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Study of dense helium plasma in the optimal hypernetted chain approximation
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We have studied the helium plasma in the hypernetted chain approximation considering both
short-ranged internuclear and long-ranged Coulomb interactions. The optimal two-particle wave
function has been determined in fourth order; fifth-order corrections have been considered in the
calculation of the two-body and three-body correlation functions. The latter has been used to deter-
mine the pycnonuclear triple-alpha-fusion rate in the density regime 10 g/cm ( p ( 10' g/cm,
which is of importance for the crust evolution of an accreting old neutron star. The inQuence of
three-particle terms in the many-body wave function on the rate is estimated within an additional
variational hypernetted chain calculation. Our results support the idea that the helium liquid un-

dergoes a phase transition to stable Be matter at densities p 3 x 10 g/cm as the plasma induced
screening potential then becomes strong enough to bind the Be ground state.

PACS number(s): 21.30.+y, 67.20.+k, 97.60.—s

I. INTRODUCTION

There was recently some interest in the fusion of three
cr particles (triple-cr reaction) in a dense helium plasma.
This interest was motivated by a starquake model, based
on the crust evolution of an accreting, old neutron star,
which has been proposed to explain the &equently ob-
served p-ray bursts [1]. The energy eventually released
in this starquake model turned out to be rather sensi-
tive to the triple-o. rate. As has been pointed out by
Schramm et al. [2], helium forms a quantum fiuid under
the conditions governing the evolving neutron star crust,
a fact which had not been accounted for in the estimates
of the triple-a rate [3,4] available at the time the star-
quake model was proposed. Schramm et al. argued that
the hypernetted chain approximation (HNC) is a proper
method to describe the helium plasma under the relevant
conditions (low temperatures T ( 10s K and high den-
sities pg 0.1 —1.0, where pg measures the density in
10 g/cm ). These authors performed a variational HNC
calculation describing the helium plasma by a Jastrow-
like many-body wave function:

where r, are the position vectors of the helium nuclei
in the plasma, which is assumed to be homogeneous
and isotropic. For the two-body wave function f (r;r ),
Schramm et al. made a parametrized ansatz which cor-
rectly described the known behavior of the function at
small and large separations. The parameters invoked in
f(r) were determined by minimizing the energy of the
system adopting the HNC approximation to connect f(r)
with the two-body correlation function gl ) (r). Knowing
g(2)(r), Schramm et al. applied the Kirkwood approxi-
mation to determine the three-body correlation function
g(3) („)

g (T12i T13) r23) = g (r12)g (r13)g (F23)

which allowed them to calculate the triple-a rate in the
plasma which is defined as [2]

3 (3)...= -p'gl')(. „=0,...= 0)l„'1,(E..) . (3)

Here, p is the a-particle number density, V„ is the re-
action volume, and the radiative decay width of the 3a
state at energy E3 can be expressed in terms of the ex-

perimentally known I"~ width of the erst exited 0+ state
in 2C (I'~ = 3.7 MeV) for E2 decay into the 2+ state at
4.44 MeV. At energies just above the 30, threshold, one
finds I'~(E3 ) = 0.541'~, independently of E3

The approach of Schramm et al. has recently been
improved in two important ways [5].

(1) The optimal wave function fo(r) has been deter-
mined in a lowest-order (n = 0) HNC approximation.

(2) For this optimal wave function, the two-body corre-
lation function has been calculated in higher-order HNC
approximations (n = 4, 5). This allowed one to derive

the three-body correlation function taking corrections be-

yond the simple Kirkwood approximation (2) into ac-
count.

As an interesting result, this calculation [5,6] sup-

ported the idea [2] that the heliuxn plasma undergoes a
phase transition to stable Be matter at densities around

pg ——3 as then the Be ground state gets bound in the
medium. However, the critical density of this phase tran-
sition depends sensitively on the plasma-induced screen-

ing potential which had only been calculated in lowest
HNC order in Refs. [5,6]. To improve on this, we will

in this paper determine the optimal wave function f(r)
and, relatedly, the plasma-induced screening potential, in
a HNC/4 approximation. To our knowledge, our study
presents the first optimal higher-order HNC solution to
a quantum plasma taking both short-ranged nuclear and
long-ranged Coulomb interactions into account.

