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Microscopic calculation of in-medium proton-proton cross sections
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We derive in-medium proton-proton cross sections in a microscopic model based upon the Bonn
nucleon-nucleon potential and the Dirac-Brueckner approach for nuclear matter. We demonstrate
the difFerence between proton-proton and neutron-proton cross sections and point out the need
to distinguish carefully between the two cases. We also 6nd substantial difFerences between our in-
medium cross sections and phenomenological parametrizations that are commonly used in heavy-ion
reactions.

PACS number(s): 21.65.+f, 21.30.+y

The density andior temperature dependence of
hadronic systems is an interesting topic in nuclear
physics. Experimentally, nucleus-nucleus collisions at in-
termediate energies provide a unique opportunity to form
a piece of hot nuclear matter in the laboratory with a
density up to 2—3po (with po, in the range of 0.15—0.19
fm, the saturation density of normal nuclear matter;
in this paper we use pp=0. 18 fm s) [1,2]. It is thus pos-
sible to study the properties of hadrons in hot and dense
medium. Since this piece of dense nuclear matter ex-
ists only for a very short time (typically 10 2s —10 22 s),
it is necessary to use transport models to simulate the
entire collision process and to deduce the properties of
the intermediate stage from the known initial conditions
and the Gnal-state observables. At intermediate ener-
gies, both the mean field and the two-body collisions play
an equally important role in the dynamical evolution of
the colliding system; they have to be taken into account
in the transport models on an equal footing, together
with a proper treatment of the Pauli blocking for the
in-medium two-body collisions. The Boltzmann-Uehling-
Uhlenbeck (BUU) equation [3,4] and quantum molecular
dynamics (/MD) [5,6], as well as their relativistic ex-

tensions (RBUU and RQMD), are promising transport
models for the description of intermediate-energy heavy-
ion reactions.

Starting from the bare nucleon-nucleon (NN) interac-
tion, in-medium NN cross sections have been calculated
using relativistic [7,8] as well as nonrelativistic [9,10]
Brueckner theory. In Ref. [8], we derived microscopically
the in-medium neutron proton (np) cros-s sections. Our
derivation was based on the Bonn meson-exchange model
for the NN interaction [11,12] and the Dirac-Brueckner
approach [12—14] for nuclear matter. We found that
our microscopic in-medium np cross sections deviate sub-
stantially from the phenomenological parametrization by
Cugnon et aL [15] which is often used in transport model
calculations [3—6].

In this Brief Report, we present now our microscopic
results for in-medium proton proton (pp) cross s-ections.

'Present address: Cyclotron Institute, Texas ASM Univer-

sity, College Station, TX 77843.

The original Cugnon parametrization of NN cross sec-
tions [15], which is discussed in detail in Ref. [3], is, in
fact, a fit of the free-space pp data; i.e. , no difference is
made between np and pp scattering. Recently, Cugnon
and Lemaire [16] have developed a new parametrization
that distinguishes between pp and np; but again only the
free-space scattering data are described. These isospin-
dependent Cugnon parametrizations for NN cross sec-
tions have been used in some recent transport model cal-
culations (see, e.g. , Ref. [6]). Our results will show that
there are sizable medium effects on the pp cross sections
and that there are important differences between pp and
np, also in the medium.

Proton-proton scattering occurs only in states of total
isospin T = 1, while np exists for T =0 and 1. This
fact is responsible for the characteristic differences in the
shapes of pp and np differential cross sections. This is the
most crucial difFerence between pp and np and should by
no means be ignored. Furthermore, there is the Coulomb
force which is involved in pp but not in np. Finally, in the

So state, the strength of the strong interaction shows
a small difference between pp and np which is known
as charge-independence breaking (CIB). However, this is
a very small effect and totally negligible in our present
considerations: The in-medium effects are by an order of
magnitude larger than CIB.

In general, in transport models such as BUU and
/MD, the electromagnetic effects between nucleons,
mainly the Coulomb interaction, are treated separately.
So, for the treatment of pp scattering in the transport
models, what is needed are the in-medium pp cross sec-
tions due to the strong force only. Therefore, we cal-
culate in this paper the pp cross sections without the
Coulomb force. Then, the main difference between pp
and np cross sections is due to the fact that in the for-
mer case only the T = 1 NN channels are included while
in the latter case all T = 0 and T = 1 states are taken
into account. We note that our pp cross sections can
also be used as neutron-neutron (nn) cross sections, since
we neglect electromagnetic effects anyhow and the small
charge-symmentry breaking (CSB), i.e. , the small differ-
ence between the pp and nn strong force, is totally neg-
ligible here (cf. our remark, above, concerning CIB).

In this paper, we apply exactly the the same methods
as in our earlier (and more detailed) paper [8] about np
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cross sections to which we refer the interested reader for
details. It is therefore sufficient to just sketch our method
briefIy here. We start &om the relativistic one-boson-
exchange (OBE) Bonn potential [12] which describes the
two-nucleon system below 300 MeV accurately. This po-
tential is used in (relativistic) Dirac-Brueckner calcula-
tion for nuclear matter, in which also the effective nucleon
scalar and vector fields (the mean field) are determined.
With this nucleon mean field and the Lorentz-boosted
Pauli projector, we solve the in-medium Thompson equa-
tion (relativistic Bethe-Goldstone equation) to determine

the G matrix, &om which the in-medium NN cross sec-
tions are calculted by identifying the G matrix with the
in-medium K matrix. As in Ref. [8], we present our re-
sults in terms of the kinetic energy of the incident nu-

cleon in the "laboratory system" (EI b) in which the sec-
ond nucleon is at rest. All results shown in this paper
are obtained by using the Bonn A potential [12] for the
bare nuclear force; in Ref. [8] we have shown that the
dependence of our results on the particular model for the
nuclear force is very small (as long as the model is quan-
titative and relativistic).

