases of interest are given in Table II. It is these
experimental matrix elements that we will compare to
theory. We write Mo and Mo in the form

MoP = [M+ + MP + a~&Mo ] = [M eP + a~&M ] (6)

Mg = [a"M + M" —as M ] = [aT"Mo e" —asM ]

where the M are the two-body meson-exchange cur-
rent (mec) matrix elements defined in Sec. III C below.
When Eqs. (5) and (6) are used to compare experiment
and theory, it is conventional to extract values of e that
are required to reproduce experiment, and these will be
referred to as e,„.The calculated values for e based
upon these equations together with the calculated two-
body M discussed in Sec IIIC will be referred to as
~mec

Our evaluation of the P-decay rate follows the rigorous
and accurate treatment of Behrens and Biihring [11].In
writing the expression for Mo in Eq. (6) small terms in-
cluded in the first-order treatment have been neglected.
However, for the decays in question these terms con-
tribute less than 0.2%%uo to MoP. In the Behrens-Buhring

treatment the as of Eq. (6) is given by [11,32,27,31]

ap& ——s (Qp + 1) + (r&~ ——7.208 + 3 187r&,.

where Qp is dimensionless (in units of the electron mass)
and the numerical results apply to the 6N ~ 0 decay.
Note the r~& and the as and aT, of Eqs. (6) and (7)
are positive-definite quantities so that the contributions
of Mo+ and Mos add destructively in forming Mo and
constructively in forming Mo .

The a~s and az of Eq. (6) and re of Eq (7) ar.e defined
as ratios of matrix elements evaluated with extra radial
factors to the normal matrix elements. The radial depen-
dencies for p capture are given explicitly in Appendix
A. In Eq. (7) the ratio r& is insensitive to the wave func-

tions used. Approximate values of a& are 7.80, 8.52,P

7.45 and 940 for the decays of118e 15C 16C and 16N

respectively. Note however that all a& and a& are calcu-
lated explicitly for the wave functions at hand.

B. The one-body contribution

Our concern here is with the one-body (impulse ap-
proximation) matrix elements of the rank-zero (RO) ax-
ial current. These are the matrix elements of the RO
member of the spin-dipole operator and of the helicity
operator ps, which is commonly called the timelike com-
ponent of the axial current, or the axial charge. With
ps replaced by its nonrelativistic limit (good to order
I/M)v) the single-particle matrix elements (with the rel-
ative phase appropriate to P decay) are [32—35]

where
(1)~-*f &T, 1 T l

[2(2J,-+1)]i/2 ( T,y ATz T„—(9)

and

Mo (i'is) = g~~~(i yllll~r[&i ~]'~llil')C» (Sa)

Mo (i*is) = g~&&(itlll M [oi &]'—&llli* )&rJ~c.', (Sb).
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4'
3

(10)

and where A~, —the electron Compton wavelength di-
vided by 2' —is incorporated into Eq. (8b) so that
both matrix elements have the dimensions of fm. The j;
and jf are a short-hand notation for all quantum num-
bers needed to label the single-particle states. In Eq.
(9), the J, and T dependencies result from the reduced
matrix elements in a spin and isospin space and vt2 is
kom the definition of the isospin operator. The radial
integrals contained in the matrix elements of Eq. (8)
were evaluated by numerical integration; however it is
useful to keep in mind that the two operators are Her-
mitian conjugates, which for harmonic-oscillator radial
wave functions results in the identity

S(p) —S(n) = Qp —0.782 MeV, (14)

where Qp —0.782 MeV is the difference in binding ener
gies of the initial and final states. The separation ener-
gies for a particular common parent state with excitation
energy E in the (A —1,Z —1) core are then

square charge radii, (r ) ~, with these orbit occupancies.
For 0, with (r ) ~ = 2.730 fm [36], the result is Ru =
13.60 MeV as opposed to 13.16 MeV, which is obtained
assuming an 0 closed shell. Values of ~ for A = 11
and 15 were obtained from the A = 12 and 16 values
assuming a linear dependence on A.

The WS results depend on the separation energies S(n)
for the P parent state and S(p) for the daughter. These
are related by

for HO. (11) S(n) = b,Eb{n) + E —E;, (15a)

Equation (11) is approximately true for the more realis-
tic radial wave functions (see below) used in the present
study. The usual shell-model procedure is followed of
combining the single-particle matrix elements M&(j,jy)
with one-body transition densities D& (j;jf ) via

where the subscript R denotes the rank of the operator
(R = 0 in this study). The one-body transition densities
given by

(13)

contain all the information on the initial and anal many-
body wave functions. The J;T, and JyTf are short-hand
notations for all quantum numbers needed to describe
the many-body wave functions and AT, A J are multipo-
larities of the one-body operator, which in our case has
AT = 1 and 4J = R = 0.

In the previous calculations for heavier nuclei [1—3], the
single-particle matrix elements were augmented by mul-

tiplicative renormalization factors q (j,jy) that repre-
sented erst-order core-polarization eKects. In the present
calculation the model space is large enough to include
all possible first-order core-polarizations, and so the one-
body operators appropriate to bare nucleons are used.

The Mg(j;jy) and also the the two-body matrix ele-
ments described in Sec. III 0 are calculated with a com-
bination of harmonic-oscillator (HO) and Woods-Saxon
(WS) wave functions. The WS parameters were de-
termined by extrapolation of results obtained by least-
squares its to nuclear charge distributions for C and

0 [36]. In this procedure the separation energies were
fixed as described below and the orbit occupancies were
taken from (0+2+4)ku wave functions for sO [13] and

C [21]. For HO wave functions, we first found values
of fuu for t and 0 that reproduced the root-mean-

S(p) = b,Es{p) + E —Ey, (15b)

where E, and Ef are the excitation energies of the ini-
tial and final states in the (A, Z —1) and (A, Z) nuclei,
respectively, and AEs(n) is the difference in binding en-
ergies of the ground state of the initial nucleus and the
(A —1, Z —1) core nucleus, i.e. , the neutron separation
energy for the ground states, and similarly for AEs(p).

