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1V1V correlations and relativistic Hartree-Fock in Bnite nuclei

R. Fritz and H. Muther
Institut far Theoretische Physik, Universitat Tubingen, D 780-76 Tiibingen, , Germany

(Received 28 September 1993)

Two different approximation schemes for the self-consistent solution of the relativistic Brueckner-
Hartree-Fock equation for 6nite nuclei are discussed using realistic one-boson-exchange potentials. In
a first scheme, the effects of correlations are deduced from a study of nuclear matter and parametrized
in terms of an effective 0', co, and x exchange. Employing this effective interaction relativistic Hartree-
Fock equations are solved for 6nite nuclei 0, Ca, and Ca. In the second approach the effect of
correlations are treated in the Brueckner-Hartree-Fock approximation directly for the 6nite nuclei,
but the modi6cations of the Dirac spinors in the medium are derived from nuclear matter assuming
a local-density approximation. Both approaches yield rather similar results for binding energies and
radii in fair agreement with experimental data. The importance of the density dependent correlation
effects is demonstrated and different ingredients to the spin-orbit splitting in the shell model of the
nucleus are discussed.

PACS number(s): 21.60.Jz, 21.10.Dr, 21.10.Ft, 21.65.+f

I. INTRODUCTION

The various attempts to derive the bulk properties of
nuclear systems from realistic nucleon-nucleon (NN) in-
teractions are con&onted with two major obstacles. The
6rst one is the necessity to consider the effects of NN cor-
relations which are due to the strong short-range and ten-
sor components in a realistic NN interaction. The second
one is of a relativistic nature: The strong scalar-meson
(o') exchange part required in realistic meson-exchange
potentials [1,2] gives rise to a significant modification of
the Dirac structure of nucleons in the nuclear medium
[3]. Therefore relativistic features should be included in
the many-body theory of nuclear systems, in order to
account for this effect.

The importance of the NN correlations is made obvi-
ous by the fact that no binding energy of nuclear sys-
tems is obtained if these correlations are ignored: A
Hartree-Fock (HF) calculation employing, e.g. , a realistic
one-boson-exchange (OBE) potential [2], which fits NN
scattering data, yields unbound nuclei. Various methods
have been developed to include the effects of two-nucleon
correlations. One possibility is the so-called Brueckner-
Hartree-Fock (BHF) approximation. In this approach
one considers a Slater determinant, which should be an
appropriate model wave function for the nuclear system
to be investigated. Solving the Bethe-Goldstone equation
yields an effective interaction, the G matrix, which de-
pends on the bare NN interaction and the model wave
function considered. The self-consistency condition of
BHF now requires that the model wave function, which
is needed to set up the Bethe-Goldstone equation, be
made identical to the solution of the HF equations using
the G matrix as a kind of effective interaction.

This self-consistency problem is simplified for nuclear
matter since the translational symmetry of this infinite
system requires plane waves for the single-particle wave
functions to build up the Slater determinant. For many

years, however, the BHF self-consistency problem has
also been solved for finite nuclei [4,5].

The inclusion of NN correlations led to a substantial
improvement in the microscopic description of bulk prop-
erties of nuclei. For both nuclear matter as well as finite
nuclei BHF calculations employing various realistic NN
interactions gave results which were located on the so-
called Coester band [6,7]. This means that either the
calculated binding energy turned out to be too small or
the calculated radii were too small (which corresponds
to a saturation density of nuclear matter too large) as
compared to the experimental data. Attempts have been
made to improve the many-body approach such that re-
sults "off the Coester band, " closer to the experimen-
tal data, were obtained. Such attempts have been made
within the hole-line expansion of the Brueckner theory
[8] or using difFerent schemes [9—11]. Even today it is
not really clear if it is possible to derive the bulk proper-
ties of nuclear systems &om realistic NN forces wit:hin a
nonrelativistic many-body theory [12].

Motivated by the success of the phenomenological cr-

ur model of Serot and Walecka [3], attempts have been
made to incorporate the relativistic features of this ap-
proach also in nuclear structure calculations which are
based upon realistic NN forces. In this approach, one ac-
counts for the fact that the relativistic nucleon self-energy
in a nuclear medium is given essentially by a large attrac-
tive component, originating mainly from the exchange
of the scalar 0 meson and therefore transforming like a
scalar under a Lorentz transformation, and a repulsive
component, which transforms like the zero component
of a Lorentz vector and is mainly due to the exchange
of the u meson. The single-particle motion is described
by a Dirac equation which includes this self-energy. The
strong components of the seIf-energy yield solutions of
the Dirac equation, which are quite different &om the
Dirac spinors describing the nucleons in the vacuum.

This change of the Dirac spinors in the medium gives
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rise to a self-consistency problem beyond the one already
discussed above: Already in evaluating the matrix ele-
ments of the bare NN force V one should know the struc-
ture of the Dirac spinors, resulting from the solution of
the Dirac equation. Again, this self-consistency problem
is highly simplified in nuclear matter. In this case the
medium dependence of the Dirac spinors is characterized
by an effective mass, which represents the ratio of the
small to the large component of the spinor.

