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Microscopic description of the beta delayed deuteron emission from sHe
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The beta delayed deuteron emission from He is studied in a dynamical microscopic cluster
model. This model gives a reasonably good description for all the subsystems of He and Li in a
coherent way, without any free parameter. The beta decay transition probability to the Li ground
state is underestimated by a few percent. The theoretical beta delayed deuteron spectrum is close
to experiment but it is also underestimated, by about a factor of 1.7. We argue that, in spite of their
difFerent magnitudes, both underestimations might have a common origin. The model con6rms that
the neutron halo part of the He wave function plays a crucial role in quenching the beta decay
toward the a + d channel.

PACS number(s): 23.40.Hc, 21.60.Gx, 27.20.+n

I. INTRODUCTION

In the past few years the large amount of experimen-
tal data which have been accumulated on the structure
and reactions of unstable nuclei revealed the existence
of a neutron halo structure in nuclei with a large neu-
tron excess [1,2]. The best known of these nuclei is Li.
However, there are ambiguities in the theoretical descrip-
tion of this nucleus mainly because few Li +n scattering
data are available, and because the Li core is soft [3].
Fortunately, these problems do not occur in the case of
the other prominent neutron halo nucleus, He. Sophis-
ticated calculations exist which can account for several
properties of He [3—7).

One of the most surprising features of He is the very
small Gamow-Teller (GT) beta decay branching ratio
toward the n + d continuum channel. The P delayed
deuteron emission from He was first observed in Ref.
[8], and the measured branching ratio (2.5 + 0.5) x 10
is two orders of magnitude smaller than the result of a
phenomenological analysis of the decay process in terms
of an 8-matrix formalism [8]. Later an experiment with
higher statistics resulted in a new value (7.6 +0.6) x 10
[9]. Even this larger value is overestimated in a potential
model [10] and in a three-body o. + n + n model [11].

A semimicroscopic model [12] shows that the smallness
of the branching ratio is the result of a cancellation, tak-
ing place between two parts of the GT matrix element,
which have different signs. The "internal" part comes
from the typical nuclear regions (r ( 5 fm) of the He
and o. + d wave functions. The "external" part comes
from the 5 fm ( r ( 20 fm region. The importance of
the latter part is a clear consequence of the halo struc-
ture in He. In that semimicroscopic model, the He
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initial state is described with a six-nucleon microscopic
wave function but the final state is treated in a potential
model. This hybrid treatment is Qexible enough to reveal
the quenching mechanism of the branching ratio. How-

ever, its agreement with experiment is probably partly
fortuitous because the results are very sensitive to model
assumptions. In Ref. [10] the branching ratio is overesti-
mated by an order of magnitude because the assumption
of a pure o. + dineutron configuration enhances the "ex-
ternal" part of the GT matrix element. In Ref. [11] the
overestimation is reduced because of a much more real-
istic description of He but the treatment of the o. + d
scattering state is not consistent with the treatment of
the He ground state.

Clearly, an accurate and consistent description of this
process is desirable. However, obtaining reliable results
requires that the following conditions are met. The model
must reproduce in a realistic way (i) the deuteron binding
energy and size, (ii) the low-energy n + n phase shifts,
(iii) the a + n scattering, (iv) the a + d scattering, and

(v) the He binding energy and size. In addition the
analysis of Ref. [12] indicates that (vi) the halo must be
well described up to distances as large as 20 fm. In this
paper we calculate the P delayed deuteron spectrum in
a fully microscopic model. We try to use a parameter
free model without any ad hoc model assumption. With
the Minnesota interaction conditions (i)—(iv) are fulfilled