A second motivation of our study is to improve the
estimate of the triple-o. rate, as given in our previous
calculation [5]. As we will see below, this rate will have
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essentially converged within our formalism. Using this
rate we have performed a study of the crust evolution of
an accreting neutron star following the model of Ref. [1].

Our paper is organized as follows: The theoretical
background is discussed in Sec. II, while Sec. III com-
ments on the numerical strategies we have used to solve
the HNC and respective Euler-Lagrange equations. The
results of our study are presented and discussed in
Sec. IV.

II. THE HVPERNETTED CHAIN
APPROXIMATION

In the following, we will assume that the helium
plasma is translationally invariant, isotropic, and homo-
geneous, and obeys Bose statistics. As we are inter-
ested in the plasma properties at very low temperatures
(T & 10 K —86 eV), the system can be considered to be
in its ground state. Then the many-body wave function
is given by

~ ~

i&j

(4)

where the f [1'l describe p-body correlations in the wave
function caused by the interaction among the con-
stituents. All f~"l are real and positive, and, for radii
larger than the range of the two-body forces, they asymp-
totically approach unity. (To simplify notation we drop
the superscript on the two-body wave function and two-

body correlation function throughout this paper. ) The
electrons present in the plasma will be treated as a ho-

mogeneous neutralizing background.
First we will restrict ourselves to two-body wave func-

tions only, resulting in the Bijl-Dingle-Jastrow form of
the many-body wave function, as given in Eq. (1).

Another central quantity in the description of homo-
geneous and isotropic quantum Huids is the radial cor-
relation function. The two-body correlation function is
defined as

N(N —1) f dsrsd r4 d r~ ~4'((r, j)~
p' f dsridsr2 d r~ ]@((r;))~2

where N denotes the number of particles. It determines
the relative probability to find particles i and j at a rela-
tive distance r;~. Asymptotically g(r) approaches unity.
Its normalization follows from that of the many-body
wave function (1):

(6)

[1 —pC(k)]N(k) = pC(k) (8)

In the hypernetted chain approximation, g(r) is con-
nected with f(r) by a set of coupled nonlinear equations

g(r) = f'(r) exp'(r)+E(r)) (7)

N(rrg) = g f [g(rrg) —I] [g(rrg) —I —N(rrr)] d rg,

(10)

and C(r) is called the sum of non-nodal diagrams. The
basic elementary diagrams are usually classified in terms
of the number of points n belonging to the diagram; for
a definition the reader is referred to the review article
by Zabolitzky [7]. To yield the exact g(r) for a given

f(r), E(r) has to be the infinite sum over all possible
elementary diagrams. The approximative character of
the various orders of HNC approximations refiects itself
in the way E(r) is replaced by a finite sum of diagrams:

E(r) =E4(r)+Es(r)+ +E (")
C(r) = g(r) —1 —N(r), (9)

where the tilde denotes the Fourier transform. N(r) is
the sum of the nodal diagrams

In the simplest approximation (HNC or HNC/0) one sets
E(r) = 0. There is only one basic elementary diagram
with four points:

2

«(r) =
2

d'rsd'«[g(r») —1][g(r14) —1][g(r») —1][g(r24) —11[g(rs4) —11,

and there are seven diagrams with five points, which are
shown in Fig. 1 using the standard conventions [7]. We
will not consider elementary diagrams of higher order in
this study. Equations (7)—(9) are called HNC/n equa-
tions where n refers to the level at which the expansion
in Eq. (11) is truncated. The HNC/n scheme is phys-
ically reasonable [7], but it does not necessarily yield a
converging series (see Refs. [8—ll]). However, as a virtue
of the optimal HNC approach, its breakdown by having
no solution signals that new physics is required to de-

I

scribe the system. In many cases, the accuracy of the
HNC/0 approximation is quite sufficient. [In the follow-

ing, quantities calculated in the HNC/n approximation
are distinguished by the subscript n Again, to si.mplify
notation, this index is dropped in HNC/4 approximation.
Thus, f(r) and g(r) refer to the two-body wave func-
tion and correlation function calculated in the HNC/4
appr oxlmaf 1oil.]