The main eKect of small separation energies is to in-
crease the relative magnitude of the "tail" of the radial
wave function. As the separation energies increase, the
difference between WS and HO wave functions lessens,
and becomes insignificant compared to our knowledge
of the wave functions. Thus we use HO wave functions
for all single-particle transitions except those allowed for
v(ls0d) + 7r(Op); i.e. , all others have large effective val-
ues of E and thus of S(n) and S(p).

The method developed by Millener [38] and adopted
to a similar calculation [10] for 2o Tl + 2 sPb was used
to estimate the effective value of E, (E (j)), to use in
Eq. (15). This method involves an inclusive calculation
of the spectroscopic amplitudes for neutron pickup &om
the initial state and proton pickup from the final state
to all possible core states and an evaluation of the eKec-
tive excitation energy of the core states from a consider-
ation of these amplitudes and the resulting dependence
of the matrix elements on E . In this determination all
core-state excitation energies greater than 10 MeV were
fixed at 10 MeV. The results for the rank-zero vis&/2

7t 0p'i/2 and +0d3/2 + ~0@3/2 transitions —the two
allowed v{lsOd) + vr(Op) transitions are given in Ta-
ble III. The (E (j)) of Table III are calculated with the
WBP interaction with the lowest allowed n~ wave func-
tions for each of the three nuclei involved in each of the
four cases. In contrast to these simple wave functions, we

present results in this study calculated for model spaces
as complex as (1+3)hu ~ (0+2+4)hu. The question
might well be asked as to the relevance of Table III to
these more complex —and hopefully more realistic—
calculations. To address this question the procedure was
applied to the &18,/2 m ~0p&/2 single-particle component
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TABLE III. Summary of results for the neutron and proton separation energies S(n) and S(p) for use with Woods-Saxon
wave functions. All energies in the last seven columns are in keV.

Transition AEg(n) &E~(p) E; (E-) S(n) S(p)

' N(0 ) m ' O(0+) 2491 12128 120 2371 12128

6324 8695 18452

"c(o+)~ "N(o-) 4251 11480 120 4276 11385

4267 8518 15627

15C(1+) ~ 15N(1 ) 1218 10208 1218 10208

8746 9964 18954

11B (1+) ~ 11B(1 ) 504 11228 2125 70

7013 7517 16116

in the ~sN m ~sO rank-zero decay with typical (1+3)hu
and (0+2+4)hu wave functions for ~sN(0 ) and ~aO(0+),
respectively, and with typical (0+2)hu wave function for

the ~ N 2 states. In a (0+2)fuu space, there are 265

N 2 states, 41 of which are spurious. The value of
(E (j)) found for the 224 nonspurious states is 32 keV,
in close agreement with the value of zero keV associated
with the simple calculation of Table III.

For the v0d3y2 ~ m0psg2 transitions the large values of
(E (j)) mean that the matrix elements are not sensitive
to its value, in fact, one might just as well (in ignorance)
use HO wave functions for the j =

2 transitions and we
do so for the calculation of the one-body matrix elements
Mo and Mo and the two-body matrix element M&~ and

C. The two-body soS-pion contribution

Towner [39] has recently made an investigation of the
one-pion exchange contribution to single-particle matrix
elements of the axial charge in (closed shell 6 1) nuclei
&om A 16—208. Towner's results indicate that for A
16 the soft-pion diagram [40,41] alone gives an adequate
representation of the meson exchange and so we only
consider this term. The soft-pion contribution was in-
corporated into the shell-model calculations in the man-
ner described for the similar parity-nonconserving (PNC)
matrix element [42). The general expression for the soft-
pion contribution is a sum of the product of a two-body
transition density Do (jqj2JTjsj4JT') and a two-body
meson-exchange matrix elexnent:

M = —G, rt CTg ) Do (jzj2JTjsj4JT')(jzj2JTlllg(r„)i(crq + crz) r"„(Ty x 1g)Y (z )llljsj4J )

j3&&4

(16)

where z = m r„with r„= rq —rz, Y (z ) = (1 +
1/z )e -/z and g(r„) is a short-range correlation
(SRC) function. The SRC used in this work was g(r„) =
1 —jo(q, r„) with q, = 3.93 fm ~ [39]. We will also com-
pare results obtained with this SRC and with the simple
cut-off factor e(r„—d) for which g(r ) = 1 for r„)d and
0 for r„& d. The soft-pion coupling constant is de6ned

I

m2
g v g~~~ ~ P 6974 fm

7I g~

where we have used g N~ = 13.684 [22]. The two-body
transition density of Eq. (16) is given by

(J T lll([u' u']' 8[a- Su ]' k
'=' ='lllJ'T')

[( &J+ )( &T+ )( + ~,„.)( + ~, )]' '

As for the other shell-model calculations, the evaluation
of M~ involved four oscillator shells and the use of mixed
HO and WS radial wave functions. Our results for single-
particle transitions are identical to the soft-pion results of

Towner [39]. Here we consider more complicated transi-
tions. The coxnputer program used is formulated in terms
of harmonic-oscillator wave functions. Our method of al-
lowing Woods-Saxon radial wave functions is to expand
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TABLE IV. Soft-pion enhancement factors for simple transitions encountered in N(0 ) ~ O(0+) calculated with HO
wave functions (fsv = 13.60 MeV) for two different short-range correlation functions. WS results are also given for the vlsi/2
~ xOpqyq and vOd3y2 -+ vrOp3g2 transitions. Note that the last three transitions have an 0 Ohio core.

Initial state Final state
1 —jp(3.93r„)

P
~rnec

8(r„—0.71) 1 —jp (3.93r„)
~rnec

vis, /, s(op, /, )
'

vOds/g 1c(O'ps/p)

(Os)'(op)"

(os)'(op)"

1.549
1.523
1.418
1.428

1.488
1.467
1.383
1.379

1.510
1.509
1.449
1.457

1.425
1.427
1.387
1.393

v 1s i / s s' (Op i / s )
Vl S1 /2 X(Opl /2 )
vod, /, s(op, /2)

v(lsi/s)v(Osi/p)
v(ls, /, )2s (Op, /s)
v(Ods/2) m(Ops/g)

1.405
1.525
1.331

1.367
1.458
1.293

1.417
1.488
1.356

1.361
1.406
1.306

ls0d ~ Oflp

Odgyg

Od3)g
lsd j2

HO results.
%S results.