Such Dirac BHF (DBHF) calculations have been per-
formed for nuclear matter by, e.g. , Shakin and collabo-
rators [13],Brockmann and Machleidt [14], and ter Haar
and Malfliet [15]. The basic aspects of this approach have
been thoroughly investigated by Horowitz and Serot [16].
Due to the scalar field, the nucleon mass is reduced, en-
hancing the ratio between small and large components of
the Dirac spinors. This change in the Dirac spinors yields
a reduction of the scalar density, which implies that the
attraction due to the exchange of the o meson in OBE po-
tentials is reduced. At small densities of nuclear rnatter
this loss of attraction is counterbalanced by a reduction
of the kinetic energy, which is also caused by the medium
dependence of the Dirac spinors. At larger densities the
loss of attraction in the NN interaction overwhelms the
loss of repulsion in the kinetic energy and for those densi-
ties the energy calculated in the DBHF approximation is
less attractive than the corresponding energy calculated
in the BHF approximation, ignoring these relativistic ef-
fects.

Consequently, the saturation points calculated for nu-
clear matter in the DBHF approximation are shifted to
smaller densities as compared to the BHF result. Brock-
mann and Machleidt succeeded in constructing a real-
istic OBE potential which fits NN scattering data and
also yields DBHF results for nuclear rnatter in satisfying
agreement with the empirical data [14]. The same fea-
ture is also observed for the potential A, defined in Table
A.2 of Ref. [2], which we will consider also in our present
investigation.

This success of the DBHF approximation in nuclear
matter gives rise in the hope that the same DBHF ap-
proximation may also be successful in reproducing the
binding energies and radii of finite nuclei. From the dis-
cussion above, it is obvious, however, that a complete
self-consistent calculation for finite nuclei is rather in-
volved. Therefore we are going to investigate two ap-
proxirnations, in which either the effects of correlations
or the relativistic effects are taken from studies of nuclear
matter, while the respective other components of the cal-
culation are treated in a self-consistent way directly for
the finite nuclei.

In the first approximation, we determine an effective
meson theory (o, m, and s mesons), which yields in a
Hartree-Fock approximation for nuclear matter at a given
density p the same observables for the self-energy of the
nucleons and the binding energy as a DBHF calculation
of nuclear matter. This leads to a set of coupling con-
stants, which depend on the nuclear density. This density
dependence reflects the density dependence of the corre-
lations described by the G matrix of DBHF. Keeping
track of the density dependence of these coupling con-

stants one can perform a relativistic HF calculation using
techniques as described, e.g. , by Bouyssy et al [1.7]. A
calculation along this line has been performed by Brock-
mann and Toki [18] restricted to a Hartree description
and first results of a HF calculation have been presented
in [19]. Both of these earlier investigations allowed for an
exchange of effective 0 and ~ mesons, only.

In the second approximation one is expanding the
single-particle wave functions of a self-consistent BHF
calculation for finite nuclei in a basis of plane waves. The
Dirac structure of these plane waves is taken from the
corresponding state in nuclear matter of a density, which
is equal to the average density for the single-particle or-
bit in the finite nucleus under consideration. In this way
one deduces the Dirac effects from nuclear matter, but
otherwise performs a complete self-consistent BHF cal-
culation. This approach has also been used in Ref. [20].

It turns out that these two very different approxima-
tions yield rather similar results. Therefore one can as-
sume that a result of complete DBHF calculation should
also be close. It is the main aim of the present inves-

tigation to explore the differences between the two ap-
proaches in a systematic way. For that purpose we are
studying results on various nuclei (isO, 4PCa, 4sCa ) us-

ing different OBE interactions (OBE potentials A and C
defined in Table A.2 of [2]). After this Introduction we

define the details of the two approximations towards a
self-consistent DBHF calculation for finite nuclei in Secs.
II and III, respectively. The results are presented and
discussed in Sec. IV and the main conclusions are sum-

marized in Sec. V.

II. EFFECTIVE MESON-EXCHANGE
APPROACH

Our starting point for the description of the nuclear
many-body problem is the effective Lagrangian density
for the interacting nucleons and the 0, u, and 7t mesons,

o

consisting of the free Lagrangian density

(2)

with

F„=B„C —0 4

and the interaction Lagrangian density

(4)

The nucleon field and rest mass are denoted by 4 and
M, whereas the meson fields, rest masses, and effective
nucleon-meson coupling constants are denoted by 4, , m, ,
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and G; or f; with i = {o,~, vr) for the scalar, vector,
and pseudoscalar mesons, respectively. Note that for the
pion we use the pseudovector coupling and suppress the
notations for the isospin degrees of freedom. Moreover,
we already mention here that we will subtract the zero-
range part in the one-pion-exchange contributions to the
NN interaction. This is done to account for the effects
of short-range correlations between the interacting nucle-
ons.