[13,14] and a good He wave function satisfying (v) is
available [7] although the basis has to be enlarged to meet
(vi). The fact that a few percent error in the model at
typical nuclear scales can modify the order of magnitude
of the final result, as is pointed out in Ref. [12], calls for a
test example which is sensitive to the details of the wave

functions only up to less than 10 fm. Our test case will

be the P decay transition to the ground state of Li.
The model is recalled in Sec. II. The results are de-

scribed and discussed in Sec. III. Conclusions are pre-
sented in Sec. IV.
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II. MODEL

dw
dE 4 Gp f (Q —E)BGT(E),

where m is the electron mass, v is the relative velocity
between o. and deuteron, and Gp ——3.002 x 10 2 is
the dimensionless P decay constant. The phase space
factor, or Fermi integral, f depends on the kinetic energy

Q —E available for the electron and antineutrino. The
mass difFerence Q between the initial and final particles
is 2.03 MeV. The maximum total energy (including mass
energy) is Wo ——2.54 MeV. The GT reduced transition
probability reads

The P delayed deuteron emission probability per time
and energy units, dW/dE, can be expressed [15,12] as

where 4 " and O' H' are the microscopic wave functions
of the o;+ d scattering state and of the He ground state,
respectively (we shall specify them later), t~ and cr~ are
respectively the isospin operator and Pauli spin matrices
of nucleon j, and A = 1.26 is the ratio of the axial-vector
to vector coupling constants. The half-life ti~2 for the P
decay to the ground state of Li is calculated with

(ftiy2) = (21n2)vr (mc /h)G&BGT(g s ), . .

where BGT(g.s.) is given by

BGT(g.s ) = ) I(@J'I I ).t'-~'„
I

@JM&I2J+1 MM'p g=1

(4)
2 6

BGT(E) = ): I(@~"~ I ).t'-~,'I @~M')I'2J+1 MM'p g=1

(2)

In Ref. [7] a microscopic dynamical model has been
developed for the description of the ground state of He.
In the present work we use the wave function of that
model

e He & a(nn) n(an) tt@JM ) ~ S,(lyly)I + )~ S,(lyly)L +
S,l1,lg, I S,l1,lg, L

N —1).+{I@.'W"@"))s&;II,i, lr, (& & ( )~
S,lg, lg, L i=0

N —1

+ ) ).+( Io"(o'@")Is&'[I,r. ]r, b & to )),„j
S,l1,lg, L =0

+ ).&(.[c"@']sr'I',(pu), M).
S,L

Here A is the intercluster antisymmetrizer, the p vec-
tors are the difFerent intercluster Jacobi coordinates, and

[ ) denotes angular momentum coupling. While C" is
a neutron spin-isospin eigenstate, 4 is the antisym-
metrized triton internal state in the harmonic oscillator
shell-model with a single oscillator parameter. The anti-
symmetrized ground state (i = 0) and monopole excited
states (i ) 0) of the n particle are represented by the
wave functions

N

4; =) A;~P$, i=0, 1, ..., (N —1),
j=1

where P is a translation invariant shell —model wave
Pg

function of the a particle with size parameter P~ and the
A,~ parameters are to be determined by minimizing the
energy of the n particle [16]. Similarly the size parameter
of the tritons is determined &om the energy stabilization.
We choose the same parameters for the wave function as
in Ref. [7] with N = 3. The following SI terms are in-
cluded in the S, (lilz)1 coupling scheme for the J = 0+
ground state of He: (a(nn);0(00)0}, (n(nn); 1(11)1},
(n(nn); 0(00)0}, (n(an); 0(l1)0}, (n(an); 1(11)1}, and
(tt, 00}. Putting (5) into the six-nucleon Schrodinger
equation, we arrive at an equation for the intercluster

relative motion functions y. These functions are ex-
panded in terms of products of tempered Gaussian func-
tions exp( —p;p2) [17] with different ranges p, for each
type of relative coordinate. The expansion coefficients
are determined &om a variational principle.

The Minnesota force [13] with an exchange parameter
u = 0.92 and a slightly modi6ed spin-orbit component
(see Ref. [7]) reproduces very well the experimental phase
shifts of all the N+N and a+N scattering states which
take place in (5) [7]. After this force choice there remains
no free parameter in the model. This model gives for

He an ot. +n+ n three-cluster separation energy of 0.961
MeV, i.e., practically the experimental value 0.975 MeV.
It was pointed out in Ref. [7] that this value could not
be reproduced without the t + t component. As the GT
matrix element is sensitive to the details of the He wave
function up to 15—20 fm in the p („„lcoordinate [12], our
wave function should be correct in this region. To achieve
this, we enlarge the number of basis states which describe
large p ~„~ separations in such a way that the range
of our last basis functions is 20 fm in these relative
motions.

