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Theoretical approaches for investigating nuclear structure with (e, e') (v, v'), and (p, z) reactions
are presented and applied to study the shell-model description of B. The distorted-wave impulse
approximation formulated in momentum space is used to calculate the cross sections of (z, z') and

(p, v) reactions from the vrN m mN and vN -+ pN off-shell amplitudes which are generated from
the model of Nozawa, Blankleider, and Lee [Nucl. Phys. A513, 459 (1990)]. It is found that the
nonlocal effects due to vrN off-shell dynamics and nucleon Fermi motion are important in predicting
(p, z) cross sections. The one-pion-exchange two-body exchange currents are included in (e, e')
calculations. It is shown that the core polarization effects, calculated in a perturbation approach
including excitations up to 6', are essential in obtaining quantitative agreements with the data
with no adjustable parameters. The predictions based on the shell model of Cohen and Kurath
[Nucl. Phys. 73, 1 (1965)] and Hague and Maripuu [Phys. Rev. C 8, 1609 (1973)] are compared in
order to illustrate the use of (e, e'), (n, vr'), and (p, v) reactions in distinguishing nuclear structure
theories which are almost equivalent in describing static properties of nuclei. Predictions for future
(e, e') and (p, vr) experiments are also presented.

PACS number(s): 21.60.Cs, 25.30.Dh, 25.80.Ek, 27.20.+n

I. INTRODUCTION

It has been well recognized that pions and electrons
are complementary to each other in probing the struc-
ture of nuclei. The study of electron scattering has pro-
vided important information about the electromagnetic
currents inside the nucleus. By combining it with the
study of pion scattering in the 6 region, the relative im-
portance between the proton and neutron exritations has
been probed very effectively. A natural extension of these
efforts is to also investigate pion photoproduction reac-
tion, which has certain unique features. For example,
the charged pion photoproduction, which is dominated
by the Kroll-Ruderman term (o e) at low energies, is far
more effective than electron scattering and pion scatter-
ing in probing nuclear spin-isospin response. The useful-
ness of a study of both the (e, e') and (p, n ) reactions in
investigating nuclear structure has been demonstrated,
for example, by Sato, Koshigiri and Ohtsubo [4]. Obvi-
ously, the most &uitful approach to study nuclear struc-
ture is to carry out a simultaneous study of (e, e'), (vr, n'),
and (p, vr) reactions. This type of study is possible for the
1p-shell nuclei, owing to the existence of extensive (e, e')
and (7r, vr ) data and the possibility of carrying out preci-
sion measurements of (p, 7r) reactions in the near future
at several electron facilities. The objective of this work
is to develop theoretical approaches for pursuing such a
study.

We adopt the well-developed formulations [5] to carry
out (e, e') studies. The calculations include the one-pion-
exchange currents derived in Ref. [4]. Following the pre-
vious works, we assume that the (vr, v') and (p, vr) re-

action can be described by the distorted-wave-impulse
approximation (DWIA). The scattering amplitudes are
then expressed in terms of pion wave functions, off-shell
scattering t matrix on a nucleon bound inside the nu-

cleus, and one-body nuclear transition densities. To ac-
count for the nonlocal effects due to the off-shell t matrix
and relativistic kinematics associated with nuclear Fermi
motion, calculations for both the (7r, vr') and (p, vr) are
carried out in momentum space. For (vr, vr') calculations,
we therefore follow the momentum-space D|A'IA formu-
lation developed in Refs. [6,7].

The majority of the existing DWIA calculations [8—
13] of exclusive (p, m) reactions were performed by using
the photoproduction operators developed by Blomqvist
and Laget [14]. Although the model has made impor-
tant contributions to the Beld, there are some theoreti-
cal questions concerning its dynamical content. In par-
ticular, the nondelta term of the Blomqvist and Laget
model is not unitary. Furthermore, the model does not
dynamically de6ne the off-shell behavior of the elemen-
tary pN ~ vrN process occurring inside the nucleus. The
importance of off-shell dynamics in relating the nuclear
structure to intermediate energy nuclear reactions has
been stressed extensively in the literature. The advance
made by Nozawa, Blankleider, and Lee (NBL) [1] was
to provide a dynamical model for generating off-shell dy-
namics of the pN -+ vr% process within the constraints
of unitarity and gauge invariance. The main effort of this
work is to develop an approach to incorporate the NBL
model in the DWIA study of (p, z) reaction.