A. Nuclear matter

Following standard techniques [3,17], the Hartree-Fock
approximation for this Lagrangian leads to a Dirac equa-
tion for nucleons with four-rnomentuxn p = (po, p) in
nuclear matter,

scalars. Therefore the Dirac equation can be rewritten
as

h.p*+ M'(p)1~(p s) = »E(p)*~(p s)

introducing the definitions

P' = P [1+Z" (P)]
M (p) = M + Z'(p),
E*(p) = E(p) + Z'(p) .

The formal similarity with a &ee Dirac equation allows
one immediately to determine the nucleon spinor in nu-

clear matter to

(E'(p) + M'(p) ) 'i
@ p)s I)"p X )2E'(p) ) i ~.~.i+M*ip)

h p+M+Z(p)l~(p, ) =»E(p)~(p ), (5)

for the nucleon spinors 4'(p, s), containing the self-energy
Z(p). Because of the isotropy of nuclear matter, the
spinors 4(p, s) are known to be plane waves and in the
rest frame of nuclear matter, the self-energy Z(p) for on-
shell nucleons po = E(p) depends only on the absolute
value of the three-momentum p. This nucleon self-energy
can be split into difFerent parts with a well-defined be-
havior under Lorentz transformations. Because of parity
conservation, time reversal invariance, and Hermiticity,
the most general form of Z(p) is restricted to

Z(p) = Z'(p) —~'Z'(p) + ~ pZ" (p)

with Z'(p), Zo(p), and Z" (p) transforming like Lorentz
I

now with a modified ratio of the spinor upper and lower
components if compared with the vacuum solution. The
spinors are normalized (noncovariant) to

4(p, s) t4'(p, s) = 1, @(p,s) @(p,s)=, (10)Ee p

and the on-shell condition in nuclear matter now reads
like

E'(p)' = M'(p)' + p' .

On the level of the Hartree-Fock approximation, the
mesons used in our Lagrange density give rise to the fol-

lowing contributions to the self-energy:

Z'(p) = —
( ) p, + — qdq G 8 (p, q) —4G 8„(p,q) —3

( )
m 0 (p, q), (12)

(G.)2 1 1 "~ M'(q), , (y. &'

Z (p)= —
( [ p — — qdq G 0 (p, q)+2G 0 (p, q) —3( [

m 0 (p, q), (13)
/G. )t' i i "

» (f.)'
(m ) 4z'»p qm &

IcF 2

Z" (p) = — qdq 2G I' (p, q) +4G I' (p, q) —6
~

~ (p + q )F (p, q) —pq8 (p, q) . (14)

We omit in our notation the obvious dependence of the
self-energies on the Fermi momentum k~. The first term
in Z'(p) and Z (p) corresponds to the Hartree contribu-
tion using

p(kz) = k& and p, (k~) = —
q dq

2 "
2 M*(q)

3~2 o E'(q)

(»)
for the baryon and scalar density, respectively. The re-
maining expressions are due to the Fock (exchange) con-
tributions where we have used the abbreviations

A;(p, q) = p'+ q'+ m, ,' —[E(p) —E(q)]',

0( ) =l ]'A'( q)+'""[
gA;(p, q) —2pq)

~ ( )
A*(J, q) o-'(I» q)

4pq

again j = {O., ur, vr). Two important things have to be
noted. First, as already mentioned above, we have sub-
tracted zero-range contributions &om pion exchange to
the self-energy Z(p). Second, we do not want to consider
retardation effects in the meson propagators. Although
retardation causes no problems in nuclear matter, the
neglect leads to significant simplifications in finite nuclei.

In the next step we determine effective coupling con-
stants G and G for the scalar and vector mesons by
requesting that the HF expressions for the scalar self-

energy Z'(p) calculated at the Fermi surface (p = ky)
and the binding energy per nucleon reproduce the corre-
spending results of a Dirac-Brueckner-HF (DBHF) calcu-
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lation [2,14] using realistic N1V forces, namely, versions
A and C of the Bonn potential [2]. For the pion we fix
the coupling constant to the free value f /4vr = 0.08
and the masses of the mesons are chosen to be identical
to those of the OBE potential (m„=138 MeV, m =550
MeV, and m =783 MeV). In this way we obtain for each
baryon density p two effective coupling constants G (p)
and G (p). The density dependence of these coupling
constants reHects the density dependence of the correla-
tions taken into account in the DBHF approximation.

mentum j have different orbital quantum numbers l .
We introduce the corresponding l' to the same j,

l~+1 for t~ = j~ —2,
—1forl = j +2,

(22)

and a' = {n,r', q ), r' = (2j + 1)(l' —j ). P„, (0)
is constructed as usual,

B. Finite nuclei nl, I )ms

(23)
Once the density-dependent coupling constants are de-

termined, we assume for the study of 6nite nuclei that we
can account for the density-dependent correlation efFects
in a relativistic HF calculation by employing the cou-
pling constants calculated at the local density G (p(r))
and G (p(r)), where the density profile p(r) is deter-
mined &om the result of the relativistic HF calculation in
a self-consistent manner. For that purpose we write the
nucleon spinor for the 6nite system in coordinate space,

