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Self-energy of the pion
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We reexamine a recent calculation of the effect of dressing on the pion propagator in the one-

pion-exchange potential. Our results confirm the qualitative features of the earlier work, namely

that the correction can be represented as the exchange of an effective vr' meson. However, at a
quantitative level this approximation does not work well over a wide range of momentum transfer
unless the mass of the 7t' is made too large to be of signi6cance in nucleon nucleon scattering.

PACS number(s): 21.30.+y, 13.75.Cs, 14.40.Aq

There is now considerable evidence that the form factor
for the emission of an oK-mass-shell pion by a free nucleon
is relatively soft [1—3]. In a dipole parametrization a
mass less than 1 GeV is typical. On the other hand, con-
ventional one-boson-exchange potentials (OBEP) typi-
cally require a much harder vrNN form factor in order
to reproduce the experimental phase shifts and deuteron
properties [4,5]. Recently it has been proven possible
to obtain equally good 6ts with a soft form factor pro-
vided an additional, heavy pion (vr') exchange is included

[6]. (An interesting alternative has been proposed by the
Bochum group [7].)

Clearly it is of considerable interest to establish the
physical mechanism behind the additional short-distance
pseudoscalar exchange. It need not be a real vr' meson,
but could be a convenient representation of a more com-
plicated short-distance physics involving quark-gluon or
quark-meson exchange [8—10]. Saito's novel suggestion
was that the radiative corrections associated with the in-

ternal structure of the pion itself might lead to a pion
propagator that could be simulated by the exchange of
an elementary pion and a heavier vr' [ll]. His suggestion
echoed earlier work by Goldman et al. on the ofF-shell

variation of the p-ur mixing amplitude [12]; see also Ref.

[13].
In Saito's work the pion proagator was modeled as the

propagator of an elementary m meson coupled to a q-q

pair. As in Refs. [12,13], the propagators of the q-q pair

were taken to be free Dirac propagators (with quark mass

m). While this introduces an unphysical threshold at 2m,
it is not necessarily a fatal Qaw in the spacelike region,
where we need the propagator for NN scattering. Indeed
there is a physical cut which begins at (m + m~) and

by choosing m to be a typical constituent quark mass (
400 MeV) one might expect to simulate the eKect of this
cut.

In the model of Saito the renormalized pion propagator
is written in the form

2 Z

G(q ) =
lo)2q2 —Z(q2) —m

where E(q2) is

k2 1 2 2

g( 2) '6 2D 4

(2~) [(k+ ~)' —m'][(k —~)' —m'k]'

Z = E +E&+Z, , (3)

where

and the factor of 6 arises from color and isospin. For
D = 4 the integral in Eq. (2) is highly singular. In Ref.
[11] it was rewritten as a sum of three terms:
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Under an appropriate change of variables it appears that
Z~ and Z~ are both independent of q and can be incor-
porated into the bare mass term. This argument is not
correct for a subtle reason. Both of the integrals in Eqs.
(4) and (5) are quadratically divergent and it is known
from the study of the axial anomaly that linear shifts in
the integration variable are not permitted in this case
[14]. There is in fact a surface term proportional to q .
Fortunately for the analysis of Saito, this would afFect
only Zq and Z2 (the second and third terms in a Tay-
lor expansion about q = 0), and it is Z2 alone which
determines ER(q ); see Eq. (12) below.

We have chosen to evaluate Eq. (2) directly using di-
mensional regularization [15], rather than relying on the
expansion (3). Our result for Z(q ) is:

2 1

Z(q ) =
2 dz2p(q )I'( ——1) + 7q z(1 —z) —m2

8a2 o 2

+2p(q )ln[q z(1 —z) —m ] (7)

where p(q2) = 3q2z(1 —z) —m, m being the fermion
mass. We can remove the divergences in this expression
by adding counter terms to the Lagrangian, and bearing
in mind the conditions we wish to impose on the renor-
malized self-energy, ZR(q2), in order that the pion prop-

agator reproduces the physical properties of the pion in
free space, namely

ZR(m.') = O, ,ZR(m'. ) = O, (8)
Oq

To ensure this we add the following counterterms to the
Lagrangian,

1 2 1 2l:,T = —-an . (0+ m. )n + —Pn',
2 21

where

a= Z(m ), P=E(m ).
t9

Bq2

This gives us

~"(q') = ~(q') P (—q' --m.')a

and

&"(q') =
q2 m2 QR(q2)

'

where ZR(q2) vanishes as (q —m2)2 at the physical pion
mass.

After some algebra we find that Z (q2) takes the form

gR 2 6g 2 ( q'*(1 —*) —m' l 2 2 (1 2m z(1 —z)
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which becomes
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FIG. 1. The ratio of the free to renormalized pion propa-
gators as a function of q . The solid curve is our exact result,
the dashed curve is a simple parametrization [with mass pa-
rameter A = 1.295 GeV; see Eq. (18)], and the dash-dotted
curve is the result assuming 7r plus vr' exchange [Eq. (19) with
M = A].
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FIG. 2. Same as Fig. 1 but with the parameters in the x'
case adjusted to give a best fit [M = 2.16 GeV and C = 5.73
in Eq. (19)].

If the renormalized pion propagator were to be approx-
imated by the sum of elementary vr and vr' exchanges
(with 7r' mass M) we should instead find

An appropriate value for p„q can be determined from
Nthe pion-nucleon coupling constant 4

——14.6 [16]. An
analysis within the consituent quark model yields the fol-

lowing relation

3 mq
Qxq = QxN ~

5mN
(16)

gR( z) c(q 'Ti )

(qz —Az)
(17)

with c a dimensionless constant and A a mass parameter.
In this approximation the ratio R = G(q )/G+(q2) is

c(q' —mz )
(q2 A2)

The dashed line in Fig. 1 which is almost identical to the
solid curve shows the fit obtained for A = 1.29 GeV (with
c = 1.63).

In Fig. 1 we show the ratio (represented by the solid
line) of the free to the renormalized pion propagator as
a function of qz. (The quark mass is set at 400 MeV
for the reasons explained earlier. ) In order to clarify its
similarity to the phenomenological introduction of a vr'

meson we recall that Z+(qz) is proportional to (q2 —m )s.
One might then approximate ZR(q ) as

(19)

where C = gz, &/gzN. To first order we would identify
A = M and c = C and the result of this choice is shown
as the dot-dashed line in Fig. 1. It clearly is not a good
representation of the renormalized propagator. In fact,
in order to Gt even moderately well over the range of

q shown the vr' mass must be made considerably larger.
Our best fit using Eq. (19) is shown in Fig. 2 where we

used a x' mass M = 2.0 GeV and C = 5.73. (The other
two curves are as in Fig. 1.) While the corresponding
7r'N coupling constant is in the range quoted in Ref. [6]
the mass is far too large for this 7r' to play any role in
NN scattering.

In conclusion, while the very interesting suggestion of
Saito has been confirmed qualitatively, we are forced to
conclude that this is not the source of the 7r' meson
needed in NN scattering.
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