Ofs/2

1@3/2

1piy~

1.226
1.488
1.305

1.201
1.430
1.264

1.253
1.436
1.310

1.212
1.360
1.248

the appropriate WS radial wave function in terms of HO
wave functions (up to 10 terms). As explained in Sec.
III B, we use WS wave functions for the v1sqy2 ~ +Opq~2
transition but use HO wave functions to evaluate the rest.
As for the one-body matrix element, p capture di6'ers
from P decay in that the analogous M" to the Mg of Eq.
(16) should be evaluated with the factor aT, [= jo(ter)]
of Eq. (A17) of the Appendix inserted. Thus a depen-
dence on r [= z (ri + rs)] as well as on r„ is introduced.
This dependence is approximated by retaining terms up
to order ~ with the result that the replacement

(oi + os) r, m (err + os)

sp/ (r y -'r„)—(cri + cry) r"„

+-'p/ (r ~ r, )(err —cr~) r„
was made in Eq. (16) to obtain M" [43].

The relative contributions of Ml to Mo is formulated
in terms of the e~ parameter defined in Eq. (6). It is in-
formative to consider the values of e~, obtained for sim-
ple con6gurations. Evaluations with HO and WS wave
functions are collected in Table IV for two diferent SEC
factors. It is seen that e~ „has a fairly strong state de-
pendence. Because of this state dependence and because
the two-body and one-body matrix elements have difer-
ent dependencies on the nuclear wave functions, Eq. (16)
or an equivalent expression raust be used for a rigorous
evaluation of el, . However, a useful approximation is

with a similar expression for e „. Comparison shows
that this approximation —used with the results listed in
Table IV to represent the e „(j;jy) —underestimates
e/ „by 5%. Nevertheless, this approximation is useful
because the evaluation of Eq. (16) takes an unusually
large amount of computer time. In comparisons of dif-
ferent diagonalizations and tests of difkrent radial forms
or SRC factors we make use of Eq. (20).

IV. RESULTS FOR isN(0 ) e+ isO(0+)

As a first orientation, consider the four decays of Ta-
ble II in successive degrees of model-space complexity.
The simplest of these is the "single-particle" approxima-
tion in which only the Op&~2 and 1s&~2 degrees of free-
dom are allowed. Next allow for mixing within a single
major-oscillator shell but keep only the lowest possible
AQ) configurations) e.g. ) l~ w ORu for the 6N w 0
transitions. In this approximation the WBP and WBN
interactions are equivalent. The results for the two cal-
culations are compared in Table V. First we observe that
in all cases there is a signi6cant reduction in going from
the simple configuration to the major-oscillator con6gu-
ration. This is primarily due to a destructive interference
between the vlsiy2 ++ m0pzg2 and v0d3y2 ~ vr0p3g2 terms
in Eq. (12).

The next level of approximation allows for those terms
which enter in the next order in a perturbation expan-
sion. For lou ~ Oihu transitions, this means including2' admixtures in the 6nal state since these connect di-
rectly to the 1~ initial state; 3hcu admixtures in the
initial state are not included in this order because they
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TABLE V. Results obtained for restricted model spaces. All were obtained with the
Woods-Saxon potential.

Transition
11B (1+) ~ 11B(1 )

15C(1+) ~ 15N(1 )

"C(0+) m "N(0 )

' N(0 ) + ' O(0+)

Model space

Single particle
1hu) -+ 0~
Single particle
1') —+ Ohu

Single particle
2') m lb'
Single particle
1h ~ oh

Mo

34.3
18.0
47.3
35.9
81.1
26.8
81.1
62.1

Mo
—1.59
—0.97
—2.20
—1.76
—3.12
—1.22
—3.12
—2.70

14335 0 '0

13463
13026

12671

12158

3;1

12956
01
0+IQ

11350 0+ep

0;0

8500 2;0

6437

5982

0+oP

1;0

5171 3;0

~ (4 fl(o) = 1&.00 MeV

~ (3'(o) =13.48 MeV

b, (2%co) = 7.00MeV

b, (14m) = 6.48 MeV

15097

14032

3090

12796
12049
11600
(11260)
10957

585

8872

7117

130

049

13259
12969—1;1

0+;0

0;0

3;1
2;1
0;1
0+0
3:0

(0 0)

0;0

1;0

2;0

1;0

3;0
0 0

do not directly connect to the ORu 6nal state and it is
inconsistent to include them without also including 4~
terms in the final state. A consistent higher-order calcu-
lations involves (1+3)hu ~ (0+2+4)fau transitions and
is only possible at present for ~sN decay, which we now
consider.

The model-space dimensions for N 0 in a (1+3)hu
model space and ~sO 0+ in a (0+2+4)fuu model space
are 713 and 4255, respectively. The gap reduction for the
WBP interaction is 3.0 MeV. The lowest five 0 0+ T
= 0 states are calculated to lie at 0.00, 6.59, 10.77, 11.69,
and 14.25 MeV with the 6.59-MeV state predominately
(88%) 4K'. The structure of the ground state is 43.2%
07uu, 43.2% 2fuu, and 13.6%%uo 4ku. The lowest two 0
T = 1 states occur at 12.38 and 17.37 MeV and the
structure of the lowest 0 and 2 T = 1 states are both
(coincidentally) 71.1'%%uo 1k' and 28.9'%%uo 3hu.

A partial WBN level scheme is compared to experiment
in Fig. 2. The gap reduction for the WBN interaction
is 3.5 MeV. The structure of the ground state is 34.9'%%uo

Ohu, 46 7%%up 2k', .and 18.4%%up 4k'. The 6.44-MeV 02+ state
is predominantly (87'%%uo) 4fuu. The structure of the lowest
0 T = 1 state is 64.5'%%uo lhcat and 35.5%%uo 3M.

The P RO and R2 decays of the 0 and 2 states of
~sN are illustrated in Fig. 3. Results for the N(0 ) ~

0 120

WBN

0;0
Experiment

0+I0 16N

0..