To be consistent, we must employ the same model pa-
rameters in the description of the o. + d bound. and scat-
tering states as for 6He. For example, the use of a difFer-
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ent nucleon-nucleon interaction for o, +d would afI'ect the
product of the spatial parts of the He and o, + d wave
functions and modify the balance between the different
parts in the GT matrix element, and could lead to inaccu-
rate results. The Minnesota force reproduces the N + N
effective range parameters in the triplet even partial wave

by assuming a pure Sq state, i.e., without tensor cou-
pling with a D state. However, if a tensor force were
taken into account in addition to the Minnesota force,
it would play a very large role in this partial wave in a
coupled Sq Dq-description [18]. This means that if a
pure Sq state reproduces the experiment, then the effec-
tive interaction in this partial wave is too strong. As was
pointed out in [7], the Minnesota interaction overbinds
the ground state of Li by 1.2 MeV when all possible an-
gular momentum configurations are taken into account.
To avoid this, we keep only the L = 0, S = 1 configura-
tion. The error we make with this truncation is accept-
able because only a 5% I, g 0 component [19] in sLi
is neglected, but in compensation the asymptotic form
of the wave function is more realistic. The contribution
to BGT from the He (L = 1)~ Li transition would be
negligible ( 0.1%) since the GT operator only connects
states with the same L. However, because of the lack of
the L = 1 component, the weight of the L = 0 component
is increased so that BGT might be overestimated by 5%
although the variational principle might partly compen-
sate this effect. Also the presence of I g 0 components
in the Li wave function might slightly shift the posi-
tions of its nodes. The importance of these errors can be
estimated from the calculation of BGT(g.s.).

After these choices, our Li wave functions read with
L=O, S=1, and J =1+,

(7)

for the ground state, and

state 4o" with —2.20 MeV energy and 2.1 fm (point nu-

cleon) rms radius, and four pseudostates 4, , are included
in (7) and (8). Because the distortion of the a particle is
weak in scattering processes, we describe it with a single
stabilized size parameter. Using the same force as for
He, the ground state of Li described by (7) provides

the experimental o. + d cluster separation energy of 1.47
MeV. It is remarkable that we can reproduce both the
Li and He ground states with the same force in this

model. Notice that other configuration choices underes-
timate the binding energy. (i) Without the t+sHe com-

ponent, Li is underbound by more than 0.5 MeV. (ii)
This result is not improved by n distortion. (iii) With
a distortion and the t + He component, Li is also un-

derbound but by the smaller value 0.24 MeV; the role of
t+ He is weakened because of a higher threshold. For
the purpose of tests described below, it is interesting to
have another wave function reproducing the experimen-
tal Li energy without the t+ He component. This can
be achieved by re6tting the exchange mixture parameter
to the value u = 0.97.

The scattering states are calculated from a Kohn-
Hulthen variational method for the S matrix, which uses
square integrable basis functions matched with the cor-
rect scattering asymptotics [17]. To make the calcula-
tions numerically stable, the matching radius must be
chosen in the 10—15 fm region. In order to calculate BGT
analytically up to 25—30 fm, the scattering wave function

g coming from the variational method is also expanded
in terms of square integrable tempered Gaussian func-
tions. The squared deviation between g and this expan-
sion is variationally minimized up to 40 fm and becomes
less than 10 . The L = 0 ct + d phase shifts in the
E = 0.1 —5.0 MeV relative center-of-mass energy re-
gion are compared with experiment [20] in Fig. 1. They
agree within 0.1 with those obtained with the potential
of Ref. [21], which is fitted to experiment. Putting the

H L'', and 4' "(8)wave functions, coming from the
variational calculations, into (2) and (4) we can compute
the desired BGT and BGT(g.s.) matrix elements. All

calculations are performed analytically by the aid of a
symbolic computer language.