( I
)=@ ()= I; „;I&.. .(~)x;,(,.)

g (p) P (0)
( if (r) P „. .(0) )

Again, the spinors are normalized to

d r4t(r)@(r) = r dr g (r) + f (r) = 1. (21)
0

All quantum numbers are summarized by the index o, =
(a, m ) with a = (n, K, q ). n characterizes the radial
quantum numbers, whereas r. = (2j + 1)(l —j ) de-
scribes the angular momenta. Obviously the upper and
lower spinor components for the same total angular mo-

For the isospinor yi
~ ~

we use

+1 for protons,
—1 for neutrons . (24)

The Dirac equation is solved by expanding the radial
functions g (r) and f (r) in a discrete basis of spheri-
cal Bessel functions. The wave numbers for this basis
are chosen such that this discrete basis is a complete or-
thonormal basis in a sphere of radius D. This radius is
chosen to be large enough that the results for the bound
single-particle states are independent on D. With this
expansion the Dirac equation (5) is rewritten in form
of an eigenvalue problem and the eigenvalues (E ) and
eigenvectors (the expansion coefficients for g and f ) are
determined by a simple matrix diagonalization [21].

In the following we give the expressions for the ma-
trix elements of the self-energy in this Dirac matrix,
calculated in the Hartree-Fock approximation. In this
work we consider nuclei with a closed proton and neu-

tron shell only. Therefore, the isovector pseudoscalar me-

son yields no contributions in the Hartree approximation.
The Hartree matrix elements for the isoscalar scalar and
vector parts of the interaction and the Coulomb force are
given as

(~l~."I&) = r drG (r) [gG(r)g((r) —f~(r) fs(r)]

r"«'G {r')p,(r')Io(m r&)IIo(m r &)) (25)

(~l~. IP) = 4.,-.~-.,-.4 .. r'«G-(r) [~-(r)»(&) + f-(&)fs(&)]
0

x m r'dr'G r' pr'I0m r& K0m r~
0 ",.d, P, (r') (1+q-) (1+ qb)

r) 2 2

with the definitions

{~II:."{P)=I-....I-..-. '«(p. {r)po{r)+f {)fo()l['.
0

(27)

C(r) = —4):j.' Ia(r)+ f.(r)'],

(28)
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for the baryon and scalar density in 6nite nuclei, where

j= g2g + 1 and index a running over all occupied orbits.
If the baryon density of the protons p„(r) is needed as
in the Coulomb self-energy Z, index a runs only over
occupied proton orbits. Note the use of the coupling con-
stants depending on the local position, which is just an
abbreviation for G;(r) = G, (p(r)). In Eqs. (25)—(27)
r & and r& denote the smaller or bigger value of r and
r' Th. e functions Ii, (z) and KL, (2') arise Rom the mul-

I

II,+i)2(x) — Kl.+i)2(~)I,(&)=, K, (z) = (29)

The Fock contributions originating &om the o exchange
read

tipole expansion of the meson propagator in coordinate
space and are defined using the modified spherical Bessel
functions I and K [22]:

(a)I:.'ll) = I-.,-g .. .Ic.,c. -, ).Ic .. r'gr(G-(") Ig-(")g.(") —f-(")f.(r)I

x r'cgr'G (r')(g, (r')gc(r') —f,(r')fc(r')f) ( )~Far~~ )Icc(m r&)K&(m r&)),
0 L

(30)

with index c running over all occupied states. Here and in the following expressions for the other mesons the ((ill&L I Il))

represent the reduced matrix elements of the spherical harmonics and

L /
(all&~(L)lll) = ( )'l—-isi-—isLJ

I

'
I
«- 4 L & ~

Using this notation, the matrix elements of the Fock contributions arising &om the u exchange can be written

(&I~. l&) =b- -.~- .&~ e. - ) ~..e.
a c

x r drG (r) [g (r)g, (r) + f (r)f, (r)] r' dr'G (r') [g, (r')gs(r') + f, (r')fs(r')]
0 0

x ):(olla'~llc)'~~(m-r&)K~(m-r&) + ): r'«G (r) g-(r)f. (r)(c'IIT~(L)llo)
L LJ

-f-(r)g. (r)(cllT~(L) llo') r"«'G-(") g.(r')fs(r')(cllTJ(L) llo')
0

—f, (r')gc(r')(c'))Tr(I)~~a) Ir(m r&)IIc(m r&)) (32)

The isovector pseudoscalar meson using the pseudovector coupling yields

q ,q,

LgLg

(~I~. IP) = ~-.,-.~-.,-.~, , I I =, ):(2-b
(f.l' 1" '""),m) j'

2 ~a~Qx r dr — [g (r)g (r) + f (r)f, (r)][gb(r)g (r) + fs(r)f, (r)]
0 SX

+ms ) L (alYIII ]le)l ) i ' ' [(z + z, + h(Li))g~(r)g, (r) —(1(~+z, —h(Li)jf~(r) f,(r)]

x r' dr'[jr'+ I(;, + h(L2))gs(r)g, (r) —(rs+ r, —h(L2)) fs(r) f, (r )]R(Li, L2, r, r')
0

