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Evidence for phase transitional behavior of even-even nuclei from differential
observables
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Following recent discussions of critical phase transitional behavior of nuclei, additional data are
collected and used to test if there is further evidence supporting such phenomena. Data from nuclear
masses, radii, and E2 transition rates are used to construct differential observables. Inspection of
these for the rare earth region shows that they exhibit the characteristic phase transitional behavior
found in condensed matter and thermodynamic systems, namely, nearly constant values before the
critical point, and a sharp change in the critical region, followed by a different set of values after
the critical point.
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The traditional view of the evolution of structure and
collectivity in nuclei envisions a few benchmark nuclei
displaying limiting structures or symmetries, such as har-
monic vibrator or pure rotor, linked by sequences of nu-
clei with intermediate or translational structure. This
view is refiected in the trends in such observables as
E(2& ) and R4Is = E(4+~)/E(2~ ) (we speak here always
of even-even nuclei). The former drops rather smoothly
from values well over 1 MeV near closed shells to ro-
tational values below 100 keV while, in the same span
of nuclei, R4~s ranges &om "shell-model" values ( 1.3)
through the harmonic vibrator value of 2.0, followed by
a gradual increase to the rotor limit of 3.33.

Recently, however, the need to reexamine this picture
of a gradual evolution of nuclear structure has been sug-
gested following a new analysis of yrast energies [1]. It
was found that almost all nuclei from Z = 38—82 with
structures between the extreme limits of harmonic vibra-
tor and symmetric rotor (i.e. , 2.05 & R4y2 & 3.15) could
be described by a single anharmonic vibrator (AHV)
equation with constant anharmonicity; this in spite of
the continuously varying internal phonon structure of the
2~ state. Thus even though the nature of the phonons
varies, the phonon-phonon interaction remains constant
throughout the region. This behavior was illustrated by
the evolution of E(4~+) against E(2+~) as R4~2 varies grad-

ually from 2.05 to 3.15: E(4+~) is linear with a slope of
2.0 and an intercept of 156(10) keV.

For R4~2 values nearing the rotor limit of 3.33 the data
can no longer be represented by a linear function. As
the rotor limit is approached the slope of E(4+) against

+ 1
E(2~ ) changes from 2.0 to 3.33. This change in slope
occurs over a narrow range of nuclei; in other words the
transition from an anharmonic vibrator underlying sym-
metry to that of a rotor is very rapid. This view difFers
from the traditional one of a continuous, gradual change
in structure as R4g2 varies from 2 to 3.33. Now, the
range 2.0 & R4g2 & 3.0 exhibits a persistent AHV struc-
ture and the major structural change is squeezed into a

narrow range of R4y2 values just above 3.0. This rapid
change in structure is therefore characteristic of a critical
phase transition in which the energies can be described
by a power-law expression with a critical exponent and
a nuclear order parameter related to the slope of E(4+&)
with E(2& ) or dE(4+&)/dE(2+&).

This phase transitional description runs counter to pre-
vailing thought concerning the properties of finite-body
quantal systems and therefore it is important to test if
other nuclear observables exhibit similar behavior. An
essential signature of a phase transition (for example, in
solid-state or thermodynamic phenomena) is an observ-
able that exhibits one behavior before the critical point,
and a rapid change to a diferent behavior at and after
the critical point. Frequently, such observables are con-
stant before the phase transition. The purpose of this
paper is therefore to present further evidence relating to
phase transitional behavior in nuclei by identifying addi-
tional observables that are normally constant but which

diverge, or at least show a sharp change, around the tran-
sition point. We do not attempt to explain the underlying
reasons for this behavior but rather to lay out the em-

pirical situation as a necessary preliminary to theoretical
studies.

In seeking appropriate observables we note that the
essential element of a phase transition region is a rapid
change in properties. Therefore, the most sensitive ob-
servables are those that directly measure these changes,
that is, quantities which are in the nature of derivatives
or differentials. This is the case, for example, in con-
densed matter systems, where the susceptibility and the
speci6c heat are derivatives of the magnetization and in-
ternal energy, respectively. It is therefore the aim of the
present work to identify appropriate nuclear difFerential
observables and to collect and present the data relating
to them.

In this work we propose three such quantities, each of
which is the difference in a particular observable in two
adjacent even-even nuclei of mass A and A-2, namely,
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the change in two-neutron separation energies, S2, the
change in B(E2:0+~ ~ 2~ ) transition probabilities, and
the change in mean-square charge radius b {r2). We define
these differential quantities by the equations

bS2„(A) = S2„(A) —S2„(A —2) )

6B(E2) = B(E2:0~ m 2~ )~ —B(E2:0~ m 2q )~
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6(r ) = (r )~ —{r )~ 2.
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All these quantities are difFerentials of some kind. [Note
that while S2„(A) is often obtained, in practice, from
binding energies of the nuclei A and A-2, it is a prop-
erty of an individual nucleus and, hence, it is in fact
6S2„ that is the difFerential. ] All three observables can
be calculated directly &om readily available compilations
of nuclear data [2—4]. As we shall see momentarily, each is
expected to be approximately constant before the struc-
tural transition point and each should change rapidly in
the transition region if the structural transition indeed
behaves like a critical phase transition.