(8)

200

for the scattering states (h = He), where F is the n + d

relative motion energy in the center-of-mass frame. The
normalization of g is chosen consistently with (3) as

tg
(D~ 100—

go "(F- ~.~) ~ &«(~.~)p.~

x Fp kp~g cos b + Go kp~d sin 6

(9)

50—

if p g —+ oo, where k is the wave number, Fo and Go are
Coulomb functions, and b is the 8-wave phase shift, at
energy E.

The deuteron cluster being very distortable we use 6ve
basis states (%d = 5) for its description. The ground

2 3

E, (MeV)

I"IC. 1. o. + d phase shift for the s wave obtained with the
microscopic wave function 4&M [Eq. (8)]. The experimental
points are taken from [20].
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Comparing our model to the previous theoretical mod-
els [10—12] we can say the following. A common draw-
back of those three models is that the o. + d scattering
states are obtained &om an o. + d nucleus-nucleus po-
tential. Although this nonmicroscopic potential model
reproduces the correct a + d phase shifts, the inner part
of the scattering wave functions is not well established.
It may not be consistent with the He description. In
Ref. [10], sHe is represented by a pure u(nn) configu-
ration. The dineutron component is therefore overesti-
mated in the He wave function, and hence in its halo
part. Consequently, the external part of the GT matrix
element and BG~ are too large. In Ref. [11], the results
are rather insensitive to the use of an attractive or a re-
pulsive interaction in the 8 wave, which both reproduce
the phase shifts. This insensitivity is rather surprising
because phase-equivalent potentials usually do not lead
to the same results for off-shell effects [22]. As we can see,
e.g. , in Fig. 3 of Ref. [11], the repulsive potential does
not produce an internal node in the o. + d wave function,
while the attractive potential produces such a node (Fig.
2 of Ref. [10]). Therefore, the GT matrix elements with
the He wave function should be very different from each
other. This effect is probably hidden by the orthogonal-
ization procedure adopted by the authors of Ref. [11].
In Ref. [12], the sHe wave function is not totally free
for the variational method: In the halo, the spatial part
is restricted to small interneutron distances. As the in-
teraction, employed there, does not reproduce correctly
the n + n scattering and binds the dineutron, it might
distort the halo in a larger variational space. Moreover
neglecting the 15% L g 0 component in that wave
function leads to an enlargement of BGp. Finally, using
a microscopic wave function as initial state with an o, +d
potential wave function as 6nal state, even with the cor-
rect phase shifts, is not consistent. The present model is
essentially kee of such defects. The description of He is
consistent with that of Li and of o. + d, the interaction
satisfies conditions (i)—(vi) of Sec. I and does not bind the
dineutron, and L g 0 components are explicitly included
in the description of He.

III. RESULTS AND DISCUSSION

For BG~(g.s.) we obtain 4.60A2 in our model which
corresponds to ft)~2 ——841 ms or a half-life tigz
835 ms, to be compared with the experimental value

tiy2 ——806.7+1.5 ms [23]. In the test model, where the
t+ He component is omitted in Li and the force is re-
fitted, we get 4.48% for BGr(g s )and 85.7 .ms for tiy2.
This example shows the importance of using the same in-
teraction in both the initial and 6nal states of the decay
process: The error on the theoretical result is doubled
in the test calculation. The 3—4% deviation from ex-
periment in the full model can be considered as a good
agreement. Of course the lack of L = 1 component in
Li probably reduces the difference between theory and

experiment. Nevertheless, as discussed in Ref. [5], devia-
tions as large as 7—8% could be accounted for by meson-
exchange current corrections. Corrections of this size are

10
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FIG. 2. Transition probability dW/dE per time and en-

ergy units in the center-of-mass frame as a function of the
center-of-mass energy E. The experimental points are taken
from Ref. [9], while the statistical error bars are from Ref.
[12]. The solid curve is the result of the present calculation
with the t+ He component included in the n + d wave func-
tion, while the long-dashed curve is the result without this
component. The short-dashed curve is obtained by dropping
the p ~„„~) 10 fm part of the full He wave function.

typical of different weak processes in few-nucleon systems
(see, e.g. , Ref. [24]).