+- ) [(ollT~(L) llc)g-(r) g.(r) + (o'IIT~(L) llc') f-(r) f-(r)]
LJ

a ((allT&(I)ll )gc(r)g. (r) + ( 'III'r(I)II'')fc( )f.(")I)

with L; = (L —1, L + 1) and the auxiliary functions

—L if L;=L —1,
L+1 if L;=L+1,

R(Li, L2, r, r') = 8(r' —r)II„(m~, r)KL,, (m„,r') + 8(r —r')Il, , (m~, r')Kl. , (m„,r),
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using the step function 0(x —y). The expressions for the self-energy show that the Hartree contributions can be
rewritten by defining a local potential, e.g. ,

r dr [g (r)g~(r) —f (r)f~(r)] V (r)

=h„„,b, b, „d'r@t(r)p'V (r)C&(r),

with

V (r) = —G (r)m r' dr'p, (r')G (r')Ip(m r()Ko(m r)) (37)

whereas the Fock contributions are obviously nonlocal.
Solving the Dirac equation (5) with the technique men-

tioned above in a self-consistent way one can finally deter-
mine the binding energy of the nucleus with A nucleons
as

E= — ) E +T
a, (occ)

(38)

where E denotes the single-particle energy obtained by
solving the Dirac equation and T is the corresponding
kinetic energy.

III. LOCAL-DENSITY APPROXIMATION

In contrast to the efFective meson-exchange approach,
which, as discussed in the preceding section, determines
the e8'ects of correlations from studies of nuclear matter,
we are now considering an approximation in which the
relativistic effects are deduced from nuclear matter. For
that purpose we consider as an example the expansion of
an harinonic oscillator (HO) state in terms of plane wave

spinors,

~., i, (p, p) = E*(p,p) + M'(p, p) (
2E*(p, p)

where C'„~(p) are the momentum space HO wave func-
tions. The structure of the plane wave Dirac spinor, in
particular the ratio of the small to large component, is
determined by the quantities p*, M* and E' as defined
in Eq. (8). The values actually used for these quanti-
ties are taken from the DBHF calculations at a density

p for the realistic NN interaction under consideration.
In this sense the Dirac structure of the harmonic oscil-
lator state defined in Eq. (39) is derived from nuclear
matter of a given density p. For the Dirac spinors as pre-
sented in Eq. (39) one can calculate the matrix elements
of the OBE potential under consideration employing the
conventional techniques and identify the resulting num-
bers with matrix elements of a two-body interaction V
between nonrelativistic harmonic oscillator states,

(~&lv(p) I») (40)

where a - . . b refer to the quantum numbers of the vari-
ous HO states and the parameter p is kept to memorize
that the value of this matrix element depends on a den-
sity parameter p, which determines the Dirac structure
of the spinors used to calculate the matrix element. This
scheme can of course be generalized to single-particle
wave functions diferent from HO functions. In a corre-
sponding way one can also evaluate the matrix elements
for the operator of the kinetic energy,

t &(p)= d'pC' [p p+M]4& —Mb &

M @ . (4l )E'( )

For the interaction defined by the matrix elements of Eq.
(40) one may now solve the Bethe-Goldstone equation

G(Z P) = V(P) + V(P) G(Z P) (42)

I') = Qc'-l~) (43)

and the expansion coeKcients are determined from the
solution of the eigenvalue problem

using the standard techniques of nonrelativistic BHF cal-
culations for finite nuclei [23]. The Pauli operator Q in
this equation is defined in terms of HO states appropriate
for the nucleus under consideration. Beside the usual de-
pendence on the starting energy Z, the matrix elements
of G also depend on the density parameter p characteriz-
ing the structure of the Dirac spinors involved. Keeping
track of this additional density dependence one can ex-
pand the BHF single-particle states li) and

l j) in the
basis of HO states ln),
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). t-i(p')+ ). (~~IG(~="-+~~ pv)l&~) 'p =e'c'-
P j,(occ)

(44)

If one ignores in this equation the medium dependence
of the Dirac spinors by putting p; and p;~ equal to zero,
this Eq. (44) together with the Bethe-Goldstone equation
(42) defines the conventional BHF approach for realistic
OBE potentials [24]. In addition to the self-consistency
requirements of this BHF approach, we now want to ac-
count for the medium dependence of the Dirac spinors
and define an average density for nucleons in the orbit i
by

p;= dr; r pDB~F (45)

with P;(r) the DBHF single-particle wave function and
pD]31rp(r) the radial shape of the baryon density obtained
&om this calculation. This average single-particle density
enters into the calculation of the kinetic energy and it is
also used to define the average density for an interacting
pair of nucleons by

pij = Qpipj (46)