It is necessary to brie8y describe the NBL model in
order to indicate the main feature of our DULIA formu-
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lation of the (p, vr) reaction. The model is defined within
a Hamiltonian formulation with the assumption that the
basic degrees of &eedom of AN and pN systems are m,

N, 4, and the electromagnetic field. The model Hamil-
tonian is written as

H=HO+Hr+ dx J„xA" x,

where Ho is a &ee energy operator, HI describes rele-
vant hadronic interactions in terms of vertex interactions
AN ++ N and 4 ++ AN, and a ~N separable poten-
tial. They are determined &om fitting the mN scattering
phase shifts. The last term of the above equation defines
the electromagnetic interaction in terms of electromag-
netic field A~ and current operator J&. By employing the
standard scattering theory, the current matrix element of
the pN -+ 7rN process in the center-of-mass &arne takes
the following form:

(2)

where Q and tc are, respectively, the nN and pN rel-
ative momenta, e(Q) = (Q2 + m~&)i~2 is the nucleon

energy, and u (Q) = (Q2 + m2)i~2 is the pion energy.
The second term of Eq. (2) describes the effect due to
xN final-state interactions. It is determined by the off-
shell matrix element of the xN scattering t matrix, which
can be calculated from the hadronic part of the Hamil-
tonian Ho+ HI by solving xN scattering equations. The
plane-wave matrix elements of the current operator in the
right-hand side of Eq. (2) are defined by the low-order
Feynman amplitudes illustrated in Fig. 1:

where

is called the Born term (nonresonant term). The second
term of Eq. (8) describes the 6 excitation, as illustrated
in Fig. 1(g). A cutoff function F,„i(Q) = A /(A + Q )
has been introduced to make the Born term a square

(e)

FIG. 1. The pN -+ mN mechanisms of NBL madel [1].

integrable function. The model defined above is gauge
invariant and unitary, as was discussed in detail in Ref.
[1]. The parameters of the Born term are taken &om
the literature. The only adjustable parameters of the
model are the cutoff A for the Born terms, the magnetic
Ml [GM(0)] and electric E2 [G@(0)] transitions of the
pN ~ 4 excitation. It was found that the data of pN ~
mN up to about E~ = 400 MeV can be best reproduced
with A = 650 MeV/c, GM(0) = 2.28, and Ga(0) = 0.07.

An important point to note is that within the Hamil-
tonian formulation, the off-shell current matrix elements
with W g e(Q)+u (Q) g e(ic)+e are well defined theo-
retically by Eq. (2). This is not the case for the model of
Blomqvist and Laget [14], and the models based on dis-
persion relations or K-matrix method [11]. We will see
in Sec. III that the DWIA amplitude of pion photopro-
duction on nuclei is determined by off-shell amplitudes
of pN —+ mN process. The use of the NBL model clearly
makes our approach significantly different &om all previ-
ous works.

As a first step, it is necessary to test the accuracy of our
approach in a region where nuclear structure is nontrivial
but can be described by well-developed nuclear theories.
We therefore consider the lp-shell nuclei to which exten-
sive works based on the shell model of Cohen and Ku-
rath [2] have been carried out. With the single-particle
energies and the residual interactions within the lp shell
determined by fitting the low-lying nuclear energy lev-
els, the model of Cohen and Kurath describes very well
the magnetic moments, magnetic dipole transitions, and
Gamma-Teller matrix elements. To describe the transi-
tions at large momentum transfer and higher multipoles,
it is necessary to take into account the configurations out-
side the lp shell. This is done in this work by calculating
core polarization effects using the perturbation theory.
This approach has been established in the studies of elec-
tron scattering, muon capture, and beta decay [4,15—18],
and is known to be very different &om the commonly
used procedures of introducing enhancement factors for
the bare transition operators. We will see that the core
polarization effect plays an important role in obtaining
agreements with the data with no adjustable parameters
in our calculations.

An interesting question to ask is the following: To what
extent can a simultaneous study of (e, e'), (x, n'), and

(p, 7r), reactions distinguish different nuclear models. To
explore this, we also consider the shell model of Hauge
and Maripuu [3]. They used the Sussex efFective inter-
actions [19] deduced from nucleon-nucleon phase shifts.
The energies and the range parameter 6 of the assumed
harmonic-oscillator wave functions are adjusted to repro-
duce the low-lying energy levels. They also succeeded in
explaining the low-lying properties of 1p-shell nuclei men-
tioned above. Therefore, it is very interesting to compare
the predictions &om this shell model with that &om the
model of Cohen and Kurath.

In this paper, we focus our study on 8, which is
the most complex nucleus in the 1p-sheH region and has
been extensively studied both experimentally and theo-
retically. Our investigations of other 1p-shell nuclei will
be published elsewhere.
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In Sec. II, we brie8y recall the essential formulas for
calculating (e, e') and (ir, ~') scattering. A momentum-
space DWIA formulation of the (p, ir) reaction is pre-
sented in Sec. III. In Sec. IV, the perturbative calcu-
lation of core polarization eÃects in nuclear excitations
is outlined. The results and discussions are presented in
Sec. V.

II. FORMULATIONS
OF ELECTRON SCATTERING

AND PION SCATTERING

The formulations for calculating the cross sections of
electron scattering and pion scattering have been devel-
oped, respectively, in Refs. [5,7]. We therefore only recall
formulas necessary for de6ning notations and indicating
the nuclear structure input to the calculations of these
two processes.