The calculated dW/dE curves are shown in Fig. 2 to-
gether with the experimental points of Ref. [9]. We can
see that both the full, consistent, model (solid curve) and
the test model (long-dashed curve) undershoot the exper-
imental points, but the results of the consistent model
are much closer to them. As for Bar(g.s.), the devia-
tion &om experiment is roughly twice as large in the test
model as in the full one. The error on BGr(g.s.) is typ-
ical of a process occurring at the normal nuclear scale,
i.e., at usual distances between nucleons in a nucleus.
This factor of 2 is still observed in dW/dE. However,
the 3—4% error on BGg(g.s.) in our best model is am-
plified to 60—70% on dW/dE. This emphasizes again
that the small BG~ value in the P decay to n + d is the
result of a balanced cancellation between two larger val-
ues with different signs. The total branching ratio in the
consistent model is 6.0 x 10 . The branching ratio for
deuterons whose energy is above the experimental cutoff
[9] is 3.1 x 10 s. I et us note that the integration of the
experimental data in Fig. 2 provides 5.4 x 10, i.e., less
than the value (7.6 + 0.6) x 10 e quoted in Ref. [9].

To seek further after possible origins of errors, we
changed the number of basis functions between 8 and
25 in the critical region of a(nn) relative motion in sHe,
each basis always ensuring the covering of this region up
to 20—25 fm. Our results remain stable within one per-
cent. Next we checked the asymptotics of our He wave

function. In Fig. 3 we show the radial part of the yp[ppjp
relative motion function at 6xed p = 2 fm. One can
see that the Gaussian cutoff starts only at roughly 30 fm.
The correct asymptotic behavior of the bound state wave
function of three neutral particles which have no bound
binary subchannels is given by [25]

4 —) g ~ exp( —rg) (10)

if g-+oo. Here g is the hyperradius (defined by g2
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FIG. 3. Radial part of the ypfgp]p relative motion function

of the He wave function (full line) calculated for p„„=2 fm,
and its truncated approximation (short-dashed curve) corre-
sponding to the short-dashed curve in Fig. 2.

g,. A;r2, where v; is the center-of-mass coordinate of
cluster i with respect to the center of mass of the three-
cluster system) and ~ = (2mNE~/5 ) ~, where EI3 is
the three-cluster separation energy and m~ the nucleon
mass. Since we are interested in the n(nn) relative mo-

tion, g can be expressed as g =
3 p

~ ~
+ 2 p„„. We

checked that our yp[ppIp relative motion function satisfies
the asymptotic form (10) (the other channels only slightly
contribute when p„„ is small and p („„)is large).

Finally, to test the contribution coming from the halo
part of the He wave function, we choose to expand the
p („„)space in (5) with 10 basis functions which cover
only the 0—10 fm region. Of course this truncation does
not affect the He energy. The corresponding asymptotic
behavior of yp[pplp is also shown in Fig. 3. The resulting

dW/dE is the short-dashed curve in Fig. 2. As we can
see, neglecting the 8 —10 ( p ~„„~ ( 25 fm part of the

He wave function can cause an order of magnitude error.
This confirms that the branching ratio is very sensitive
to the halo part of the He wave function, as was pointed
out in Ref. [12).

The theoretical curve displays a satisfactory order of
magnitude although the data appear to be underesti-
mated by about a factor 1.7 between 0.6 and 1.45 MeV.
Its shape resembles the experimental curve, but trans-
lated by about 200 keV toward lower energies. As such
a translation does not have any obvious theoretical ex-
planation, let us first discuss to which extent experiment
constrains the shape of the theoretical curve. The data
curve is significant only between 0.6 and 1.45 MeV. Be-
low this region, the experimental cutoff hides the energy
dependence of the results. Very few events (five) are ob-
served above 1.45 MeV. Hence the real shape of dW/dE
and in particular the location of its maximum remain
open questions. As we now discuss, these questions are
of theoretical importance.

