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Low-lying surface vibrations in the pair-hopping model
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The pair-hopping model of large amplitude motion is applied to the calculation of the frequency of
low-lying quadrupole and octupole vibrations in atomic nuclei. Theory provides an overall account

of the experimental findings.
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The lowest excited states of even-even nuclei display,
with very few exceptions, quadrupole and octupole char-
acter (cf., e.g., Ref. [1]). Although these states carry a
small fraction (5-10 %) of the energy weighted sum rule,
the associated transition probabilities are much larger
than that of single-particle transitions. Furthermore,
they are excited with large cross sections by projectiles
which are absorbed at the nuclear surface. They are
known as collective surface vibrations, and are intimately
connected with the plastic behavior of the atomic nu-
cleus, as manifested in static deformations and in fission
and exotic decay processes. The superfluid tunneling
model of large amplitude nuclear motion provides a quan-
titative description of these processes (cf. Refs. [2,3] and
references therein). In the present paper we shall apply
it to the calculation of the frequency of both quadrupole
and octupole low-lying surface vibrations.

The Hamiltonian of the model is

h? d?

( aDde2 *
where £ is a deformation variable. In the present case
this variable will be identified with the quadrupole and
actupole parameters (3, and 3.

The energies of adiabatic deformation of the nucleus is
schematically depicted in Fig. 1. As a function of the de-
formation, the degeneracy of single-particle levels is lifted
except for the Kramers degeneracy connected to time re-
versal, leading to orbitals which are twofold degenerate.
At each crossing, pairs of particles in time-reversal states
jump from occupied to empty levels under the influence of
the residual nuclear interaction. The system thus evolves
from one Hartree-Fock configuration to the next. This is
the essence of the pair-hopping model to describe plastic
or adiabatic motion of the atomic nucleus.

To make the model a working tool one needs to be able
to calculate the inertia and the potential energy function.
A fair approximation to this function is the harmonic
model

wo) 6nl©) = Bntn(®), (1)

V(B2) = 1CA03. (2)

The index A labels the multipolarity of the deformation.
The restoring force can be calculated making use of the
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liquid drop model. This is because in a motion where the
surface fluctuates with a frequency of the order of 10%!
s™1, the detailed motion of the nucleons associated with
frequencies almost 2 orders of magnitude larger must be
quite irrelevant. Consequently, the surface tension v (y =~
0.95 MeV fm~2) is sufficient to characterize the shape of
the system, and the restoring force parameter can be
written as [1]
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The two radii entering in the expression are the nuclear
and Coulomb radii, Ry = 1.24Y/3 and R, = 1.2541/3,
respectively, A being the mass number. The quantity Z
indicates the proton number of the system.
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Schematic picture of Hartree-Fock states as a
as well as the associated

FIG. 1.
function of the deformation,
single-particle levels.
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In what follows we shall use the approximate relation
Z =~ A/2.4 and we shall neglect the difference between
nuclear and Coulomb radii. In this way we obtain

Cy = 1.4(A — 1)(A + 2)(1 — 0.0024) A%/3 MeV

(A =2,3). (4)

The inertia associated with the motion is more difficult
to obtain. It is customary to derive its expression from
the comparison of a matrix representation of Eq. (1)
and the associated matrix of a microscopic description
in terms of Hartree-Fock configurations. Assuming that
the two-body interaction v is state independent and acts
only between nearest neighbors one obtains
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where dn/df, is the density of level crossings per unit
deformation energy. The structure of this relation is quite
plausible. The inertia is larger the larger the number of
particles that have to be moved around in the motion. On
the other hand, the larger the interaction, the smaller is
the inertia, because it is easier to make a pair of particles
jump at a crossing. To proceed further one needs an
estimate of the matrix element v. A natural choice for
the residual interaction which induces pairs of particles
in time-reversal states to jump from an occupied to an
empty level is the pairing interaction.

Most medium-heavy nuclei are superfluid in their
ground state. Consequently, the jumping process can
be viewed as a sequential “pickup” of a pair of nucleons
from the occupied levels, and the “stripping” onto an
empty level. Both processes are described by the matrix
element

(BCS|P+|BCS) = A/G, (6)

where |BCS) is the wave function describing the conden-

sate of protons and neutrons, P* =Y _, a:',a:f-, is the
two-particle transfer operator, A is the pairing gap, and
G is the pairing coupling constant. The matrix element

v can thus be written

S(8)

The factor }1 is associated with the fact that of all the four
possible jumps of pairs of nucleons between the occupied
and the empty levels, one chooses only those between
down- and up-sloping levels (cf. Fig. 1). The factor
2 arises from the fact that one has to consider jumps of
both protons and neutrons. Inserting the standard values
of A = 12472 MeV and G = 254! MeV in Eq. (7)
one obtains

A2
=36 (7)

v=-2

v=—2.9 MeV. (8)

The quantity dn/dB, can be estimated quite accurately
realizing that the Fermi distribution in momentum space
is spherical for each local minimum [3,4]. Between cross-
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FIG. 2. Average energy of the lowest 2% state in nuclei as
a function of the mass number. The data are taken from Ref.
(1], Vol. I, Table 2-17, p. 196. The points labeled with the
integral of neutron numbers include all nuclei in the corre-
sponding sector, but leave out those with magic numbers of
neutrons, protons, or both. These are included in the averag-
ing labeled by the typical closed shell nuclei (Ca, Ni, Sn, Zr,
and Pb). In this last case the anomalous case of *°*Pb was
left out. The dashed line is to guide the eye. The continu-
ous curve was calculated making use of Eq. (11) with A = 2,
carrying out similar averagings as done with the data.

ings, the Fermi surface gets distorted. In fact, it elongates
in correspondence to a spatial reduction of the nuclear
radius and it retracts when the nuclear radius becomes
larger. Each time that the volume outside the original
Fermi sphere contains two nucleons, it is possible to fill
the depopulated momentum zones below the Fermi en-
ergy and restore spherical symmetry. This means that
the system has moved from one local minimum to the
next (cf. Fig. 1), and that a pair of nucleons have
changed orbital. Making use of such a model one ob-
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FIG. 3. Systematics of the energies of the lowest 3~ states,
as taken from Ref. [1], Vol. II, Fig. 6.40, p. 560. The
continuous curve was calculated making use of Eq. (11) with
A=3.
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tains for A = 2 and 3 the approximate expression

d_n~1 220 +1
dBy 4V 3nr

A (9)

We are now in position to calculate the inertia of the
modes, which can be written as

D
ﬁ_; ~ (22 +1) x 107°4% MeV ™2, (10)

The basic frequencies associated with the harmonic mo-
tions for A = 2,3 are

[R2C),
hwy=
A D
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Note that the zero-point motion associated with these
modes is given by

Awy - 3.7A2/3

A= ST+ @A+ DA

(12)

From the above equation and from Eq. (9) one can es-
timate that the number of crossings associated with the
modes (11) is

1/4
n (%) 0.34Y3 = 0343,  (13)

This number is approximately unity already for A = 40,
and makes plausible the use of a large amplitude the-
ory to describe the low-lying surface vibration of atomic
nuclei.

In Figs. 2 and 3 we show the function (11) for A = 2
and 3 in comparison with the data. We see that there
are large fluctuations about the curves. These are associ-
ated with shell effects, which greatly affect the amount of
pairing. However, on average, the smooth curves provide
an overall account of the experimental findings.
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