For reviews on the description of quantum Buids
and the hypernetted chain approximation, we refer to
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Refs. [8,12—14]. The first study of n-particle matter with
Jastrow wave functions has been performed by Clark and
Wang [15] (see also Refs. [16—18]). Our numerical treat-
ment to solve the optimal HNC equations partly follows
the work by Usmani et al. [19].

We will now derive at the Euler-Lagrange equations
for our problem on the HNC/4 level. The Hamiltonian
governing the many-body system is given by

0 = ) ' + ) [V, (r;~) + V„(r,~)] + V&,k, (13)
i i(j

where the sums have to be taken over all He nuclei

present in the plasma. V, (r) describes the Coulomb in-

teraction between two o. particles, approximated by the
one for two pointlike particles. V„(r) is the nuclear n n-

potential for which we adopt

V„(r) = 500 exp (—(0.7r) J —130.115exp 1
—(0.475r) } MeV, (14)

where r is measured in fm. This potential correctly describes the o.-a phase shifts up to an energy of about 16 MeV
[20]. We have slightly modified the depth parameter of the potential to additionally reproduce the sBe ground state
as an s-wave resonance at E„=92.12 keV above the o.-o. threshold with a width of 6.8 eV.

The energy per particle is given by the Jackson-Feenberg form

d r g(r) ]

— V' ln f (r) + V„(r)
~

+ [g(r) —1]V,(r)
E P 3 ( ti2

X 2 ~ 4m
(15)

where the erst integrand stems from the kinetic energy of
the o, particles, the second &om their nuclear interaction,
and the third takes care of the Coulomb interactions in
the system of o. particles and neutralizing electron back-
ground.

As g(r) and f (r) are related by the HNC/n equations,
Eq. (15) can be interpreted as a functional of f(r) or
alternatively g(r). Minimizing E~ with respect to g(r)
and using Eqs. (7)—(9), one derives the Euler-Lagrange
equation for g(r):

( h2 V'+ V.(.)+ V„(r)+W(")
I Vg(r) =0. (16)

mQr

m is the mass of the n particle, while W(r) is the
plasma-induced screening potential. It is convenient to
split W(r) into two parts: W(r) = Wo(r) + W, (r),
where Wo(r) is related to the liquid structure function

S(bl = y + p (go
—

y) by

(17)
h.'k' [S(k) —I]'[2S(k) + 1)

Wo(k) = —
2(„)

W, (r) considers the terms arising from the elementary
diagrams. One has

W, (r) = AE(r) + d r'g(r')6', (18)
h2 , bE(r')

4m bg r

where 6' indicates that the Laplace operator acts on the
bEcoordinate v'.
b ~'~ denotes the functional derivative of
b~( )

E(r') with respect to g(r).
To estimate the triple-o. -fusion rate in the plasma, one

has to determine the three-body correlation function g~ ~

at small separations. In HNC/n approximation, g(3) is

related to the two-body correlation function by

g (r12 r13 r23) g (r12)g (r13)g (r23) exp (A (r12 r13 r23)} (19)

where the series of Abe diagrams

A = 24+ A5+. + A„ (20)

has to be truncated consistently with the treatment of

I

the elementary diagrams. In lowest order (n = 0) one

has A = 0 and (19) becomes the simple Kirkwood ap-

proximation. The Abe diagrams relevant for n = 4 and
n = 5 are shown in Fig. 2.

Ã

FIG. 1. The elementary diagrams with four [E4(r)] (upper
row) and five [Es(r)] points (lower rows) using the convention
as given in Ref. [7].

FIG. 2. The Abe diagrams with four (A4) (upper row) and
five (As) points (lower rows) using the convention as given in

Ref. [7].
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III. NUMERICAL STRATEGIES

The numerical solution of the problem stated in Sec. II
is very involved. The HNC equations are a coupled set
of nonlinear equations. Noticeably our problem involves
two very different length scales: The Coulomb interac-
tion requires a solution of the equations up to radii of
about 1000 fm for the density region we are interested
in, while a correct description of the nuclear o,-n interac-
tion including the Be ground-state resonance requires a
spatial resolution of = 0.1 fm. An iterative treatment is
necessary to solve the Euler-Lagrange equations, as the
plasma-induced screening potential depends on the two-

body correlation function itself. Finally, the calculation
of the higher-order diagrams (n ) 0) in either E(r) and
A(r) involves multidimensional integrals.