~J (q) = (all~~ (q) II J*&

CJ»(q) = fjq(qx)YqM(i)p(x)dx (10)

T&M(q) = —f(Y x (jq(qx)Yqq, (d)]) .J(x)dx(11),

&~ (q) = (Jxll~z (q)IIJ') (0)

where
~
J;) and ] Jy) are, respectively, the initial and fi-

nal nuclear state vectors. q" = ((d, q) is the four mo-

mentum transfer to the nucleus. Cg, TJ, and T& are,E M

respectively, the Coulomb, electric, and magnetic mul-

tipole operators with rank J and parity change (—1)
(—1), and (—1)l~+i&. They are defined in terms of nu-

clear charge density operator p(x) and current density
operator J(x)

A. Electron scattering

The quantities of interest are the charge F~(q) and
transverse Fz (q) form factors defined as follows:

Tqxq(q) = f Jj(qx)Yqq~(d) J(x)dx

The currents included in our calculations are

P( ) =P"'( )

(12)

Fc(q) = ).I|-"~(q)l' and

J( ) =&"( )+&"'( )

with

F4(q) = ):(l&~ (q) I'+ I~& (q) I')

|-"i(q) = (Jail&~(q) II J*) (7)

where the one-body currents (p~ i, J~ l) are of the usual
nonrelativistic forms, the two-body spatial part J~ ~ is
the static one-pion-exchange current. Explicit expres-
sions of these currents are given in Ref. [4]. To ensure
that the electric form factor has a correct low momen-
tum transfer behavior, we use the current conservation
relation to rewrite the electric form factor Tf (q) as

cu J+1 . 2J+1
TqM (q) = ——

J Cq(q) —~ J J1 j,+i(qx)Y „„+»(d ) J (x)dx Ji).

In the q ~ 0 limit, the second term vanishes and Eq.
(15) is reduced to the Siegert theorem. This extension of
Siegert's theorem to the high momentum-transfer region
was discussed in Ref. [4].

With the above de6nitions, it is straightforward to
calculate charge and transverse form factors from shell-
model wave functions. For the calculation of one-body
current contributions, the nuclear structure input is the
one-body transition matrix de6ned as

+gtlg)(Jf J ) = (Jfll (a+ a)a)g II J')(& &3~~)
]l

x P I,f3
— jP (16)

I S J
where j = 2j + 1, ap = ( 1)Jqq jqaJ, an—d cx and
P collectively denote the single-particle quantum num-
bers: n (l 1/2) j . a+ and ap are, respectively, the cre-

I

ation and annihilation operators for the single-particle
state. For example, the E2 transition is calculated from

Azl2ol(Jy, J,). The calculation of two-body current con-
tributions requires two-body transition density matrices.
It is not relevant to the discussions in this paper and
hence is not presented here.

B. Pion inelastic scattering

Within the momentum-space DWIA formulation de-
veloped in Refs. [6,7], the (m, Tr') cross section is calcu-
lated from pion wave functions, xN m xN o8'-shell t
matrix and nuclear one-body transition density. As de-
rived in Ref. [7], the (Tr, m') scattering amplitude in the
vr-nucleus center-of-mass frame can be written in the fol-
lowing partial-wave form
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Tf ' = (Jx Mf m'(qx) IT I
J*' M' z (q&))

) (
' x)" I', M(4) iM(q~)

L'M'LM J

x(—1) ~ ~+M
I

L L' J il J J, Jg

E
—M M' M; —My) (My —M; M; My)l

q'dq xl,'„'(q') &I,'l, (q', q) xl,+,„' (q),
0 0

(17)

where g is the pion-nucleus relative momentum and

(q) is the pion wave function of angular momentum
I. The nuclear excitation is described by the transition
potential which can be decomposed into products of two
parts

FKs (") = ):(Jyll[o rIp]&ll J')
a,P

x(4~~-)'"(~IIV'~(r) &s]el IP)

xW.i.(r)W, i, (r). (20)
fiJ I fiJ I L'LJii(q q) = ). l'1Ks(q q)W'IKS(q q)'

l'LKS
(18)

The nuclear structure information is contained in the first
term of the above equation

Il'lzs(q q) = &i (q'r)Ffc's (r)&i(qr)r dr.
0

Within the nuclear shell model, the nuclear transition
density FK's is define as

We now note that the above equation and Eq. (16) for
electron scattering are determined by the same one-body
matrix element

{Jy I 1[a'. a(s]~ II J*&.

This establishes the connection between (e, e') and (z, z')
scattering. The reaction dynamics is determined by the
xN o8-'shell t matrix

(21)

where to and ti& are, respectively, the spin-independent
and spin-dependent parts of the xN off-shell t matrix
with an orbital angular momentum A. The procedure of
Ref. [20] is used to calculate ts(q', q, W) from a m N po-
tential model. It involves the transformation &om a xN
center-of-mass &arne to a m nucleus center-of-mass &arne.
A similar procedure will be used in our later DULIA for-
mulation of the (7, vr) reaction.

The only differences between the present (n, m') calcu-
lations and that of Ref. [7] are in using the NBL model to
generate the mN ~ n N off-shell t matrix tis(q', q, W) and
using more accurate optical potentials to calculate pion
wave functions. At low pion energies, we use the model
developed by Carr, McManus, and Stricker-Bauer [21].