T~ (2 7 1 3(2)s

FIG. 2. Comparison of partial WBN and experimen-
tal level schemes of O. The experimental energies and
spin-parity assignments are from Ref. [53]. The theoretical
levels were calculated with the indicated downward shifts to
the diferent nod components relative to the unshifted Ohcu

components. The centroid of the 1%v + 3~ shifts was set
so as to minimize the difference in excitation energies for the
yrast T = 1 odd-parity quartet. The other shifts were set as
discribed in the text. The levels included in the figure are
the lowest five 0+ T = 0 level, the odd-parity T = 1 quar-
tet, and all T = 0 odd-parity levels below 12-MeV excitation.
There is no WBN counterpart for the known predominantly
5~ experimental 1 and 3 states at 9585 and 11600 keV,
respectively. The experimental 0+ level at 11260 keV is ten-
tative [53]. We assume it does not exist.

0.485s

0.012 (4)% 0+ 6049

27.9 (5}% 0

160

FIG. 3. Experimental data for RO and R2 P decays of the
0 and 2 states of N. Each level is labeled by J and E
(in keV). The RO decay is labeled by the decay rate and the
R2 decays is labeled by the total half-life and the individual
branching ratios.
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TABLE VI. Results obtained from the (1+3)Lu ~ (0+2+4)hu calculations for N(0 ) ~ O(0+) RO P decay. The e,„~
were obtained from Eq. (6) using the experimental value of Ms~ = 58.4 + 1.1. The c~„were obtained using the calculated
matrix element M as discussed in Sec. III C with the [1—jp(3.93r„)] short-range correlation.

Interaction
WBP
WBN
WBP
WBN

WS/HO
HO
HO
WS
WS

Mo
49.9
56.6
41.7
48.8

a~S
10.01
9.49
9.37
9.36

Mo
—2.59
—2.26
—2.58
—2.26

P
~exp

1.69(2)
1.41(2)
1.98(3)
1.63(2)

P~mec

1.63
1.60
1.61
1.62

TABLE VII. Results obtained from the (I+3)Ku -+ (0+2+4)hu calculations for O(0+) ~ N(0 ) p capture. The c,"„p
were obtained from Eq. (6) using the experimental value of Ms" = 113.5 6 3.4. The e"„was obtained using the calculated
matrix element M as discussed in Sec. IIIC with the [1—js(3.93r„)] short-range correlation and the PCAC value of g~ of
Table III.
Interaction

WBP
WBN
WBP
WBN

WS/HO
HO
HO
WS
WS

a" MZ' 0

46.5
51.5
36.8
41.8

a" Ms
65.9
57.2
56.9
48.8

P
~exp

1.O2(7)
1.09(7)
1.54(9)
1.55(8)

~mec

1.60
1.59
1.61
1.59

TABLE VIII. Results obtained from the (1+3)hu ~ (0+2+4)fuu calculations for N(2 ) -+
0(0+) R2 P decay.

n
1

Expt
3.04(2)

1.09(18)

Interaction
WBP
WBN
WBP
WBN
WBP
WBN
WBP
WBN

WS/HO
HO
HO
WS
WS
HO
HO
WS
WS

M;(o+)
2.91
2.61
2.93
2.63
0.96
1.03
0.96
1.03

TABLE IX. WBN N(0 ) m O(0+) results for the Do (j,jy) and matrix elements of Eq. (12) calculated with WS wave

functions for the dominant line 6ve and HO wave functions for the other entries as discussed in the text.

vj,
Op 1/2
1p 1/2
Od 3/2
Os 1/2
1s 1/2
Of 5/2
Op 3/2
1p 3/2
Op 1/2
1p 1/2
Od 5/2
Od 3/2
Os 1/2
1s 1/2

7l jf
Os 1/2
Os 1/2
Op 3/2
Op 1/2
Op 1/2
od 5/2
Od 3/2
Od 3/2
1s 1/2
ls 1/2
Of 5/2
1p 3/2
1.p 1/2
1p 1/2

D."'(j'j 1)
0.0019

—0.0016
0.0504
0.0211
0.7857

—0.0062
—0.0424

0.0037
—0.0243
—0.0036
—0.0003

0.0013
0.0000
0.0169
Total

Ms(i'i s)
3.6473
0.0000
6.9739
3.6139

—3.1164
10.1179
6.9820

—4.4158
—3.1224

4.9370
10.1179
—4.4158

0.0000
4.9370

/tds(~~i f)
0.0069
0.0000
0.3515
0.0762

—2.4486
—0.0627
—0.2963
—0.0162

0.0759
—0.0178
—0.0030
—0.0057

0.0000
0.0834

—2.2564

MT (i'i ~)
—105.7247

—0.0187
—184.9045

105.8366
73.0472

—269.3061
185.8391
117.5352
—83.1269

—131.4311
269.3061

—117.5352
0.0187

131.4311

~T (i*is)
—0.1988
—0.0000
—9.3192

2.2310
57.3932
1.6697

—7.8870
0.4302
2.0216
0.4732

—0.0808
—0.1516
—0.0000

2.2199
48.8014
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sO(0+) RO P decay are given in Table VI and those for
the isO(0+) ~ N(0 ) RO p capture are given in Ta-
ble VII. As a further test of the wave functions, we com-
pare with experiinent [6,44] in Table VIII R2 results for
the N(2 ) m isO(0+) unique first-forbidden P decays,
which are simpler and better understood [13,32] than the
RO decays. For example, no appreciable mesonic contri-
bution to R2 transitions is expected. As in Ref. [13] the
good agreement between theory and experiment for these
R2 transitions provides some evidence for the correctness
of our wave functions.

The decompositions of Mo and M2 obtained with the
WBP interaction for the RO and R2 P decays to the isO

ground state into the four possible nfuu ~ (nial) Ku com-
ponents are shown in Fig. 4. The various n~ contribu-
tions follow the classic pattern found for deexcitation of
E1-like particle-hole configurations in a previous study of

first-forbidden decays in the A = 40 region [32]. In par-
ticular, the lou ~ Oku and 3hcu —+ 2k@ matrix elements
and the lhcu ~ 2k' and 3' ~ 4' matrix elements are
closely equal and the latter two are out of phase with the
former. The detailed composition of the JH0 of Eq. (12)
for the isN(0 ) ~ i (0+) P decay is given in Table IX.