Before we discuss how we have treated the various nu-

merical challenges, we have to remark that a reliable so-
lution of our problem requires an analytical treatment
of the long-ranged correlations caused by the Coulomb
interaction. For the HNC equations we followed here a
procedure proposed in Ref. [21]. This method is based
on the observation that the correlations in the plasma at
large separations or small wave numbers are dominated
by the plasma mode [22]. One finds [23]

W(k -+0) =— (30)

which translates into

4e2

To guarantee the cancellation of W(r) and V, (r) at large
distances, we define

W(k) = (W(k) —Wi(k)
~
+ W~(k) (32)

ranged problem (the Fourier transform u( is analytically
known [21]),which can be solved numerically after choos-

ing a reasonable starting function for g(r). The various
Fourier transforms are most conveniently and efficiently
done by fast-Fourier transform (FFT) routines [24].

As the plasma is overall neutral, the screening poten-
tial W(r) has to exactly cancel the Coulomb interaction
V, (r) in the Euler-Lagrange equations at large separa-
tions. For a numerical solution, this cancellation at large
distances is essential and thus has to be guaranteed by
an analytical treatment of the long-ranged components
in W(r) Fro.m Eqs. (17) and (21) one finds

S(k ~0) =
$64vre2 pm

)
2fAO, 4)p

(21)
with

= W, (k) + W((k) (33)

where u„= /16irpe2/m is the ion plasma frequency.
With the help of the HNC equations, Eq. (21) translates
into [2]

16xe2
Wi(k) = — exp( —ak) .

k2

Its Fourier transform reads

(34)

f(e -e oo) -e exp (—4mphr
(22) 4e 2 r

W~(r) = — —arc tan —,
r 7r Cl

(35)

De6ning

f2(r) =exp( —u(r)j (23)

and splitting u(r) into short- (u, ) and long-ranged (ui)
parts, one finds [21]

r
u, (r) = —(1 —e P') (24)

with I' = (m u„)/(2irhp); P is a &ee parameter. As
N(r) I'/r and C(r) ~ I'/r, one conveniently d—efines
short-ranged functions

N, (r) = N(r) —ui(r),

C.(r) = C(r) + u((r)

(25)

(26)

which allow one to redefine the HNC equations by [21]

g(") = e»P'(r) + &(r) —"("))
N, (k) = (pC, (k)C(k) —oi(k)) [1 —pC(k)],

C.(r) = g(r) —1 —N. (r) .

(27)

(28)

(2S)

In this derivation we have explicitly considered that E(r)
is short ranged. Equations (27)—(2S) now state a short-

which for large r approaches the desired asymptotic be-
havior (31). For the parameter n we adopted values of
order 20 fm. While Eq. (35) guarantees the correct be-
havior of the screening potential at large r and an ex-
act cancellation with the Coulomb potential, a numeri-
cal treatment of the short-ranged term W, (k) poses no

problem and is conveniently done by using FFT routines.
We have solved the Euler-Lagrange equation using the

Numerov algorithm with a step size of 0.1 fm. The
problem was interpreted as an initial value problem with

rg(r) = 0 at r = 0. At a sufficiently large distance the
numerical solution and its derivative have been matched
to their asymptotic forms in accord with Eq. (22).

Finally, our strategy to determine the optimal wave
function f(r) in HNC/4 approximation was as follows.

(1) First we have determined the optimal f()(r) follow-

ing the procedure as outlined in Ref. [5]. This way we

simultaneously calculated the corresponding go(r).
(2) Using go(r), we evaluated E4(r) by Monte Carlo

integration. The result obtained was approximated by
Gaussian functions (for a typical example, see Fig. 4 of
Ref. [5]).

(3) W(r) is calculated from Eqs. (17) and (18) where

E4(r) is approximated by the analytical expression of
step (2).
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(4) The Euler-Lagrange (16) and HNC equations have
been solved to obtain g4(r)

(5) Given the new two-body correlation function, steps
(2)—(4) have been repeated until convergence has been
achieved.

Note that convergence was usually achieved after one
or two iteration steps, as then all calculated quantities
agreed within the accuracy limitations in our procedure
dictated by the Monte Carlo integration of E4(r) and the
subsequent analytical approximation.