I

At 6 resonance energies, the optical potential derived
from the b,-hole model [22] is used. Each model was
developed to describe not only elastic scattering cross
sections, but also the reaction cross sections. This is
very essential in obtaining accurate pion wave functions
in the region where nuclear transitions take place. Un-
fortunately, each model emphasized a different energy
region and we are forced to have this inconsistency in
the present calculations. This should be improved in the
near future. Except for the {p,m) calculations at energies
below 200 MeV, the pion optical potential of the 6-hole
model is used in all of the calculations presented in Sec.
V.

III. THE DWIA FORMULATION OF (p, m) REACTION

(22)

Following the previous investigations [4,8—13], we assume that the {p,m) reaction can also be described by DWIA. In
the projectile-nucleus center-of-mass system (ACM), the transition amplitude for an incident photon with momentum

k~ and helicity A is of the following form:

Tyi = (Jy My, rr(q~) IT I
JM;, p(k&, A))

= ) ) /dqdp;dpib(py + q —p, —k~)g'(pi, ml)gp(p;, m;)
a,P vn; )tnt

xx~„'(q)t' .{Py q'P' &~ &i, ~~){JylotaplJ, ),
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where q is the pion momentum, p,. and py are nu-
cleon momenta, m; and my are z components of nucleon

spin, yz„*(q) is the pion scattering wave function, and

(p, m) is the shell-model single-particle wave function.
The matrix element

with

P = pg + k~ = py' + q.

W = e(py) +u) (q), W~ = e(p;) + k~,
S =R' —P S =O' —P

(26)

(py q;p*, k~, e~, W~)

is the oK-shell scattering amplitude of the

p(k~, eq) + N(p, , m;) ~ n (q) + N(py, my)

reaction, as illustrated in Fig. 2. Within the NBL model
(or any model with aN scattering described by a poten-
tial), it is necessary to first evaluate the pN -+ xN am-
plitude in the pion-nucleon center-of-mass frame (2CM),
as defined by Eq. (2). The amplitude needed in evaluat-
ing Eq. (22) in the ACM system is obtained by using the
procedure developed in the study of pion-nucleus scatter-
ing [20]. In addition, we also have to consider the Lorentz
transformation of current operators. Explicitly, we have

(pf q' p' kx eA WA)

In the limit where the total ~-nucleon momentum is
small, the expressions of Eq. (25) are reduced to the
form commonly used in 7r-nucleus scattering [20]

e(py)q-~ (q)py
(px)+ -(q)

e(p;)k~ —k~p;
e(p;) + k~

(27)

In the 6-hole model calculations of (p, 7r) reactions [23],
one further takes static limit e(p) ~ mN to simplify the
calculation. In this work, we use Eqs. (24)—(26).

In Eq. (23), the current operator J~ in the ACM is
related to the current J operator in 2CM by a Lorentz
transformation. Its matrix element can therefore be cal-
culated From the matrix elements of J defined by Eq. (2).
We find that

= E (Q, py, q, ~, kx~ ps)X/2

x (my~ep Jg(Q, tc, W~) ~m;) (23) J~(q, ~, W~)

with

e u mew
F(g, pg, q~, k~, p) = „,(24)

= J(Q, m, W)

P J(Q, ~, W) .Pi
'~S, "(~" "

W,'+~S, (28)

QS QS

W, —~S,
k~ — P + (k~ P)P

S~ S~

(25)

where e(p) = /md+ p2 is the nucleon energy and

(q) = gm2 + q2 is the pion energy. The relative mo-
menta Q for the 7rN state and tc for the pN state are
evaluated from individual momenta p, , py, q, and k~
in ACM by using appropriate Lorentz transformations.
Explicitly, we have

where W = (W&~ —P2)i~2. The time component Jo in
the above equation can be expressed in terms of the spa-
tial component J by using the gauge-invariant condition
Jo ——lr, .J. Note that Eq. (28) is not free of ambiguities
since for the ofF-shell kinematics W~ g W, the transfor-
mation defined by replacing S~ by S and W~ by R' is
also justified. In the energy region we are considering,
the difFerences are negligible. We use Eq. (28) in our
calculations.

To simplify numerical calculations, the collision energy
W in Eq. (28) is chosen by using the fixed-scatterer
approximation [20]:

W = $[k~ + e(—k~/A)] —(k~ —k~/A) )'~

k„,X
In a full calculation, R' must depend on the Fermi mo-
mentum of the target nucleon

W = ([k~ + (p;)] —(k + p, ) )'

(3

()
FIG. 2. Graphical representation of the (p, 7r) reaction

within the distorted-wave impulse approximation.

This will increase considerably the computation time
since within the NBL model the AN scattering matrix
in the final-state interaction term in Eq. (2) has to be
computed for each initial nucleon momentum p, Such a
full calculation is still beyond our computation capabil-
ity.