V. RESULTS FOR C Be, AND C P DECAY

In this section we will only consider results obtained
with the WBN interaction using the gap method and
mixed WS and HO single-particle radial wave functions.
We will confine our comparison of experiment and the-
ory to a quotation of the Mo and the value of e~„, which
when combined with the calculated Mo reproduces ex-
periment. In all three cases, the calculated e~„dier
negligibly &om that calculated for N decay.

~

"O(0+) & 0.057i0h~ & + 0.657i2hu) & + 0.369i4hcu &
A. »C(-,'+) -+ "N(-,' )

Mg jO'inO'fnT

I'6N(0 ) &

!"O(0+) &

M„/o.„,ey„

60.7 — 11.9 + 49.5 — 14.1

0.843I16~ &

1r

0.538I3h~ )

4.28 — 0.88 + 3.51 — 0.96

0.657IOhu -6 0.657I2hu) & + 0.369I4hu &

The dimension D(J = 2) of the J-inatrix for the T

2, J =
2 states of C is 2369 in the four-shell

(1+3)hu znodel space. For the T = 2, J =
2 states

of N D(2) is 23762 for a (0+2+4)he@ calculation and
265 for a (0+2)ko calculation. We can easily manage
the isC (I+3)hu and isN (0+2)her calculations but the
(0+2+4)hu calculation is beyond our present resources.
An attempt to truncate the isN (0+2+4)hu calculation
by restricting the 4hu part to 4p-4h (4 particle —4 hole)
excitations between the Op and 180d shells failed because
the low-lying states in this truncation were highly spuri-
ous. This is in contrast to similar calculations performed
for the 0+ states of isO [13]and i2C [21]. (The low-lying
0+ states in the latter calculations were nearly spurious
free. ) However, the importance of the 4hu component
in the 0 ground state suggests a similar importance in

N and we would like to include an estimation of its ef-
fect. Thus a (1+3)fuu -+ (0+2)hu calculation was made
with the effects of adding a 4~ term to N estimated by
assuming the same amplitude of 4k' in the N ground
state as in isO (see Fig. 4) and assuming

I"N(2 )

$ I

0.843I1h~ &

I P

0.538I3

M(3k' m 4hz) = M(3~ m 2k'),
M(lb' -+ 2hu)
M lb' -+ ORu

(21)

(b)

FIG. 4. Schematic showing; the contributions of n~ ~
(n+1)hem transitions to the N ++ 0 RO Mo matrix ele-
ment in the 0 ++ Oi+ transition (a) and the R2 M2 matrix
element in the 2 ++ Oi transition (b). Both are calculated
with WS wave functions and the WBP interaction. o,;„and
nf„are the amplitudes of the various hen components in the
initial and 6nal states, respectively.

where M[(n 6 1)ku -+ nhcu] is the specific component,
such as in Fig. 4, of either M0+ or Mo . Thus Eq. (21)
quantifies our observations on. the systematics of Fig. 4.

A value of A3~ ———8.50 MeV was determined for the
C (1+3)hen calculation by a least-squares matching to

the eleven experimental even-parity A = 15 T =
2 energy

levels for J & 2 states below 11 MeV, the yrast T =
2

2+, and 2 states, and the yrast T =
2

'2' state- The
value of A2~ used in the N calculation was determined
as —8.30 MeV Rom a similar consideration of the A = 15
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odd-parity spectrum.
The results are Mp ——27.66 fm, M() ——1.53 fm, e~„

= 1.54 + 0.04 (uncertainty &om experiment only).

11Be(&+)~ 11'(& )

The calculation for Be(z ) -+ iiB(z ) follows the

procedure just described for isC(z ) -+ isN(z ) with
the reliance on the (0+2+4)bur isO 0+i wave function
in the latter case changed to a similar reliance on the
(0+2+4)hu i C Oi wave function. The D(z) for the
(1+3)fun ~ (0+2)fun calculation are 5674 and 1063, re-
spectively. Little of a definite nature is known about the2' and 3hcu states of B and Be. Thus the values of

and A3~ used in the calculations were assumed to
be equal and were obtained by linear interpolation be-
tween values found for OB, ~C, and 5N. The resulting
value is —4.00 MeV.

The eKect of the 4~ component in B was consid-
erably less than the similar effect in isN simply because
the izC ground-state wave function has only 1.86% 4hz
as opposed to 13.6% in O.

The results are Mz ——14.05 fm, Mz ——1.10 fm, e,„
= 1.56 + 0.08 (uncertainty from experiment only).

C. isC(0+) -+ 'sN(0 )

After considering isC(0+) + isN(0 ) in detail we con-
clude that the calculated matrix elements are unusually
sensitive to the details of the calculation and thus not
suitable for a determination of e~„. To understand this,
first consider the simple 2~ -+ lb' calculation of Table
V. In the case of C the reduction of the Mg in go-
ing from the simple single-particle configuration to the
major-oscillator configuration is unusually large and in-
teraction dependent, because of the competition between
the Odz/& and 1sy/g configurations in the C ground

state. As a consequence of this, the configuration in C,
which is responsible for the destructive v0d3/Q M 7l0p3/Q

term (but which accounts for only about 0.3% of the isC
wave function), results in a 50% reduction of the matrix
elements.

Now consider the mixing of 2~ and 4~ components.
A (2+4)Fuu calculation —which has D(0+) = 4055 —was
performed. The same decrease of the Op-180d energy gap,
3.5 MeV, for the T = 2 0+ states was used as was applied
for the T = 0 0+ states. We find the first 10 states (ie.
all that were exainined) to be )44% 47uu with, e.g. , the
ground state being 55% 2Ru and 45% 4hcu. The (Oi, 2)
excitation energy in ~ 0 was 22.2 MeV as compared to
the experimental value of 24.52 MeV. The prominance
of the 4k' component may seem surprising at first sight;
however, if a weak-coupling approximation such as that
of Bansal and French [37] is used to estimate the binding
energies of C 0, and C 0, one finds that these
energies are nearly degenerate so that which lies lowest
and the energy gap between them depends on the details
of the interaction. Thus it is not surprising that the

(2+4)hei mixing is large and unusually sensitive to the
details of the calculation.

