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Continuum random phase approximation self-consistent approaches to the theory
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Two approaches (exact and approximate) to the isobaric analog resonance (IAR) theory within the
random phase approximation in the continuum are considered. Both of them are based on the partial
self-consistency condition which is the result of the isospin symmetry of the nuclear Hamiltonian. The
evaluations of the IAR partial proton widths for near magic nuclei over a wide atomic mass region are
performed. The results obtained within the framework of these approaches are compared with each oth-
er and with the experimental data. The method of the calculation of the Coulomb correction to the IAR
transition density is also given.

PACS number(s): 24.30.Gd, 24.10.Cn, 21.60.Jz

Within the framework of any isobaric analog resonance
(IAR) theory, the charge independence of nuclear forces,
proton Coulomb interaction, and single-particle continu-
um should be taken into account. All approaches to the
IAR theory based on the use of the mean nuclear field
and effective nucleon interaction can be divided into the
approaches without explicit use and with the use of the
approximate isospin conservation in medium and heavy
nuclei.

The calculation of the Fermi strength function within
the continuum random phase approximation (RPA) is the
practically carried out element of the first group of the
approaches. Within the framework of these approaches
the mean field is calculated by means of the Hartree-Fock
method with the Skyrme forces [1] or is parametrized
directly [2]. In the last case, the isovector part of the
mean nuclear field (the symmetry potential v) should be
the coordinate with the isovector part of the nucleon in-
teraction in the particle-hole channel. If one uses the
Landau-Migdal forces —,'F'rivz5(ri —rz) the correspond-
ing self-consistency condition has the form (the partial
self-consistency [3])

v(r) =F'p(r),

where p(r) is the excess neutron density which depends
on v(r} through the single-particle wave functions. The
Fermi strength function exhibits the maximum which
corresponds to the IAR. The width of this maximum is
the total proton escape width I ~.

The approach to the calculation of the IAR proton
partial widths I i has been proposed in Ref. [4]. That ap-
proach falls in the first group of the approaches too. The
shortcomings of Ref. [4] are the somewhat artificial pro-
cedure of taking into account the single-particle continu-
um and the absence of the systematic comparison of the
results with experimental data. Moreover, within the
framework of the first group of the approaches there are
no methods for the evaluation of the parameters of the
isospin forbidden processes (the IAR spreading width
and the partial widths of the IAR direct neutron decay).
The values of these parameters are essentially less as

compared with the relevant values for other giant reso-
nances.

Within the framework of the approaches which are
based on the explicit use of the approximate isospin con-
servation in medium and heavy nuclei, any IAR relaxa-
tion parameters can be analyzed. These parameters are
determined (except for the radiation widths} by the vari-
able part of the nuclear mean Coulomb field [5—7]. The
main shortcoming of such approaches is the noncon-
sistent consideration of the strong coupling of the IAR
proton decay channels.

The objects of the present paper are the following: (i)
to evaluate the IAR proton partial widths I & within the
continuum RPA without the explicit use of the approxi-
mate isospin conservation taking into account the self-
consistency condition (1); (ii) to formulate the consistent
method for the consideration of the strong coupling of
the IAR proton decay channels as well as the method for
the calculation of the Coulomb correction to the IAR
transition density and to calculate on that basis the
widths I i, (iii) to compare the I i values obtained by
these methods with each other and with the correspond-
ing experimental data for near magic nuclei over wide
atomic mass region.

If one takes into account the self-consistency condition
(1), the IAR proton partial widths I'z can be evaluated
within the continuum RPA by the same method as in the
case of other giant resonances. The method has been for-
mulated recently [8] and consists in the calculation of the
S matrix of the proton scattering via the IAR virtual ex-
citation.

Let yi(r) be the radial wave functions of neutron and
proton single-particle states (A, =n, l,j for bound states,
A, =c,I j for continuum states): (h~i~

—E)yi =O. Here
h~&~=h~&~+ —,

'r' 'v(r)+ —,'(1 —v' ')Uc(r) is the radial part
of the single-particle Hamiltonian, (A. )=l,j, h~&~ is the
isoscalar part of this Hamiltonian, and Uc(r) is the mean
Coulomb field. The single-particle wave functions yi(r)
are chosen to be real and in the case of continuum to be
normalized to a 5 function of the energy.