To calculate the amplitude Eq. (22), it is more conve-
nient to expand the pion wave function y and nucleon
wave function g into partial waves
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x(„)*(q)= ). &i'„, .(q~)&i. .-.(q)xi. '(q) term B1

g~(p, m, ) = ) R„ i (p)(j~, m~ ~t I/2mi m, )

(29) t ' . (py, q;p;, k~, ep, W~)

= (my)Bp+ iBg. o~m;) . (30)

xYi. , (p) .

The elementary pion photoproduction amplitude can be
decomposed into a spin-non8ip term Bo and a spin-Hip

Substituting the expansions Eqs. (29) and (30) into Eq.
(22), we obtain the following partial-wave form of the
pion photoproduction amplitude:

&i'„.(q~)
J,M,L,S,a,P

AJ'Ls dp;d~l 'qYi „j —1 + 2 J& R pf Rpp,

x([&i.(6 ) &ip(pi)](L) +&)[z]Iud= —~+& '+» .

We note that the basic nuclear structure input to Eq.
(31) is also the one-body density matrix A&(~&&) defined

in Eq. (16). This establishes the close relation between

(e, e'), (vr, z'), and (p, ar) reactions. The differential cross
section of (p, m) on nuclei can be calculated from the
scattering amplitude Eq. (31) by using the following ex-
pression:

4qA Ef(qA)Ei(kA)id (qA)&A

x ) ) /Tf /')
M;,My

1

2(2J;+1)
(32)

eg .J(Q, ~, W) m ) 0;(cr, q, k~, eg)C;(W),
i=1,4

(33)

where E; and Ey are, respectively, the total energies of
the initial and the final nuclear states in the ACM system.
W~ ——E;(k~) + k~ is the total collision energy.

The DWIA calculations defined by the above equa-
tions are carried out exactly in momentum space. All
nonlocal efFects due to the off-shell dynamics and nu-

cleon recoil are included without introducing further ap-
proximations. The advantage of a momentum-space ap-
proach was emphasized in earlier (7r, z') studies [6,7] and
also in (p, z') studies [10,11]. It is significantly difFer-

ent from the coordinate-space approach [4,8], which is
derived from neglecting some, but not all, momentum
dependence of the operators of Blomqvist and Laget [14]
such that the Fourier transform of the momentum-space
matrix elements to coordinate space can be performed
analytically. To illustrate the importance of the nonlo-
cal effects included in our approach, we will compare our
full calculation with the calculation based on the fac-
torization approximation. In the factorization approx-
imation all relativistic transformations defined by Eqs.
(23)—(26) are neglected and only the on-shell informa-
tion is used to define the pN ~ mN amplitude. If we

express the current matrix element J in the usual Chew-
Goldberger-Low-Nambu (CGLN) form (see Eq. (3.10) of
Ref. [4]), the factorization approximation is qualitatively
equivalent to Inaking the following replacements within
our momentum-space DWIA formulation:

O2=~A Xq

In the right-hand side of Eq. (33), the CGLN coefficients
C;(W) depend only on the collision energy. This is possi-
ble only when the ofF-shell effect [contained in the second
term of Eq. (2)] has been neglected. With this simplifi-
cation, one can carry out a Fourier transform of Eq. (33)
and obtain a coordinate-space formulation of DWIA. In
Sec. V, we will examine the accuracy of the factorization
approximation.

IV. CORE POLARIZATION

An important aspect of our calculations is to include
core polarization effects in describing nuclear excitations.
This is necessary since the 1p-shell models of Cohen and
Kurath [2] and Hague and Maripuu [3] were known to
be inadequate in describing transitions involving collec-
tive modes, such as E2 transitions between states in the
ground-state rotational band. In the previous (e, e') and
(z, 7r') calculations, the procedure was to introduce effec-
tive charges or enhancement factors for those multipolar-
ities. In this work, these effects are calculated &om the
polarization of the core by using the following perturba-
tive approach:

(J~l&~l J') = (JJ"Io~l J')

q+ JF &res &J Ji (35)

where Og is any one-body transition operator,
~ Jy) and

~
J;) are initial- and final-state vectors defined in the 1p-

shell model space. The Hamiltonian IIO represents the

I

where C, are scalar functions calculated from the incident
photon energy in the fixed-scatterer approximation, and
0; depend on the spin operator and photon polarization
vector. For example,
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mean field of the shell model. The operator Q is the pro-
jection operator onto the space outside the p-shell space.
In the right-hand side of Eq. (35) the first term is the
matrix element between the p-shell states, and the second
and the third terms represent the efFects of core polar-
ization on the transition matrix element. The residual
interaction V„, of Bertsch et al. [24] is used in our cal-
culations. It is necessary to include the excitations up to
6~ to get convergent results. An explicit formula of the
core polarization is given in Ref. [4].

V RESULTS FOR OB AND DISCUSSIONS

The most complex nucleus in the 1p-shell region is B,
as discussed, for example, in Ref. [25]. A quantitative
description of all of the existing data of (e, e'), (vr, vr'),
and (p, vr) reactions on ioB requires accurate treatments
of both the reaction mechanisms and nuclear structure.
To test our approach, it is therefore sufBcient to focus on
this target nucleus in this paper.