Because of these sensitivities we believe that the C
decay is primarily a test of the wave functions and does
not provide a good measure of the mesonic-exchange-
current enhancement. This extreme wave function sen-
sitivity for C also applies to similar RO decays of N
and Ne [38]. We do not consider this decay any further
in this study.

VI. DISCUSSION AND SUMMARY

We comment first on the value of the enhancement
factor for timelike axial-charge matrix elements deduced
&om a comparison of the impulse approximation with
experiment, e,„.It is evident from Tables VI and VII
that the value of e,„ is strongly dependent on the single-
particle radial wave function used to describe the v08&/~
m +Opal/q transition. The WS result is strongly preferred
since it provides the most realistic estimate of these ra-
dial wave functions. The HO results are included to give
some indication of the sensitivity of the results to the ra-
dial form. We will not consider the HO results further.
Likewise, the results of the WBN interaction are strongly
preferred over those of the WBP interaction for the rea-
sons stated in Sec. II. Again, the WBP results are listed
to give an indication of the sensitivity to the shell-model
interaction and will not be considered further.

In addition to the dependence on single-particle wave
functions and shell-model interactions, there is a further
dependence we have not yet considered; namely, the de-
pendence of the p, capture rate on the pseudoscalar cou-
pling constant g~ (see Appendixes A and B). For the
WBN interaction with WS wave functions the depen-
dence on gz can be expressed as

e",„=1.55 + 0.085(g~ —6.939). (22)

In the evaluation of the P RO matrix element Mo~ the
contributions of M() and M& add destructively while
they add constructively in Mo" [see Eq. (6)]. This relative
phasing results in less model dependence for the deter-
mination of e,"„ than for that of e~„and it has often
been asserted that, for this reason, p capture provides
a considerably more reliable determination of e,„~ than
P decay. However, the uncertainty in g„(see Appendix
B) completely negates this conclusion; from Eq. (22) we

see that the range of g„of 7—12 allowed by analysis of
radiative p capture (see Appendix B) corresponds to a
range in e,„~ values of 1.55—2.00 a range large enough
to offset the aforementioned advantage.

Our adopted value for e „p follows from a consideration
of the results for the three P decays that were analyzed.
The average of the three results (1.54 + 0.04, 1.56 + 0.08,
1.63 + 0.02) quoted for e,„~ is 1.61 +0.03 and this is the
result we shall adopt. We note that the p capture result
of 1.55 + 0.08 (for the PCAC value of g~) is in good
accord with this value especially if the small difFerence
between e~, and e~, of 0.02 is added to the e"„value.

The previous most ambitious calculation of the pro-
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cesses in question were the (1+3)her -+ (0+2)hu calcu-
lation of Warburton [45] for the four P decays of Table
II and the (1+3)Ru ++ (0+2+4)Fur results of Haxton and
Johnson [20] for the ~sN(0 ) ++ ~sO(0+) P and p, pro-
cesses. The calculations of Warburton [45], using the MK
interaction, result in an average e~„of1.64 for the decays
of Table II, in good agreement with the present result of
1.61. Haxton and Johnson obtained results very close to
the present results given for the WBP interaction with
WS wave functions [46]. This is not surprising to us since
we had found that the V2~ derived &om the Kuo bare
G matrix [23] —the V2~ of the MK interaction used
by Haxton and Johnson —has quite similar properties
to the V of the WBP potential. It is the change to
the Bonn potential for V2~ that gives us a substantial
improvement in the agreement of experiment and theory.

The theoretical values for the enhancement factors,
e~ „and e"„,calculated ft. om a meson-exchange model
in the soft-pion approximation are very close to our
adopted experimental value and show very little model
dependence varying from 1.60 to 1.63 and 1.59 to 1.61,
respectively, depending on the choice of interaction and
single-particle wave functions. This insensitivity has
been noted previously in work on parity nonconserving
interactions [47] and follows because the two-body matrix
element can be represented quite well by an effective one-
body matrix element proportional to cr ~ p —and thus
to Mo —consequently the ratio of the two-body to one-
body matrix elements is not sensitive to nuclear struc-
ture. However, as discussed by Towner [39], the results
Erom meson-exchange models are dependent on the choice
of a short-range correlation function. This is particularly
true for the short-range operators discussed in [39] origi-
nating in heavy-meson exchange. In this paper, we have
only considered the long-range pion-exchange operators
evaluated in the soft-pion approximation for which the
sensitivity to SRC is somewhat less. Some sample calcu-
lations are given in Table IV. For the all-important vlaqy2
-+ mOpqy2 transition the use of the 8(r„—0.71) form re-
duces e „by a factor 0.96 compared to the 1—jp(3.93r„)
form and the other transitions in this table have similar
ratios. In the full calculation for both P decay and p
capture (a = p, p), the reduction factor is 0.95—0.96. In
what follows we will only discuss calculations using the
SRC function g(r„) = 1 —jp(q r„) with q, = 3.93 fm
[39].

As discussed above and in Appendix 8, the p capture
results depend on the pseudoscalar coupling constant, g„.
This dependence overs the opportunity to extract a value
for g~ from a comparison of the p and p results. For
the WBN interaction and WS wave functions with the
1—jp(q, r„) SRC —our preferred selection —the adopted
value e~„= 1.61 + 0.03 (which we assume to yield e,"„
= 1.59 + O.Q4) and use of Eq. (22) leads to g„= 74.
+ 0.5 consistent with the PCAC value. Note that the
uncertainties assigned to e „~ and g„reQect experiment
only and do not include any estimate of the uncertainty
associated with the theoretical analysis.