In a region of essentially constant structure, the two-
neutron separation energies will be dominated by a con-
stant term, representing the energy required to remove
two neutrons &om the nucleus AD+2 where Ao is the dou-
bly magic closed-shell core, plus a term approximately
linear in the number of valence nucleons arising &om
residual interactions of the valence neutrons. If the basic
structure changes, S2„will deviate &om this linear be-
havior. (This is, in fact, implicit in the gauge space plots
of Ref. [5].) Hence 6S2„should be roughly constant until
there is a rapid structural change.

For B(E2) values, it is easy to illustrate the way in
which a rapidly changing structure can lead to this char-
acteristic behavior of differential observables. To do this,
we take a simple pedogogical model that exploits the an-
alytic properties of symmetries in the interacting boson
model (IBA). Suppose that one has a sequence of succes-
sive even-even nuclei satisfying the U(5) symmetry (an-
harmonic vibrator) followed by a sudden transition to
SU(3) (rotor). For definitiveness we take the transition
to occur at boson number NB = 8 and use the expres-
sions [6]

B(E:0~ m 2~ )U(s) = 5Nae&,

B(E2:Og w 2y )sU(3) = (2NB+3)NBe&,

(4)

where N~ is the boson number and e~ the effective
charge. The resulting values of bB(E2) are shown in
Fig. 1 and behave similarly to what is expected in a crit-
ical lambda (A)-type phase transition. Above the critical
paint (NB ( 8) 6B(E2) is constant. At the critical point
it changes suddenly, and below the phase transition it
takes on a difFerent (and changing) set of values. The
key to obtaining this behavior is a constant underlying
structure [in this case, U(5)] before the structural tran-
sition, as opposed to a smooth and gradual change in

NB

FIG. 1. Calculated differential B(E2) values [Eq. (2)] vs
boson number Nz, using IBA analytical expressions [Eqs. (4)
and (5)]. The transition between the two limiting symmetries
U(5) and SU(3) is assumed here to occur at Ngy = 8.
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FIG. 2. Experimental values of E(2+~), bSs„,b(r ), and
bB(E2) [see Eqs. (1)—(3)] vs neutron number N, for Dy iso-
topes.

structure from nucleus to nucleus. This is exactly what
the data presented in Ref. [I] showed: despite changes in
internal phonon structure the underlying AHV symmetry
persisted. Since U(5) is the IBA equivalent to an AHV,
this calculation provides a nice theoretical analogue to
the empirical situation. This discussion in the context of
the IBA model recalls previous theoretical treatments of
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phase transitional behavior in this model. In particular,
it was shown in Ref. [7] that the U(5) ~SU(3) transition
is a first-order phase transition in the N~ ~ oo limit.
Our aim here, of course, is to probe the empirical situa-
tion in finite nuclei.

Finally, mean square radii should scale as A ~3 barring
any shape changes due to structure. In a narrow mass
region in heavy nuclei (A 150) changes in A2~s are
almost exactly linear in A so that b(r2) will be roughly
constant as long as the nuclear shape is constant. We also
note that in the collective model and in the IBA both the
B(E2)'s and the charge radii are directly related to the
nuclear deformation [8,9] and should therefore exhibit a
similar behavior. For example, in the collective model
b(r ) is given by [8]

(6)

Since the deformation P2 is proportional to [B(E2)]i~2
in first order, this relation can be approximated

(7)

Hence b(r2) should behave similarly to bB(E2) for iso-

topic chains. Indeed, consistency of data from B(E2)s
and charge radii, as expected from Eq. (7), has been ob-
served for several isotopic chains (see, for example, Fig.
13 of Ref. [10]).

%ith this motivation, we can now inspect the data for
these difFerential observables. In this work we focus our
discussion on nuclei with Z = 52—70, N = 84—104 with
B4(2 & 2.0, since this is the region where most of the
relevant data regarding the proposed phase transition is
found. Following the new interpretation proposed in Ref.
[1], we expect the observables defined in Eqs. (1)—(3) to
be approximately constant for N = 84—86, and then to
change considerably near N 88 and take on a new
range of values for N & 90, reHecting the constancy in
structure of the anharmonic vibrator, and the subsequent
rapid transition to the rotor.