IV. RESULTS AND DISCUSSION

As a first step towards the application of the efFective
meson-exchange approach discussed in Sec. II, we have
to determine the coupling constants G (p) and G (p),
depending on the baryon density p. As discussed in
Sec. II A this is done by adjusting these parameters
in such a way that a mean-field calculation reproduces
at each density the results for the scalar self-energy Z'
and the binding energy per nucleon obtained in DBHF
calculations for nuclear matter [25]. For the mean-field
calculation we consider three difFerent approximations.
In the first approach, we just consider the Hartree con-
tributions to the self-energy and total energy [see Eqs.
(13) and (13)). In the second approach we consider a
o-~ model in the Hartree-Fock approximation; i.e., we
keep the Hartree-Fock terms in Eqs. (13) and (14) which
originate &om the exchange of a a or u meson. This ap-
proach will be called HF(o, ~) or HF1. In the approach
HF2 or HF(o, u, vr) we furthermore consider the eff'ects of
the pion exchange, which means that we are considering
the complete set outlined in Sec. II.

Results for the efFective coupling constants determined
&om DBHF calculations for OBE potentials A and C
[2,25], are listed in Table I for various densities. For
all three approaches considered, the effective coupling
constants G and G decrease with increasing density.
This is also displayed in Fig. 1. The decrease reflects the
fact that the terms in the G-matrix, which are of sec-
ond and higher order in the interaction, contain contri-
butions which are simulated by the exchange of a scalar
and a vector meson [26]. Due to the Pauli operator in the
Bethe-Goldstone equation (42) and due to the change in

the energy dominator, these contributions of higher order
in the bare interaction V are quenched with increasing
density. The importance of the density-dependent cor-
relation efFects parametrized in terms of these coupling
constants is refiected by the fact that the square of the
coupling constants is quenched by a factor 2, if the nu-

clear density is increased from 0.2po to 1.4po (po denoting
the empirical saturation density).

Such a substantial density dependence of the efFective

coupling constants of course afFects the nuclear structure
calculations. This is displayed in Fig. 2, where the re-
sults for the binding energy per nucleon and the efFective
mass of the nucleon determined in a DBHF calculation

kp

0.80
E/A
-7.27

+8
-134.3

Model
Hart
HFl
HF2

G
12.436
11.411
11.227

G
15.403
12.941
13.179

1.00 -10.62 -209.8 Hart
HF1
HF2

11.177
10.265
10.104

13.807
11.668
11.885

1.20 -13.44 -288.8 Hart
HF1
HF2

10.059
9.267
9.118

12.322
10.470
10.674

1.40 -15.59 -374.9 Hart
HF1
HF2

9.224
8.531
8.389

11.168
9.539
9.733

1.50 -14.88 -416.3 Hart
HF1
HF2

8.851
8.197
8.048

10.673
9.145
9.336

OBE potential C

1.20 -11.57 -292.8 Hart
HF1
HF2

10.130
9.297
9.149

12.534
10.669
10.869

TABLE I. DBHF results for nuclear matter derived from
the OBE potential A for the scalar part of nucleon self-energy
(E') and the binding energy per nucleon (E/A) for various
Fermi momenta kf. The columns G and G show the cou-

pling constants which are needed to reproduce these results in
a HF calculation. For this purpose three different models are
considered: the Hartree approximation ignoring the all Fock
contributions to the self-energy and binding energy (model
"Hart" ), the Hartree-Fock approximation ignoring the con-
tribution of the pion exchange (model "HF1"), and the full

model defined in Sec. II A (model "HF2"). All energies are
listed in MeV and the Fermi momenta in units fm . For
a comparison the lowest part of the table also shows results
obtained for the OBE potential C at one speci6c density.
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TABLE II. Results of relativistic HF calculations on 0, considering the exchange of e8ective
cr, u, and x mesons. The coupling constants are determined to reproduce DBHF results for nuclear
matter (OBE potential A) at various densities: p = 0.2po (kp. =0.8 fm ), p = 0.5po (k~=1.l
fm ), and p = 1.4po (k~=1.5 fm ). These results can be compared to those of a self-consistent
calculation (last column) considering local coupling constants as discussed in Sec. II B. Results are
presented for the single-particle energies of proton states, the binding energy per nucleon (E/A,
corrected for c.m. effects), and the radius of the charge distribution (R,q).

[MeV]
e~s)2 [MeV]
ei, rye [MeV]

p = 0.2po
-54.4
-33.9
-18.6

-48.8
-25.4
-13.7

p = 1.4po
-46.6
-20.1
-11.3

Self-consistent
-47.1
-23.8
-17.7

E/A [MeV]
R.h [fm]

-15.17
2.52

-9.29
2.46

-5.38
2.37

-7.73
2.48

a "band" which is perpendicular to the normal "Coester
band" [24].

Furthermore, it is worth noting that the spin-orbit
splitting deduced from the difference in the single-particle
energies E'p3/2 and epzg2 is of course largest for that inter-
action which yields the smallest effective mass in nuclear
matter (p = 0.2pp). The comparison displayed in Ta-
ble II demonstrates the importance of relativistic effects
for the spin-orbit splitting in the nuclear shell model [27].