IV. RESULTS
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Schramm et at. were the first to point out that a he-
lium plasma might undergo a phase transition to sta-
ble Be matter at densities high enough to bind the Be
ground-state resonance by the plasma-induced screening
potential [2]. This proposition has subsequently been
confirmed in Ref. [6] based on an optimal HNC/0 ap-
proach. The critical density, at which the phase tran-
sition is expected to occur, has been estimated in the
HNC/0 study to be about p„= 2.9 x 10@ g/cm .

The present optimal HNC/4 approach confirms the
proposed phase transition. However, the critical den-
sity is calculated to be somewhat larger (p„= 3.1 x
10s g/cm ) due to repulsive contributions of W, (r) to
the plasma-induced screening potential. The results of
the optimal HNC/4 calculation are quantified in Figs. 3—
5.

Figure 3 shows the plasma-induced screening poten-
tial. First, one observes that the screening potential in
fact cancels the Coulomb potential at large distances.
Second, we find that W(r) has nearly a constant value

W(r) = E„at small radii, say r ( 10 fm. In Fig. 4 we

have plotted these constant screening energies at small
distances as a function of density. In a good approxima-

FIG. 4. The constant values of W(r) at nuclear radii

(screening energies E„)as a function of density.

tion, E„obeys a simple power law:

E„=—62.2 x p9 keV. (36)

From Eq. (36) we recover that the screening energy
equals the SBe ground-state resonance energy at p =
3.2 x 10 g/cm . The density dependence of E„agrees
with the power-law ansatz adopted by Fushiki and Lamb

[4], who approximated the screening potential by the con-

stant screening energy

E„=—52.2 x p9 keV. (37)

However, the screening potential W(r) is not constant
for all radii which are important for the barrier pene-
tration process at the densities of interest here. While
the approximation W(r) = E„ is roughly valid at the
lower densities (e.g. , in the density regime in which the
triple-n rate plays an important role in the evolution of
the neutron star crust, see below), it becomes notice-

ably worse at higher densities. Moreover, approximating

W(r) by a constant value can significantly fail, if the nu-

clear potential exhibits resonances, as in the present case.
Replacing W(r) by an average value E„over the entire
barrier penetration region results in E„(E„(e.g. , in
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FIG. 3. The plasma-induced screening potential W(r) is
compared to the negative Coulomb potential V, = —4e jr
(dash-dotted) at various densities: ps = 0.5 (solid), ps ——4.0
(dotted), and ps ——10.0 (dashed). The inset shows the poten-
tial V(r) = V, (r) + V„(r) at nuclear separations
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FIG. 5. The plasma-induced screening potential W(r)
(dashed line) and its n = 0 component Wo(r) [Eq. (17), solid

line] calculated at ps = 3.2, close to the critical density.
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Refs. [4,2]), where E„is the value of the approximately
constant screening potential at those small radii to which
the resonance is mainly sensitive (36). Consequently, the
inHuence of nuclear resonances will be shifted to higher
densities if W(r) is replaced by an average value E„.

Deviating from the previous discussion, the screening
potential calculated in the HNC/4 approximation is not
constant at small radii at densities close to the criti-
cal density (Fig. 5). Comparing W(r) with Wo(r), we
find that the contribution arising f om the elementary
diagram E4(r) smoothes out the short-ranged variations
present in Wo(r). Thus, the fact that close to the critical
density the screening potential is not constant at small
radii in the HNC/4 approach seems to indicate that in
this density regime higher-order correlations beyond the
n = 4 level are still important and will eventually com-
pensate the fluctuations in W(r). Unfortunately, a study
of the helium plasma in the optimal HNC/5 approxima-
tion is beyond our numerical possibilities.