We first take a traditional look at the data for this
region. In Fig. 2, we show the three difFerentials just
discussed along with E(2+i) in the Dy isotopes, plotted
against the neutron number. The E(2i ) plot shows that
a grudual structural transition of the mean field is tak-
ing place between N = 84 and 92: E(2+i) steadily drops
towards asymptotic rotor values. The di8erentials, how-
ever, behave somewhat differently: where sufficient data
exist, namely, for b(r2) and bS2„, they show rather con-
stant values for N & 88, a sudden jump at N = 90,
followed by a transition to a new region of constant val-
ues for N 94. This behavior is suggestive of the kind of
phase transitional behavior discussed in Ref. [1] and the
spike at N = 90 is exactly the type of behavior illustrated
in Fig. 1 for bB(E2) values.

It was stressed in Ref. [1],however, that the structural
evolution becomes much more evident and transparent if
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the data are plotted against E(2& ) itself rather than N,
Z, or A. For example, plots of E(4~+) vs E(2+~) allow one
to see the persistence of a single anharmonic vibrator de-
scription, with constant anharmonicity, over broad mass
and structural ranges in medium and heavy nuclei [1].
In a sense E(2& ) plays the same role in nuclear systems
that the temperature plays in condensed matter systems
and Ref. [1] showed that the phase transitional behav-
ior commences at a specific 2z energy, E(2& )„;q, that
is analogous to the critical temperature. This critical
value of E(2& ) corresponds to R4~2 3.0. It would be
interesting to pursue a theoretical understanding of this
interpretation of E(2~ ) as a critical parameter.

Our objective here is an empirical one, however, and
hence we now present data for all nuclei kom Nd to Yb
with 82 ( X & 104 in terms of plots against E(2& ) in
Figs. 3—5. In order to connect the current study to the
previous one [1], we include in each figure the deriva-
tives —dE(4~+)/dE(2+~), calculated for the same pairs of
isotopes A, A —2. Although more experimental data are
clearly needed, especially for bB(E2) a'nd b(r2), the simi-
larity of the individual plots in Figs. 3—5 is quite striking:
where the data are sufhcient they show a nearly constant
value down to E(2+~) values of about 0.15—0.20 MeV, and
then a rapid deviation from this value as the transition
takes place. Such a behavior is characteristic of phase
transitions in solid-state or magnetic systems [11]. The
phase-transitional behavior is most evident, for example,
in the bS2„plots for Gd and Dy and in the b(r ) plots
for Sm and Dy. Clearly, more extensive data, perhaps
obtainable in the future with radioactive beam facilities,
would be very useful to complete the mapping of these
observables. In particular, a few of the bS2„values (en-
closed in parentheses in Figs. 3—5) are obtained from S2„
values based on systematics in Ref. [4], and actual mea-
sured values would be very useful, such as for Yb where
there is an obvious, and probably spurious, break in the
systematics at E(2+~) of 350 keV.

In Ref. [1],the universality of the phenomenology made
it possible to combine the E(2~+) data for many elements
in single plots against E(2+&) and compact global correla-
tions emerged. In the present case, there is considerably
more scatter in the results for different elements. Partly,
the scatter may simply originate in larger error bars for
some of these observables. But, there also seems to be
a real difference in behavior for different elements that
does not appear in E(4+&) vs E(2~ ) plots. For example,
Figs. 3—5 show a more gradual change in values of the
differential observables with increasing Z &om Nd to Yb,
which points to a Z dependence of the phase-transitional
mechanism. The sensitivity of different observables to
the underlying mean-field structure needs to be under-
stood microscopically. Nevertheless, global plots are use-
ful and revealing in the present case as well. They are
shown in Fig. 6. With the exception of a few scattered
points, these plots show a nearly constant value for each
observable for large E(2+&) values, followed, as E(2+~) de-
creases, by a quite rapid deviation from this value, near
E(2~ )„;q, and a new behavioral pattern thereafter.
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To summarize, we have shown that, by inspecting
appropriate nuclear observables that have the charac-
ter of derivatives or difFerentials, further evidence for
critical phase transitional behavior in nuclei is found.
Specifically, we have shown that three nuclear observ-
ables, b(r2), bB(E2), and bS2„, in addition to the pre-
viously studied dE(4+~)/dE(2+&), behave in a similar
way, re8ecting the constancy in structure of the anhar-
monic vibrator and then the fast transition to the ro-
tor, which is consistent with a phase transition com-
mencing at E(2& )„;t, 0.15—0.20 MeV, corresponding
to R4~2 = E(4~ )/E(2&+) 3.00. These features are ev-
ident in traditional plots, for example, against N as in
Fig. 2, but, as in Ref. [1], are made much more vivid
by plotting against E(2+&). These results indicate that
finite nuclear matter has some features in common with
solid-state and magnetic systems which need to be fur-
ther investigated. Further systematics work along these
lines, and theoretical studies, are needed to explain this
analogy and to pursue our understanding of the proper-
ties of the finite-body nuclear quantal system.
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