Table II also contains a first result which is obtained
when we consider an effective meson exchange with lo-
cal coupling constants, depending on the position of the
interacting nucleons as discussed in Sec. II B. As to
be expected, one finds that the single-particle energy for
the pqy2 state obtained in this self-consistent calculation
is closer to the one obtained p = 0.2po, while the single-
particle energy of the deep lying 8&~2 state is closer to
the one obtained at larger densities. It should be men-
tioned that effective coupling constants can safely be de-
rived from nuclear matter calculations only for densities
as low as 0.2 times the saturation density po. For
smaller densities the conventional tools to evaluate BHF
energies yield unstable results [11].Therefore we extrap-
olate the coupling constants to smaller densities using
spline functions in terms of the density.

The next question we want to investigate is the sen-
sitivity of the effective meson-exchange model on the
mesons taken into account. For that purpose we have
performed Hartree calculations for finite nuclei using the
local coupling constants as derived from the Hartree cal-
culations of nuclear matter (column "Hart" in Table I).
In the same way we also perform HF calculations for
finite nuclei, taking into account the effects of o and ~
exchange using the density-dependent coupling constants
derived from nuclear matter ("HF1")and finally consider
the complete model with inclusion of the pion discussed
in Sec. II ("HF2").

Results obtained for these three effective meson-
exchange models for the nuclei 0, Ca, and Ca are
displayed in Tables III, IV, and V, respectively. Using the
OBE potential A, which yields a correct description of the
saturation point of nuclear matter, the Hartree approxi-
mation shows fair agreement with the experimental data
for the binding energy and radius of all three nuclei con-
sidered. Both the results for the radius and the binding
energy are slightly below the experimental values. Em-
ploying potential C yields larger radii but smaller binding
energies. This is the typical feature for two phase-shift
equivalent potentials; the results change along the "Co-
ester band. "

TABLE III. Results of relativistic HF calculations on 0, considering various models for the
effective meson exchange (Hart, HF1, HF2; see Table I) are compared to results of conventional
BHF calculations and BHF calculations which account for Dirac efFects in the way described in Sec.
III (DBHF). Further information see Table II .

e„ys [MeV)
e~s(2 [MeV]
e~i(2 [MeV]
E/A [MeV]

R,h [fm]

e„g2 [MeV]
e~sg~ [MeV]
e~~gs [MeV]
E/A [MeV]

R,g [fm]

-44.0
-21.5
-15.8
-7.20
2.57

-37.0
-17.7
-13.3
-5.60
2.73

HF&

-44.0
-23.4
-15.8
-7.23
2.48

-37.4
-19.4
-13.5
-5.59
2.62

HF2
Potential

-47.1
-23.8
-17.7
-7.73
2.48

Potential
-40.2
-19.7
-14.9
-6.09
2.62

BHF
A
-56.6
-25.7
-17.4
-5.95
2.31

C
-45.2
-19.5
-13.7
-4.03
2.48

DBHF

-49.8
-23.0
-13.1
-7.56
2.46

-40.9
-18.0
-11.0
-5.30
2.59

Hxpt.

-40+8
-18.4
-12.1
-7.98
2.70

-40+8
-18.4
-12.1
-7.98
2.70
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TABLE IV. Results of relativistic HF calculations on Ca. Further information see Table III.
Hart. HF1 HF2 BHF

Potential A

DBHF Expt.

[MeV]
~i.i)~ [MeV]
~g3)2 [MeV]

-19.8
-15.4
-14.5

-21.0
-13.7
-13.2

-20.8
-14.1
-14.2

-30.2
-24.5
-16.5

-21.9
-13.8
-10~ 2

-14+2
-10+1
-7+1

E/A [MeV]
R,h [fm]

eg5(2 [MeV]
ei„(2 [MeV]
cgggg [MeV]

-8.21
3.35

-15.3
-10.9
-10.5

-7.76
3.14

-16.9
-11.3
-10.8

-8.09
3.14

Potential
-16.7
-11.5
-11.5

-8.29
2.64

-21.0
-16,9
-12.0

-8.64
3.05

-16.5
-10.6
-8.0

-8.50
3.50

-14+2
-10+1
-7+1

E/A [MeV]
R,h [fm]

-5.83
3.44

-5.80
3.31

-6.14
3.32

-5.06
2.87

-5.91
3.21

-8.55
3.50

The inclusion of the Fock terms in HF1 reduces the
calculated radii to a significant extent, predicting the
same or a slightly smaller binding energy as compared
to the Hartree approach. Therefore the agreement with
experiment gets worse. Furthermore, we note that the
Fock terms tend to enhance the spin-orbit splitting in
the single-particle energies, which again deteriorates the
agreement with the splitting observed in the experimen-
tal data.

The pion-exchange terms included in the HF2 approx-
imation slightly improve the agreement between calcula-
tion and experiment. The spin-orbit splitting is reduced
and the binding energies are larger but the results for the
radii are essentially the same as in the HF1 approxima-
tion. Keeping in mind the sensitivity of the calculated
values on the density dependence of the effective coupling
constants displayed in Table II and discussed above, one
may conclude, however, that all three models lead to re-
sults which are rather similar.