Finally we coxnpare these results for the A = 16 mass
region with our recent results for the A = 132 [2] and
A = 208 [3] regions. As noted in Sec. IIIB the calcula-

e,„p(A = 208) —1

e,„p(A = 16) —1 ' (23)

which for weak tensor forces has a value 1.30 6 0.10 and
for strong tensor forces a value 1.49 6 0.11. The cal-
culated value of this ratio Rom meson-exchange models
obtained by Towner [39] is 1.38, which is approximately
midway between the experimental results obtained as-
suming weak and strong tensor forces. There is still some
room for further sources of enhancement in the heavier
nuclei such as medium modification of the nucleon mass
and of the pion-decay constant used in the soft-pion ap-
proximation as proposed by Kubodera and Rho [50] on
the basis of a scaling in the effective chiral Lagrangian
discussed by Brown and Rho [49]. But the compelling
need for such an alternative explanation that was thought
present a few years ago now appears to be absent.
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APPENDIX A: p, CAPTURE

Nozawa, Kubodera, and Ohtsubo [24] —referred to as
NKO —developed an approach to p, capture on 60,
which can be used with numerical solutions of the Dirac
equation. In this appendix we wish to make the bridge
between the p capture formalism developed by NKO
and numerical results found by combining their solution
of the Dirac equation with our shell-model wave func-

tions in the heavier mass regions are further complicated
by the need to introduce core-polarization corrections.
These corrections depend sensitively on the strength of
the residual interaction used in their evaluation and in
particular on the strength of the tensor force which, ac-
cording to Brown and Rho [48], is liable to medium mod-
ifications similar to those proposed for the pion-decay
constant [49,50]. With a weak tensor force, the enhance-
ment factors deduced are e~„(A = 132) = 1.82 6 O.Q7

and e~„(A = 208) = 1.79 + 0.04. With strong ten-
sor forces, values of e&„some 10% larger are obtained.
Thus there is clearly more enhancement in heavy nuclei
than in light nuclei, which are characterized by our cur-
rent value e,„~(A = 16) = 1.61 + 0.03. To quantify the
mass dependence we define a ratio
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tions. In essence this means we will give explicit expres-
sions for the radial dependence of the matrix elements,
which will then be evaluated by numerical integration.

Our expression for the p capture rate [Eq. (1b)] is

"(')l' '"(") lM;l. (A1)
27r 1+ur/Mf Ace g&(0)

10

G('(.) = ) ~ ."
n=o

10

F",(.) =) b„r",
n=o

(A7)

with the coefficients given in Table X.
The Foldy-Wouthuysen transformation to first order in

1/M~ leads to a one-body operator for p capture given
by [24]

In order to evaluate relativistic effects, NKO applied a
Foldy-Wouthuysen transformation first to order 1/i'~
and then to order 1/M)2v. They showed that the terms
of order 1/M)2v contribute 2'%%uo (constructively) to the

p capture matrix element M0. We will calculate A„ to
first order in 1/MN but include a multiplicative factor
of C~ (=1.04) in Eq. (Al) to compensate for the 1/M~~

term in our evaluation of M0 .
In Eq. (Al) i/i, (0)l is the probability of finding a K-

shell muon at the origin and is just 1/4m times the square
of the large component of the muon wave function G i(r)
evaluated at r = 0. For a point nucleus [11]

(r) = [G—i(r) ji(~r) + F—i(r) jp(~r)]
2

(A9)

&+(r) = [G-i(r)jp(~r) + F-i(r) ji(~r)l
2

(A10)

and operators

1„"= [iA. rL+(r) + Apd (r) +iAl:+(r)]r (A8)

with radial functions

G(~)() ( +~) ' -i(2q ),
.I'(1+ 2p)

(A2a)

iA. r" = —ggo' r",

Ap ——ig~cr P/2M)v,

(A11)

(A12)

F(i ) („)
~Z G(i ) („)—1 1+ —1 (A2b) A = m„G„0' k/2MN. (A13)

- 1/2
(m„+ E„)(m"„—F.„) E„=m"„p, (A3)

where F i (r) is the smaller component of the muon wave
function and p = [1 —(nZ) 2] i~2. When appropriate,
we use the superscripts (p) and (g) on G i and F i to
denote a point nucleus and a nucleus with a Gaussian
charge distribution, respectively. In Eq. (A2)

Here jp(~r) and ji (~r) are sPherical Bessel functions reP-
resenting the neutrino wave functions. Note that P and
k depend on the momenta of the initial and final nu-

cleons, P = p;+ py and k = p, —py, which occur in
combination with radial functions l:(r). In the Fourier
transform to coordinate space these momenta transform
into derivative operators according to the replacement
rules

where E„ is the energy eigenvalue for the K shell for a

point nucleus. The approximation often used for G("i) (r)
1S

0
PC(r) m —ir —Z(r) —2id(r)V,

([9T
(A14)

G",(r): 2(nZm")'~' (A4)
t9

kC(r) m ir C(r)—
Bp

(A15)

Thus we take the probability of finding the muon at the
origin (in the unit volume As&, ) to be

Then, upon evaluating the partial derivatives, we find

l&i (r)l.=p =
4

[G-i(o)l' = (~Zm", )'&z—

where Rz is a correction evaluated by solving the Dirac
equation for a realistic extended nuclear-charge distribu-
tion.

We use NKO's solution of the Dirac equation. These
authors used a Gaussian charge distribution p(r) given
by

p( ) = p. [1+ ( / .)'I (A6)

with r0 ——1.83 fm and a = 1.45. This charge distribution

gives G i(0) = 0.91688 and large and small components
of the muon wave function, which are well reproduced by
the phenomenological power expansion

0
1
2

3
4
5
6
7
8
9

+ 9.16882[—01]
+ 3.56365[—06]
—4.51773[

—03]
+ 1.06662[—04]
—5.80056 [

—05]
+ 7.30971[—05]
—2.20053[—05]
+ 3.29970[—06]
—2.76786 [

—07]
+ 1.24699[—08]

6„
+ o.ooooo[-oo]
—8.29499[—03]
+ 3.49933[—04]
—3.02963 [

—04]
+ 3.88561[—04]
—1.4O78O[-O4]
+ 2.59785[—05]
—2.77866[—06]
+ 1.73880[—07]
—5.87474[—09]

TABLE X. The power-series coefFicients of Eq. (A7) that
reproduce the Dirac wave function for the charge distribution
of Eq. (A6) with an absolute error ( 5 x 10 for r ( 10 fm.
The numbers in square brackets are powers of 10.
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J "= "M — "MT 0 S 0 (A16)

expressions for the full matrix element evaluated to order
I/M~. In terms of the operators defined in Eq. (1) and
the normalization imposed by the expression for the p
capture rate in Eq. (Al), the one-body operator becomes

3J~ b s"(simple) = jo(ur)Mo +g„—jq(ur)Mo .(A22)