The phase transition f om the helium plasma to stable
sBe matter is again exemplified in Fig. 6, which shows
the two-body correlation function g(r) at three different
densities, p9 ——0.5, 3.2, and 10.0. For comparison, this
figure also shows g(r) calculated without consideration of
the nuclear a-n potential. In this case, the results for the
familiar charged Bose liquid, as published in Ref. [21],are
recovered. As a striking difFerence, the two-body correla-
tion functions calculated in the present HNC/4 approach
exhibit pronounced maxima at around r = 3.1 fm, which
are missing in the charged Bose liquid case. Obviously,
these correlations are caused by the short-ranged attrac-
tive a-a potential. Comparing g(r) at diferent densities,
one finds that at p9

——0.5 the magnitude of the correla-
tions induced by the a-a potential at nuclear radii is
smaller than the long-ranged Coulomb-induced correla-
tions by several orders of magnitude At these densities,
which are of importance for the evolution of the neu-
tron star crust, the helium liquid is still dominated by
long-ranged Coulomb order. The situation is clearly dif-
ferent at p9

——3.2, close to the critical density. Here,

the short-ranged correlations are noticeably larger than
the Coulomb-induced ones; the helium plasma prefers
the Be-like structure. At higher densities, for example

p9
——10, the helium plasma still shows strong correlations

at nuclear radii. However, their magnitudes are notice-
ably less pronounced than in the vicinity of the critical
density due to increasing Couloxnb repulsion.

Table I lists the total energy and its various contribu-
tions for several densities in the range pg = 0.1—10.0.
While the Coulomb energy monotonously decreases with
density, as expected, the nuclear energy has a pronounced
minimum at the critical density. However, even in the
vicinity of the critical density, the Coulomb energy con-
tributes the largest part to the total energy, which, in
absolute value, is found to be monotonously increasing
with p for the range of densities studied in this paper.

We would like to close this subsection with two remarks
concerning the applicability of the HNC approximation
to helium plasma at densities higher than the critical
density.

(1) The phase transition actually described in the HNC
approach corresponds to one from a helium plasma to a
sBe plasma (the situation is sketched in Fig. 7). However,
at p p„, Be matter will exist in the form of a Wigner-
Seitz crystal rather than a quantum liquid, as modeled
in the HNC approach. Assuming Be matter to exist as
a Coulomb lattice with fcc structure, the critical density
is lowered to about p„= 2.3 x 10 g/cm [2].

(2) As a striking feature, the correlation function g(r)
exhibits sharp minima at around r = 20 fm for p ) p„
(Fig. 6). These minima are related to a node in the
wave function f(r) introduced by the requirement of or-
thogonality on the Be ground-state resonance posed by
the Schrodinger-like Euler-Lagrange equation. As the
ground-state wave function of a Bose system is nodeless,
the HNC approach does not describe the ground state
of the helium plasma at p & p„. As we have discussed
above, the physical ground state should correspond to a
Coulomb lattice of sBe matter.
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FIG. 6. The two-particle distribution function in optimal
HNC/4 approximation for the charged Bose liquid (without
maximum at r = 3.1 fm) and for the helium plasma, cal-
culated at different densities: pg ——0.5 (solid), pg

——3.2
(dashed), and pg = 10.0 (dotted).

P9

0.1
0.3
0.5
0.8
1.2
1.5
2.0
2.5
3.0
3.1
3.2
3.4
4.0
6.0

10.0

0.964
1.649
2.093
2.525
3.015
3.328
3.780
4.224
4.839
6.806
6.660
5.917
5.527
6.283
7.900

Ecoui

—18.71
—26.77
—31.52
—36.58
—41.61
—44.66
—48.91
—52.46
—55.38
—54.73
—55.44
—56.87
—60.56
—68.96
—80.85

Enuc l

—1~ 19 x10
—5.23 x 10
—1.06 x 10-'
—2.42 x 10
—3.06 x 10
—1.34 x 10
—1 ~ 13 x10
—9.86 x 10
—5.48 x 10
—3.676
—3.326
—2.036
—7.36 x 10
—3.70 x 10
—5.69 x 10

Etot
—17.75
—25 ~ 12
—29.42
—34.06
—38.59
—41.33
—45.14
—48.33
—50.11
—51.60
—52 ~ 10
—52.99
—55.76
—63.05
—73.52

TABLE I. Kinetic energy (T), Coulomb energy (Eoo„&),
nuclear energy (E„„d),and total energy (Et~t) for a helium

plasma at various densities, as calculated in optimal HNC/4
approximation. All energies are in keV and per particle.
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FIG. 7. Schematic sketch of the phase transition in the
helium plasma within the HNC approach.
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B. The triple-cx-fusion rate

4 5 6

density p

7 8 9 10

According to the model by Blaes et al. [1],the triple-n-
fusion rate plays a decisive role in the crust evolution of
an old accreting neutron star. For this problem, the rate
has to be known in the density regime from 10s g/cm to
a few 10 g/cm . Using the definition, as given by Eq. (3)
in the Introduction, we have calculated the triple-a rate
in the optimal HNC/4 approximation.