The main purpose of this study is to compare the pre-
dictions of the effective meson-exchange approach to the
results obtained in BHF calculations, which treat the
change of the Dirac spinors in the medium in a local-
density approximation (see Sec. III and Ref. [20j). For
that purpose Tables III and IV show results of this ap-
proach (identified as DBHF) and allow a comparison with
conventional BHF calculations, which ignore medium de-
pendence of the Dirac spinors completely. The differences
between BHF and DBHF results are by far not as large
as those displayed in Table II, which refiect the density
dependence of the correlations. Therefore we conclude
that the bulk properties of nuclei are more sensitive to
the density dependence of the correlations than to the
medium dependence of the Dirac spinors. That is why
we consider the approach which treats the Dirac effects in
a local-density approximation (DBHF), to give more reli-
able predictions for a complete Dirac-Brueckner-Hartree-
Fock calculation than the effective meson-exchange ap-
proach, which derives the correlation effects from nuclear
matter.

For the case of the nucleus 0 it has already been
shown in [20] that the inclusion of Dirac effects in DBHF
leads to larger radii and binding energies as compared

TABLE V. Results of relativistic HF calculations on Ca
using the OBE potential A. Further information see Table III.

&gs/2 [MeV]'

e„,y~ [MeV]
e~~g, [MeV]

Hart.
-24.6
-18.7
-19.5

HF1
-29.0
-19.5
-21.6

HF2
-27.2
-20.2
-25.1

Expt.
-20+1
-15.8
-15.3

E/A [MeV]
R,h [fm]

-8.35
3.34

-?.83
3.15

-7.90
3.16

-8.70
3.50

to the predictions of conventional BHF calculations.
Thereby the agreement of the theoretical predictions is

substantially improved. This observation is supported by
the results on Ca shown in Table IV. Furthermore, one
finds that the DBHF results are in fair agreement with
those obtained in the relativistic HF approximation us-

ing effective meson exchange. This agreement supports
the conclusion that both types of approaches are reliable
approximations for a complete Dirac-Brueckner calcula-
tion.

Finally, we want to investigate the basic assumption
of the DBHF approach which assumes that the Dirac
spinors for the single-particle states in finite nuclei can
be described in terms of plane wave spinors of nuclear
matter. For that purpose we consider as an example
the radial functions g (r) and f (r) for the large and
small component of the Osqy2 Dirae spinor calculated in

a relativistic HF approach (HF1, OBEPA) for 4 Ca (see
solid lines in Fig. 3). For the comparison we consider
a Dirac spinor expanded in terms of spinors for nuclear
matter assuming a harmonic oscillator expansion as in

Eq. (39). If we consider plane wave Dirac spinors of the
vacuum (kg =0, dotted line), the lower or small compo-
nent is considerably weaker than the one resulting from
the relativistic HF calculation. For the appropriate av-

erage density p, as defined in Eq. (45) the enhancement
of the small component in the medium is fairly well de-

scribed. This demonstrates that the two approaches not
only lead to very similar results for the global observables
like binding energy and radius, but also provide similar

predictions for the components of the Dirac spinors.
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FIG. 3. The radial functions for the large
upper component g(r) and the small lower
component f(r) (both multiplied by r) for
the Oszy2 Dirac spinor obtained in a relativis-
tic HF calculation (HF1, OBEPA) for Ca
are compared to a harmonic oscillator spinor
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(ks = 0, dotted line) or as predicted by nu-
clear matter at an average density (dashed
line).
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V. CONCLUSIONS

Two difFerent steps towards a self-consistent Dirac-
Brueckner calculation for finite nuclei are presented and
discussed. In the efFective meson-exchange approxima-
tion one solves the relativistic Hartree-Pock equations
directly for the finite system and deduces the correla-
tion efFects &om nuclear matter. This is done in various
models to study the importance of Fock exchange efFects
and the impact of the pion exchange. The density de-
pendence of the efFective coupling constants reflects the
density dependence of the correlations encountered in the
Brueckner G matrix.

In an alternative approach (DBHF) the correlation ef-
fects are treated directly for the finite nuclei but the
change of the Dirac spinors is determined from nuclear
matter. It is demonstrated that the bulk properties of
nuclei (binding energy and radius) are less afFected by
the change of the Dirac spinors than. by the density de-
pendence of the correlations. This implies that the ap-

proach which treats the correlation efFects without an
approximation should provide more reliable results than
the efFective meson-exchange approach.

It turns out that both approximations yield very sim-
ilar results. For the realistic OBE potential A defined
in [2] binding energies per nucleon are obtained for isO,
4oCa, and 4sCa, which are close to the experimental value

(6 0.5 MeV). The predictions for the radii are still sig-
nificantly below the experimental data (typically 0.2 fm).
This might be improved by including correlations beyond
the lowest order Brueckner theory. Recently it has been
demonstrated that the inclusion of hole-hole scattering
terms within a self-consistent Green function approach
tends to improve BHF results in this direction [28].
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