The shell model of Cohen and Kurath [2] is used to
describe the excitations of B. Following the traditional
approach, we assume that the single-particle wave func-
tions are of the oscillator form with its range parameter
b [g(r) e[ ('~s) ~zj] adjusted to fit the (e, e') form fac-
tors. The use of oscillator wave functions permits an ex-
act treatment of the center-of-mass motion and simplifies
considerably the calculations of nuclear matrix elements.
As demonstrated in Refs. [28,29], theoretical predictions
of (e, e') form factors are rather sensitive to the range pa-
rameter (b for our case) of a single-particle wave function.
It is difficult to describe all of the (e, e') form factors for

B with a single value of b. In our calculations, the opti-
mal value of b is between b = 1.5 and 1.6 fm. The results
with b = 1.6 fm (solid curves) and b = 1.5 fm (dashed
curves) are compared in Fig. 3 for the transitions to the
(J,T) = (3+, 0) ground state, and in Fig. 4 for the
transitions to the (0+, 1) state at 1.74 MeV and (2+, 1)
state at 5.16 MeV. Note that these results are rather dif-
ferent from those of Ref. [28]. The (e, e') form factors
are fitted in Ref. [28] by using single-particle wave func-
tions generated from a Wood-Saxon potential and ne-

glecting the core polarization efFects. Furthermore, there
are some differences in calculating the efFects due to one-
pion-exchange current. We see in Fig. 3 that b = 1.6
fm (solid curves) is favored by the ground-state T = 0
transition. On the other hand, Fig. 4 shows that T = 1
isovector transitions to the (0+, 1) and (2+, 1) excited
states can be much better described by a smaller value
of b = 1.5 fm (dashed curves). This perhaps indicates
the need of a more sophisticated approach to treat ei-
ther the exchange currents or core polarization effects.
To illustrate this, we show in Fig. 5 the efFects due to
one-pion-exchange current and core polarization for the
isovector T = 1 transitions. It is seen that both efFects
are very significant except in the region near zero mo-
mentum transfer. The agreement with the data at q 4
fm region is mainly due to the core polarization efFect. To

3, 0)
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fit the T = 1 transition form factors for these two states
with b = 1.6, we need to have larger contributions from
either one of the mechanisms or both. The possibilities
are to consider short-range exchange currents and/or to
use modern efFective interactions to calculate the core po-
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FIG. 4. The transverse form factor FT(q) for the tran-
sitions to the (0+, 1) state at 1.74 MeV and the (2+, 1)
state at 5.16 MeV. The data are from Refs. [28—30]. The
solid (dashed) curves are calculated with oscillator parameter
5 = 1.6 (1.5) fm.

FIG. 3. The charge I"~ and transverse I"T form factors of
the ' B ground state. Solid (dashed) curves are calculated
with b = 1.6 (1.5) fm. Note that Fo(0) = 1 is chosen to
normalize the data of Ref. [26]. The data of FT are from
Refs. [27,28].
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curves are obtained when core polarization efFects are not in-
cluded.

FIG. 5. The transverse form factors I"T for the transitions
to the (0+, 1) state at 1.74 MeV and the (2+, 1) state at 5.16
MeV. The solid curves are results from calculations includ-
ing both the one-pion-exchange current (exc) and core po-
larization (cp). The dashed curves are obtained when the
core polarization efFect is not included. The dotted curves
are obtained when the one-pion-exchange current is also not
included in the calculation. The data are from Refs. [28-30].

larization efFects. Both are nontrivial tasks and beyond
the scope of the present investigation. In the rest of the
calculations based on the model of Cohen and Kurath,
we will iavestigate results for both b = 1.5 aad 1.6 fm.

The core polarization efFects are further illustrated in
Fig. 6. We show the results for the charge and trans-
verse form factors of the ~ 8 ground state. In the top
two 6gures of Fig. 6, it is seen that when the core polar-
ization efFects are included (solid curves), the slope of the
charge form factor is better described in the region near

q 3 fm . At large momentum transfer, the shape
of the transverse form factor is altered signi6cantly by
the core polarization efFects. These can be understood
&om the lower parts of Fig. 6. It is seen that when the
core polarization efFects are included (solid curves), the
locations of the minima of CO and Ml form factors are
shifted drastically to higher momentum transfer region.
The large enhancement of the C2 form factor makes the
static quadrupole moment in good agreement with data,
while the M3 form factor is suppressed. An important
point to mention here is that it is not possible to re-

produce the efFects of core polarizatioa on form factors
by introducing state independ-ent effective charges (or en-
hancement factors) within the 1p-shell model space. The
efFects shown in Fig. 6 are the consequences of the efFec-
tive iateractions of Bertsch et al. [24]. We should empha-
size here that with the core polarization efFects included
and the value of the oscillator constant b fixed by fit-
ting (e, e') form factors, our subsequeat (x, s') and. (p, m)
calculations do not have any adjustable parameters.