In Fig. 1, we show the differential cross section at
Ei,b=50 (a) and 200 MeV (b) for three different den-

Elab=100 MeV, p=pQ
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FIG. 2. In-medium pp and np differential cross sections at
100 MeV laboratory energy for the density p = po

——0.18
fm

sities [p = 0 (solid curves), p = po (dashed curves), and
p = 2pII (dotted curves)]. At 50 MeV, the in-medium
differential cross section decreases with increasing den-
sity. At 250 MeV, it decreases when going &om p = 0
to p = p0 and then increases. We observed a similar
behavior in np [8]. The reason for this is that with in-
creasing energy, the higher partial waves become more
important which are less inQuenced by medium effects.
As in the case of the np difFerential cross sections [8],
we have prepared a data file, containing the pp differen-
tial cross sections as a function of angle, for a number of
energies and densities. From this data file, the pp differ-
ential cross sections for any density between 0 and 3p0
and any energy between 0 and 300 MeV can be obtained
with sufficient accuracy by interpolation. This data file
is available Rom the authors upon request.

In Fig. 2, we compare the pp differential cross section
with the np one at El b ——100 MeV and p=p0. Clearly
there are differences between pp and np. The pp differen-
tial cross section is almost isotropic and has the symme-
try of do/dO(8) = do/dO(vr —8), while the np difFeren-
tial cross section is highly anisotropic and has a profound
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FIG. 1. In-medium pp difFerential cross sections at (a) 50
MeV and (b) 200 MeV laboratory energy. Three densities
are considered: p = 0 (solid line), p = po (dashed line), and

p = 2po (dotted line) (po = 0.18 fm ).

FIG. 3. In-medium pp total cross sections as function of
incident energy for three densities. The symbols represent
the results of our exact calculations while the curves are 6ts
of our results in terms of the ansatz Eq. (1).



568 BRIEF REPORTS 49

TABLE I. Microscopic in-medium pp total cross sections in
units of mb as derived in the present work (po = 0.18 fm ).

p=0

P
0

(1/2)po
po

(3/2) po

2po

50
63.38
40.03
26.37
22.24
18.50

100
35.36
22.84
17.36
17.06
18.60

E) b (MeV)
150 200
27.18 23.62
16.75 15.59
14.73 14.80
16.19 16.52
21.06 20.61

250
21.76
16.29
15.33
17.37
20.35

300
21.72
17.28
16.00
17.61
20.10
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peak at backward angles. This difference is mainly due to
the fact that the T = 0 states do not contribute to pp. In
summary, Fig. 2 demonstrates, from a microscopic point
of view, that one should u.istinguish carefully between pp
and np cross sections.

In Fig. 3, we show the pp total cross sections as a func-
tion of the incident energy, at p=0 (solid curves), (1/2) po
(dashed curves), and (3/2) po (dotted curves). The sym-
bols represent the exact results of our microscopic calcu-
lation, while the curves are fits in terms of a simple and
practical parametrization of our results:

harp„(EI b, p) = [23.5 + 0.0256(18.2 —EI 'b) ]
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where El b and p are in units of MeV and fm, respec-
tively. Generaly speaking, the in-medium pp total cross
sections decrease with increasing density and energy. For
completeness, we list in Table I the in-medium pp total
cross sections as function of energy and density for some
selected values.

Finally, in Fig. 4, we compare the pp total cross section
with the np one at p = 0 (a) and (3/2) pp (b). Also shown
is the description by the orignal Cugnon parametriza-
tion given in Ref. [15]. Notice that at p=0 [Fig. 4(a)],
our results for the pp total cross section is very close to
the one by Cugnon et al. This makes sense since the
original Cugnon parametrization is a fit of the Coulomb
subtracted &ee-space pp scattering data. At this point,
we note that, since the in-medium pp cross section is al-

ways smaller than the free one (see Fig. 3), the Cugnon
parametrization overestimates the in-medium NN cross
sections. Figure 4(a) clearly demonstrates the diff'erence

between pp and np total cross sections. The np cross sec-
tions are much larger than the pp ones, especially at low

energies and densities. At finite densities, this difference
is reduced, since the S1 amplitude, which contributes
only in np, is considerably quenched in the medium.
However, the in-medium np and pp cross sections still
show appreciable differences and should be carefully dis-

tinguished when they are used in the transport models.
In summary, we have presented in this Brief Report

predictions for in-medium pp cross sections derived in
a microscopic way. The important conclusions are the
following.

(1) There is strong density dependence in the in-

medium cross sections. Cross sections decrease in the
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FIG. 4. The in-medium pp and np total cross sections at
(a) p=0 and (b) p = (3/2) po as obtained in our microscopic
derivation (solid and dashed lines, respectively) are com-

pared to the description of NN cross sections by the Cugnon
parametrization.

medium. This indicates that a proper treatment of the
density dependence of the in-medium NN cross sections
is important, when in-medium NN scattering is treated
in the transport models.

(2) Our microscopic predictions for free-space pp cross
sections are close to the parametrization developed by
Cugnon et al. [3,15]. However, at finite densities
which are important in transport models, the Cugnon
parametrization, which is density independent, overesti-
mates the cross sections.

(3) There are substantial differences between pp and np
cross sections (total as well as differential) both in free
space and in the nuclear medium. This implies that one
should carefully distinguish between pp and np scattering
when applying NN cross sections in transport models.
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