The terms in h, u(r) and h~, g, (r) give small contribu-
tions (& 2%). As pointed out by NKO, the g, u term
gives a contribution of order 10%.

with

nT,
—— [G z(r) jo(~r) —F q(r) j&(~r)], (A17)

G g0

APPENDIX B: PSEUDOSCALAR COUPLING
CONSTANT

1
[[glarge + blarge(r)]G —1(r)gl(~r)rG g0

+ [gsmall + ~small( )]F—1(r)20(~ )]~

(A18)

For semileptonic weak processes, the V —A structure
of the weak interaction is modi6ed by the induced weak
currents that arise from the presence of the strong inter-
action. For the axial current one common parametriza-
tion is

where in our notation Mo and Mo are equivalent to
NKO's notation —M~ O' V r and o' r r . In Eq.
(A18)

3
gears, = —g„= 1 — (g„—1) = 0.6969,

2MN

1
g, u = 1+ [2m„(g„—1) + (u(g~+ 1)] = 2.0753,

2MN

1
b( g.(r) = [V(r) + EJr](& + 1),

2MN

—1 4
h, u(r) =

M [V(r) + EJr](& —1) + (gs, + 1) , —
2MN r

and g~ = m„G~(q2)/g~(q2) is the pseudoscalar coupling
constant. In these expressions, E~ is the K-shell p,

binding energy [:—(1 —p)m„ for a point nucleus], and
V (r) is a potential evaluated from the charge distribution
used to calculate G q(r) and F q(r). The potential is

1 7 OQ

V(r) = — p(z)z2dz+ p(z)zdz
T 0 1'

(A19)

with

f p(r)dr = uZ.
0

(A20)

The approximate solution designated "simple" by
NKO corresponds to the limits

G g(r) m G g(0),

F q(r) m 0,

V(r) + Elc m 0.

"simple" solution (A21)

We have arranged the terms in Eqs. (A17) and (A18)
so that it is easily apparent that in this limit Eq. (A16)
reduces to

G„(q')= &u (pf) gA(q')7, 7s — "M qis d7. u(p') —,
2M )

(Bl)

where the strong interactions have renormalized the
axial-vector coupling constant g~(q ) f'rom a bare value
of unity and introduced a pseudoscalar term with cou-
pling constant G„(q2). Here u(pf) and u(p;) are spinors
representing the 6nal and initial state nucleons, q is the
momentum transfer, and ~ is the Pauli isospin matrix
with the superscript a representing the Cartesian index
z +iy. If, additionally, a constraint is imposed on Eq.
(Bl), namely, that the axial current shall be partially
conserved, the PCAC condition, then a relation between
G~(q ) and g& (q ) can be established.

One model for the weak axial current of a nucleon,
that satis6es by construction the PCAC condition, is
one of meson dominance discussed by Towner [39]. In
this model, the g~ term in Eq. (Bl) originates in the
axial current being mediated by the A~ meson in its
interaction with a nucleon, while the G„ term is medi-
ated by the m meson. The chiral Lagrangian that is used
to describe the meson-nucleon interaction preferentially
chooses pseudovector coupling for vrNN vertices. Hence
there is a pseudovector form, q„fIps, to the G„ term in
Eq. (Bl). However for on-mass-shell nucleons, the use
of the Dirac equation can transform this equation into
one with pseudoscalar coupling, q„p5. Using this meson
dominance model, Towner [39] obtains

2Mg~(q') (I m.'l
q2+ m2 ( m2~)

(B2)

The last factor, which tends to unity in the limit
m /m~ ~ 0, is not usually present in the literature. To
get this result &om the chiral Lagrangian the Weinberg
relation is used relating the Aq-meson mass to the p-
meson mass: m& ——2m . With an experimental p-meson
mass of 768.1 MeV, this leads to an Aq-meson mass of
m~ ——1086.3 MeV. On the other hand, neutrino-nucleon
scattering analyzed using g~(q ) = g~(0)mz/(mz + q )
deduce that m~ 950 MeV. Thus there is some small
uncertainty on the precise value of m~ to use in Eq. (B2).
We will take m~ ——950 MeV and use for the nucleon and
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pion masses their isospin averages to obtain for the di-
mensionless quantity

m„Gp(q2) 2Mm„ f m2 )
gg(q2) q2 + m2 ( m2~ )

for q = 0.8m„. This is the value recorded in Table I.
The pseudoscalar coupling constant, g~, is the least

well measured of all the nucleon weak-interaction cou-
pling constants. Its value in Eq. (B3) typically repre-
sents a &ee-nucleon value and could be modified when
that nucleon is embedded in a nuclear medium. The
most promising way to determine gz experimentally is
in radiative p, capture [51]. The branching ratio for
radiative p, capture relative to ordinary (nonradiative)
p capture is particularly sensitive to gz. However the
extraction of g„&om nuclear radiative p capture mea-
surements requires a model calculation of the inclusive
nuclear response function and this piece of the deter-
mination is not yet under good control. For example,
the most precise measurement for the 0 branching ra-
tio [51] yields values of g„= 7.3 + 0.9, 9.1 6 0.9, and

13.6+ 1.9 when compared with three different recent cal-
culations of the nuclear response. Nevertheless there is
a hint here that the value of gz in 0 is larger than the
PCAC value, Eq. (B3). A similar statement can be made
for C. For heavier nuclei, analyzed using a Fermi-gas
model calculation of the nuclear response, the indication
[51,52] is that gz falls below the PCAC value and even
quenches to zero for nuclei as heavy as Pb.

For 0, there is an alternative way to obtain g„;
namely, from the first-forbidden 0 to 0+ P transition
from N and the inverse p, capture on 0, the reac-
tions under study in this paper. Gagliardi et al. [8] using
the model calculations of Towner and Khanna [27] de-
duce gz ——11 + 2. This result is model dependent. Note
that our evaluation —given in Sec. VI —which essen-
tially repeats this analysis but using here much improved
wave functions, results in the quite different g„= 7.4 6
0.5. Because of the model dependence involved, we have
decided in this paper to quote results using the PCAC
value of g~, but give sufBcient details —such as Eq. (22)—that the results can easily be modified for different
values of g„.
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