Extensive (n, m') data for isB at 164 MeV were ob-
tained by Ziedman et aL [31].The data were analyzed by
using the DWIA approach of Ref. [7] and the shell model
of Cohen and Kurath. The 6ts to the data for some col-
lective states were obtained only when enhancement fac-
tors were introduced. In this work, we will not introduce
enhancement factors and also improve the calculations by
(1) generating pion wave functions from the optical po-
tential derived [22) from the 6-hole model of pion-nucleus
scattering and (2) calculating the nN-+ mN ofF-she.ll t
matrix from the model of Nozawa, Blankleider, and Lee
[1]. Furthermore, the range parameter b of the assumed
oscillator single-particle wave functions has been deter-
mined in our (e, e') calculations discussed above. As com-
parisons, we show the results for both b = 1.5 and 1.6 fm.
As displayed in Fig. 7, the values of b needed to obtain
agreements with the data are similar to that in (e, e').
We again see that the isoscalar transition to the ground
state favors b = 1.6 fm (solid curves), while the isovector
T = 1 transition to the (0+, 1) state can be much better
described by b = 1.5 fm (dashed curves). Unfortunately,
the (2+, 1) state was not resolved experimentally. In Fig.
8 we show that the data in the energy region of 5.11—5.18
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FIG. 7. The differential cross sections of pion scattering
on B leading to the (3+,0) ground state, (0+, 1) at 1.74
MeV, and (2+, 1) at 5.16 MeV. The solid (dotted) curves are
calculated with oscillator parameter 5 = 1.6 (1.5) fm. The
data are from Ref. [31].

The agreement with the data in these cases is certainly
satisfactory. The (x, m') scattering leading to other states
will be discussed later.

We now turn to presenting our results for (p, sr+) reac-
tions on B. Compared with previous works [4,8—13], the
main feature of our approach is to use the NBL model to
generate the off-shell t matrix of the pN ~ mN process
to calculate the DWIA amplitude Eq. (22). Further-
more, the core polarization effects and nonlocal effects
due to the target nucleon Fermi motion, as defined by
Eqs. (24)—(28), are treated exactly in the calculations.
The importance of these effects is illustrated in Fig. 9.
The dotted curves are obtained &om using the factoriza-
tion approximation defined by Eq. (33) and neglecting
the core polarization effects. The dashed curves are ob-
tained when the relativistic transformations defined by
Eqs. (23)—(26) are included, but the off-shell dynam-
ics is still neglected. When the off-shell effects of the
NBL model are included, the predicted cross sections are
the dash-dotted curves shown in Fig. 9. A good agree-
ment with the data of 183 MeV is obtained only when
the core polarization effect is also included to obtain the
solid curves. At 320 MeV, the full off-shell calculation
underestimates the data by about 20% at 45' but is in
good agreement with the data at 90 . Apparently, the
factorization approximation Eq. (33) is not adequate for
probing nuclear structure using (p, vr) reactions.

In Fig. 10, we show that the calculated (p, 7r) cross
sections are rather insensitive to the value of b. We use
b = 1.5 fm for the rest of the results presented below.

MeV can be described if we add the contributions &om
(2+, 1) (dotted curve) and also Rom the nearby negative
parity state (2, 0) at 5.11 MeV (dashed curve). The
transition density for this negative parity state is calcu-
lated by assuming a simple (dsy2, pz&2) excitation with

the strength adjusted to fit to a value of B(E3) 8e2
fms which is close to the value ( 10.4 fms of Ref. [31].
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FIG. 8. The differential cross sections of pion inelastic scat-
tering from B leading to the (2+, 1) state at 5.16 MeV (dot-
ted curve) and the (2, 0) state at 5.11 MeV (dashed curve).
The solid curve is the sum of these tmo contributions. The
data are from Ref. [31].

FIG. 9. The differential cross sections of the
B(p, »r+) Be(0+, 1) at E» = 183 and 320 MeV. See the

text for the explanations of the curves. The data are from
Refs. [32,33].
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solid (dotted) curves are calculated with oscillator parameter
b = 1.6 (1.5) fm. The data are Irom Ref. [32].

We now demonstrate that the core polarization effect
is essential in obtaining a simultaneous description of
(e, e'), (z, z'), and (p, z.) reactions. We first consider
the cases in which the data of these three processes ex-
ist. The calculations using the shell model of Cohen and
Kurath [2] are the dotted curves shown in Fig. 11. The
solid curves are obtained when the core polarization ef-

fects are included. Clearly the core polarization effects
improve the agreements with the data of the transitions
to the (0+, 1) state in all three processes. This is due to
the suppression of M3 transition density, as seen in Fig.
6 for (e, e') tra, nsverse form factors.