According to Ref. [8] the S matrix diagonal elements
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of the proton scattering via the IAR virtual excitation
can be represented in the form

S&&(E~)=exp(2i5&) 1 —2vriN& fg((r)v&(r, cv)g&(r)dr

(2)

1

v&(r, cv) = y((r)y&(r)+ f A(rr', cv)v&(r', cv)dr'
4vrr

(3)

Here A. is also the decay channel index determined by the
proton quantum numbers, cv=e~ —

e&, 5&(e~) is the phase
of proton potential scattering, and E& is the number of
neutrons filling the subshell A, in the parent nucleus (the
nuclei without nucleon pairing are only considered). The
inhomogeneous term in Eq. (3) represents the charge-
exchange external field acting upon the nucleus in the
process of proton scattering. That field arose at the ex-
pense of the isovector part of the particle-hole interac-
tion. The quantity A (rr, co) in Eq. (3) is the radial part of
the monopole particle-hole propagator for the relevant
charge-exchange channel

A(rr', co)= g N",y",(r)y"(r')g~~, ~(rr', e",+co)

v(r)= f A(rr', co=dc)v(r')dr'=F'p(r) .
F'

4mr
(6)

The bar above any quantity in Eq. (6) denotes that this
quantity is calculated with the use of the single-particle
Hamiltonian h~i~=hti~+ —,

'r' 'v+ —,'(1 r' —')bc without

the account of the variable part of the mean Coulomb
field. Within the considered approximation the IAS ener-

gy equals bc and the IAS transition density P,„(r)equals
(2T) ' p(r), whereP (r) is the excess neutron density cal-
culated by the use of the eigenfunctions of the Hamiltoni-
an h. The last equality in (6) [compare with Eq. (1)] is ob-
tained by the use of the relation: v(r)=h" —h~+Ac.

Within the framework of this approach, the mixing of
the nuclear states having the different isospin values, as
well as the IAS decay, (except for the radiation decay) is
caused by the variable part of the mean Coulomb field

Vc = Uc —hc. To the lowest order in 0&='g, —,'(1
r', ')—Vc(a) the Coulomb displacement energy can be

found from the equation

fp,„Vd (7)

where t c '=g, Vc(a)r,' '. The matrix element which

determines the amplitude of the mixing of the IAS and
0+ state ~s ) having the "normal" isospin (T 1) equals—

+ g N, g„(r)gc'(r')g~",~(rr', e& —cv) . (4) & s
~ Vc ~

A &
= (2 T )

' ( s
~ V,' ' 0 ) . (8)

Equations (7) and (8) make it possible to state that in

linear approximation the correction to the IAS transition
density at the expense of the field VC coincides with the
correction to the density matrix of the relevant parent
nucleus state at the expense of the field (2T) ' P'c

(2T)'~ 5p,„(r)= f A (rr', can=bc) Vc(r')dr',
4nr

(9)

where the effective field Vc satisfies the following equa-
tion:

Here g~, ~(rr', e) is the Green function of the relevant radi-
al Schrodinger equation: (e —

h~ ~)g~„~(rr',E)=5(r r'). —
The integral equations of type (3) are widely used within
the framework of the finite Fermi-system theory [9].

One of the poles in the m dependence of the effective
field v&(r, cv) corresponds to the IAR. To evaluate the
proton widths I i and I =g&I & employing the S matrix
calculated according to Eqs. (1)—(4) it is necessary to
parametrize this S matrix in the vicinity of the IAR ener-

gy by means of the Breit-Wigner formula

Siz(ej') =exp(2i(&) 1—
ei' e"'+i —I /2

Thus, Eqs. (1)—(5) correspond to the exact calculation of
the IAR partial proton widths within the continuum
RPA.

Let us briefly consider the shell-model self-consistent
IAR theory in which the approximate isospin conserva-
tion in medium and heavy nuclei is explicitly taken into
account. Under the assumption that the Coulomb
scattering amplitude (as well as the neutron and proton
mass differences, isobaric noninvariance of the nuclear
forces) is neglected and the Coulomb proton-nucleus in-
teraction Uc(r) is replaced by an average value b c (Ac is
the Coulomb displacement energy), the nuclear isospin is
the exact quantum number. Within this approximation
the isobaric analog state (IAS) having the wave function

~
A ) =(2T) ' g, r', '~0) (T is the isospin of the

relevant parent nucleus state) is the exact eigenstate of
the shell-model Hamiltonian. The homogeneous equa-
tion for the corresponding eigenfield within the continu-
um RPA has the form (see also [9])

I

Vc(r) = Vc(r)+ f A (rr', co= Ac ) Vc(r')dr' .
4vrr

(10)

a= fV(r)A(rr', bc)v(r')dr dr' .

Here the propagator A (rr', 6 c) is calculated by the use of

In view of Eqs. (6) and (7) the solution of this equation
is determined with an accuracy of the function which is
proportional to v(r) To eliminat. e the admixture of the
solution of the homogeneous Eq. (6) to Vc(r) one should
exclude the IAS contribution from the propagator
A(rr', Ac) For this pur. pose one should replace in Eqs.
(9) and (10) the propagator A (rr', hc) by
5A(rr')=A(rr', bc) ap(r)p(r')I jp(r)u(—r)dr, where

parameter u is found from the condition
Jv(r}5A(rr')v(r'}dr dr'=0 and in accordance to Eq. (6)

equals unity.
To take into account the real single-particle continuum

we use instead of 5 A (rr ') the quantity

5A (rr') = A (rr', b c ) ap(r)p(r') / fp(r—)v(r)dr,
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the mean Coulomb field Uc(r) and symmetry potential
it (r). Because of the approximate isospin conservation in
medium and heavy nuclei the a values are close to unity
(0.95—1). Finally, the equation for the field Vc(r) has the
form

Parent
nucleus

"Ca P3/2

rk'
(keV)

3.3

r,'
(keV)

3.5

TABLE I. The IAR proton partial widths.