Most theoretical results (those of the present micro-
scopic calculation and of its two approximations dis-
played in Fig. 2, those of Refs. [10,11], and several cases
studied in Ref. [12]) display a common energy behav-
ior with a maximum between 0.3 and 0.4 fm. Only the

magnitude of dW/dE varies strongly. Notable excep-
tions are given by the EH3 and EH results in Ref. [12]
whose maximum is at or beyond 0.5 fm, and the EH2
result which displays a zero near 0.6 MeV in contradic-
tion with experiment. These nonstandard shapes follow
from small modifications in the external component of
the GT matrix element for a fixed internal component.
In spite of their apparently better agreement with the
available data, the EH3 or EH shapes cannot be con-
sidered as confirmed. Experimental data below 0.5 MeV
(c.m. ) would therefore provide information about the na-
ture of the cancellation mechanism between the internal
and external components of the GT matrix element [12].
They would discriminate between "standard" curves with
similar shapes but varying magnitudes, and "nonstan-
dard" ones with a maximum at larger energies which is
compatible with —but not established by—the presently
available data. The standard shape is well reproduced
by the present microscopic calculation. The 1.7 multi-
plicative factor might partly be due to the difficulty of
determining the absolute normalization of experiment.
The nonstandard shapes require a very specific cancella-
tion mechanism and would indicate the need for further
improvements of the theory.

The discrepancy between theory and experiment for
dW/dE can possibly be attributed to the same mech-
anism as the few-percent discrepancy in BGT(g.s.). A
rather small correction acting mainly on the internal part
of the matrix element which would provide a correct
BGT(g.s.) should modify much more strongly dW/dE
and might even afFect its energy dependence. A good
candidate is provided by meson-exchange currents. In-
deed meson-exchange corrections might have the neces-
sary order of magnitude and should afFect difFerently the
internal and external parts of the GT matrix elements
since the distances between the subsystems are different.
Rather small modifications of the internal part may re-
sult in 50—100%%uo modifications in dW/dE as discussed
in Ref. [12], and as shown here by the test calculation.
The fact that the tensor force is not taken into account
in the description of the o. + d scattering may also play
some role, but is probably less important than for the
Li ground state. Its introduction in the model would,

however, exclude the use of the Minnesota force and re-
quire the dificult construction of a new force satisfying
conditions (i)—(vi) of Sec. I.

IV. eONCLUSION

In summary, we have studied the P delayed deuteron
emission from He in a microscopic cluster model. We
have chosen the Minnesota nucleon-nucleon interaction
which reproduces the bulk properties of the free clusters
and gives a very good agreement with the experimental
% + X and o. + N phase shifts in all relevant partial
waves. This interaction was shown to provide a good
overall description of the ground state of He [7]. In
the present work we point out that this interaction also
provides high quality results for the ground state and o.+
d scattering states of Li. All these results are obtained
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without any &ee parameter. The He, Li, and a + d
wave functions are used to calculate the Gamow-Teller
matrix element of the P decay process.

In a calculation of the transition to the Li ground
state we emphasize the importance of using a consistent
description for the systems appearing in the initial and
final states, respectively. The results for the P decay
toward continuum states show the strong sensitivity to
the halo part of the He wave function predicted in Ref.
[12]. Our best model gives a P delayed deuteron spec-
trum close to the experiment: The branching ratio is
3.1 x 10 s to be compared with (7.6 6 0.6) x 10 s [9],
when the experimental cutoff is assumed. The total the-
oretical branching ratio is 6.0 x 10 . We argue that
the difference between the theoretical and experimental

dW/dE has the same origin as the small difFerence be-
tween the values for BGT(g.s.) in spite of the fact that
it is much larger. We conjecture that corrections due
to meson-exchange currents are important enough to ex-
plain these differences.
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