In the right-hand side of Fig. 11, we see that the core
polarization effect on the (2+, 1) state is also significant.
But it does not remove the discrepancies with the data
of the (p, 7r) reaction. It is therefore interesting to see
whether the problem can be resolved by using a difFer-

ent shell model. This is done by considering the 1p-shell
model of Hauge and Maripuu [3]. The main feature of
this model is that the effective interactions are deduced
from nucleon-nucleon phase shifts; The model is compa-
rable to the model of Cohen and Kurath in describing the
properties of low-lying states of A = 6—14 nuclei. How-
ever, the predicted transition densities for some states
can be signiicantly different &om that of Cohen and Ku-
rath, owing to some differences in the matrix elements
of effective interactions. The comparisons of the model
of Hauge and Maripuu (dotted curves) and the model
of Cohen and Kurath (solid curves) are shown in Fig.
12. Their differences are small for the transitions to the
(0+, 1) state, but are very dramatic in all three reactions
leading to the (2+, 1) state. The difFerence mainly comes
&om the calculations of the Ml transition strengths. The
results shown in Fig. 12 clearly indicate the usefulness
of a consistent calculation of (e, e'), (z, vr'), and (p, vr)

in distinguishing theories of nuclear structure. It will be
interesting to extend the measurements of ioB(p, z+) for
these two states to higher energies. To motivate these ex-
perimental efforts, we compare their energy dependences
at e = 45' and 90' in Fig. 13 for the (0+, 1) state and
in Fig. 14 for the (2+, 1) state. We again see that their
differences are very dramatic for the transition to the
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Kurath [2] (Hauge and Msripuu [3]). The data are from Refs.
[32-35].

(2+, 1) state, but are very small for the (1+,0) state.
Finally, we present predictions for future experiments

in the b, excitation energy region where extensive (m, s')
data exist [31]. The results presented in Figs. 15—17
are (vr, vr') at E = 164 MeV and (p, xo) at E~ = 320
MeV. For each case, the dotted curve is the prediction
based on the shell model of Cohen and Kurath. The

FIG. 15. The calculations for (e, e') and (s., s') at E = 164
MeV and (p, s' ) at E~ = 320 MeV leading to the (1+,0)
state at 0.?2 MeV and the (0+, 1) state st 1.74 MeV. The
solid curves are the full calculations. The dashed curves are
obtained when the effects of core polarization are neglected.
The (s, n') data are from Ref. [31]. The (e, e') data are from
Refs. [28,29].

solid curve includes the eKect of core polarization. All
(7r, 7r') predictions are in reasonable agreements with the
data, except the case of the very weak transitions to the
(3+, 0) state at 4.77 MeV which has the same spin and
isospin as the oB ground state. It is found [37] that,
with a 1'%%uo admixture of these two states, the predicted
(7r, 7r') cross section, which is dominated by the I = 2
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FIG. 14. Same as Fig. 13 except for the transition to the
Be(2+1) state. The data are from Refs. [32—34].

FIG. 16. Same as Fig. 15 except for the transitions to the
(1+,0) state at 2.15 MeV and the (2+, 0) state at 3.58 MeV.
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and S = 0 transition, can be reduced to the experimen-
tal value while the changes in the predicted magnetic
moment and the quadrupole moment of the ~oB ground
state are negligible. To explore this point further, it will
be interesting to see whether the same mixture is also
needed to describe the data of (p, no) data.

Another interesting case is the excitation of the (4+, 0)
state at 6.025 MeV shown in Fig. 17. The core polariza-
tion brings the predictions for (e, e') and (z, z') reactions
to agreement with the data. An experimental test of our
prediction (p, zo) for this state will be very interesting,
since unlike introducing the enhancement factor for the
(z, z') calculation in Ref. [31], the core polarization ef-
fects are calculated directly fmm efFective interactions of
Bertsch et al. Experimental efForts to test our predictions
presented in Figs. 15—17 will complete the study of the

properties of B.
In summary, we have developed an approach to inves-

tigate the structure of nuclei by using (e, e'), (z, vr'), and
(7, z) reactions. Since the (e, e') and (vr, vr') can be car-
ried out by using the well-developed approaches, the fo-
cus of this work is the development of a momentum-space
DWIA approach to calculate the (p, n ) cross section from
the NBL model [1]of pN w mN reaction. We have shown
that the data of (e, e'), (z, z'), and (p, z') on ~oB can be
described consistently when core polarization is included
in the structure calculations and nonlocal effects due to
off-shell dynamics are accounted for rigorously. While
the agreements with the data are encouraging, it is im-
portant to point out that the employed DWIA approach
does not account for all of the 6-nucleus dynamics. The
use of the pion optical potential derived from the b,-hole
model [22] in our calculations at energies near the 6 ex-
citation region certainly account for some, if not major,
parts of the 6-nucleus dynamics. But it is necessary to
examine the medium efFects on the 6 part of the ofF-

shell t matrix t~'" of Eq. (22). Perhaps the inforraation
from the b,-hole calculations of (p, z) [23] and (p, zN)
[38] reactions can be used to construct such a medium-
corrected off-shell t matrix. It is, however, a nontrivial
task in practice. Our investigation in this direction will
be published elsewhere. Judging from the general agree-
ments with the extensive data of ~oB, it is reasonable
to apply our approach to carry out investigations for all
1p-shell nuclei. Our results will be presented in the next
paper.
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