I exP

(keV)

1.9+0.2
I

Vc(r) = Vc(r)+ f 5A (rr') Vc(r')dr' .
4mr

Equations (9) and (11) correspond to the self-consistent
method of the consideration of the strong coupling of the
real and virtual IAR proton decay channels within the
continuum RPA.

The accuracy of the method can be examined by means
of comparison of the results of IAR proton width calcula-
tions with the corresponding values obtained according
to Eqs. (2)-(5). The expression obtained in Refs. [5,7] for
the IAR partial proton widths through the effective
Coulomb field Vc(r) is not changed:

2

I'&=@NEST
' J yg(r) Vc(r)y&(r)dr (12)

Here the single-particle wave functions are also calculat-
ed by use of the mean Coulomb field Uc(r) and symmetry
potential U(r). It should be noted that the neglect of the
IAR proton channel coupling [i.e., the substitution
Vc~ Vc in Eq. (12)] corresponds to the Lane model [10]
or to the approach given in Ref. [11]and results in a re-
markable increase of the calculated I z values [7].

The approximate approach to the calculations of the
widths I z according to Eqs. (11) and (12) is easier than
the approach which is based on the S matrix calculation
and is presented in the previous section. The values of
the partial widths I & obtained by both methods are corn-
pared further on. Here we draw attention to the state-
ment that one would expect the stability of the calculated
widths I & to the variation of the parameters of the model
due to the self-consistency conditions (1) and (6).

The parameters of the isoscalar part of the nuclear
mean field, as well as of the mean Coulomb field, which
are necessary for the evaluation of the widths I & within
the framework of the shell-model approach are chosen
according to Ref. [7]. The quasiparticle interaction
strength F' is determined from the condition (1) where
the symmetry potential is chosen according to Ref. [7)
and the neutron excess density p(r) is chosen to be pro-
portional to the radial dependence of the nuclear mean
field [5].

For a comparison with the experimental values of
widths I &, the calculated values were reevaluated accord-
ing to the potential barrier penetrability to the experi-
mental proton channel energy and multiplied by the ex-
perimental value of the spectroscopic factor of the
relevant single-particle state. The results of the calcula-
tions performed according to Eqs. (1)—(5), and (11) and
(12) are given in Table I (all experimental data are taken
from Ref. [7]). From the results given in the table it fol-
lows that (i) the approxiinate approach to the evaluation
of the widths I z ensures good accuracy; (ii) the results
obtained by means of both methods are in satisfactory
agreement with the experimental data; and (iii) the largest
uncertainty in the evaluation of widths I & is caused by

"Zr

139B

208Pb

209Pb

d 5/2

d3/2

g7/2

$1/2

f~/2

P3/2

P1/2
h9/2

f5/2

P 1/2

f5/2

P3/2

f7/2

g 9/2

&11/2

J15/2
d 5/2

S 1/2

g7/2

/2

3.4
17
0.83

26

22
38
35

1.8
13

62
26
77

8.4

29
1.4
0.9

78
74
51
65

3.3
17
0.78

23

21
36
34

1.8
12

61
25
75

8.2

30
1.3
0.9

78
76
51
68

4.0+0.5
15+3

2.5+0.5
17+3

16+2
26+3
22+2

1.4
10%1

51.6+1.7

5.0+0.5

22.6+0.7
1.6+0.4
0.9+0.8

50.2+1.0
56.6+3.4
42.9+3.6
62.8+5.4

'If some resonances have the same quantum numbers the reso-
nance with the largest spectroscopic factor is given.
bPartial width values calculated according to Eqs. (1)-(5).
'Partial width values calculated according to Eqs. (6), (7), and
(12).
P. Von Brentano (private communication).

the use of the experimental values of the spectroscopic
factors of the single-particle states (the relevant values
are given in Ref. [7]). The last circumstance allows one
to return to the problem of the use of the experimental
and calculated IAR proton partial widths for the deter-
mination of the spectroscopic factors of the low energy
parent nucleus states.

The main results obtained in the present paper are as
follows.

(i) Within the framework of the shell model the quanti-
tative description of the IAR partial proton widths is
given by the use of the continuum RPA. Due to the par-
tial self-consistency these widths are mainly determined
by the mean Coulomb field and, therefore, are expected
to be stable to the variations of the parameters of the
shell model.

(ii) The continuum RPA self-consistent description of
the Coulomb correction to the IAR transition density is
also given. (This quantity determines the partial widths
for the isospin-forbidden IAR decays. ) The accuracy of
this description is established.

The next step in the analysis of the IAR partial proton
widths consists in a generalization of the proposed ap-
proach to the case of nuclei with strong nucleon pairing.
This generalization opens the door to the interpretation
of a great body of experimental data on the IAR partial
proton widths for these nuclei.
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