The authors of Ref. [5] have studied the influence of
higher-order HNC/n corrections on the triple-n rate. It
was found that for a given wave function (in Ref. [5]
this was the optimal wave function in HNC/0 approxi-
mation), the triple-a rate converged with higher correc-
tions (n = 4, 5). A reasonable limit is already obtained
if g(s)(r) is consistently calculated on the HNC/5 level.
Thus, following our previous work [5], we have consid-
ered the n = 5 corrections in the two-body correlation
function. To achieve this goal, we have solved the HNC
equations in the n = 5 approximation for the optimal
HNC/4 wave function. The elementary diagrams Es(r)
have been calculated numerically by Monte Carlo inte-
gration and were then approximated by Gaussians. Con-
sistently with this procedure, the three-body correlation
function g~ ~, required in the estimate of the triple-o. rate,
has also been calculated in fifth order, replacing A(r) in
Eq. (19) by A(r) = A4 + As. The integrals have been
evaluated by Monte Carlo techniques. Equation (3) re-
quires the average of the rate over the nuclear reaction
volume, which we have approximated by a sphere of ra-
dius 5 fm. Note that the Abe diagrams are found to be
nearly constant for the radial parameters corresponding
to the reaction volume (see Fig. 8 in Ref. [5]).

Our calculated triple-o. rate is shown in Fig. 8. The
n = 5 corrections are found to change the rates only
slightly. Under neutron star conditions the triple-o. pro-
cess is expected to occur most effectively at p9 = 0.5 —1
[1]. At these densities, the rates calculated in optimal
HNC/0 and HNC/4 approximations [both with (n = 5)
corrections] nearly coincide. Here, the HNC results also
agree reasonably well (within 30%) with the estimates
from Fushiki and Lamb [4], calculated within a coupled-
channel S-matrix approach using a WKB approximation
for the particle tunneling amplitude. However, in this
approach [4] the resonant enhancement of the rate, asso-
ciated with the Be ground state, concentrates at around
p9 —5, which is noticeably higher than found in the HNC
calculations. We believe that this difference is caused by

the assumption of a constant screening energy in Ref. [4],
which is smaller than the plasma-induced screening po-
tential W(r) in the HNC calculations at those small radii
at which the Be ground-state resonance forms. All rates,
including the one of Ref. [2] which agrees with the esti-
mate of Fushiki and Lamb for p9 ( 1, are noticeably
higher than the original one by Cameron [3].

Following Ref. [3] we find that our rates (in cm s s i)
obtained in optimal HNC/4 approximation with n = 5

corrections are well reproduced by

ln r3 ——3 ln p9 —91.23p9 + 146.56 .

This is exemplified in Fig. 9. The deviation from this
simple parametrization for p9 & 2 is caused by the in-

creasing inHuence of the Be resonance.
Adopting the model by Blaes et at. [1], we have stud-

ied the evolution of a neutron star crust after hydrogen
fusion. For the triple-o. rate we used the parametrization
(38). We find that helium fusion stops with the produc-
tion of oxygen (Fig. 10), as essentially no helium is left

35 ~ ~ ~ I ~ I ~ I ] ~ ~ ~ ~ 'I ~ ~ ~ ~ ) \ ~ ~ I ~ '~ 0 I \ ) I T I ~ ~ f '
~ ~

)
~ l 1 Q ~

30—

0 25
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I ~ 4 + I I ~ I ~ ~ I N ~ ~ 1 ~ ~ I 0 ~ I 0 I ~ ~ ~ 0 I s I ~ ~ ~ I

0.20 0.25 0.30 0.35 0 40

exp(-p, )
-I/8

0.45

FIC. 9. The density dependence of the reaction rate in the
nonresonant density region.

FIG. 8. The pycnonuclear triple-alpha-fusion rates calcu-
lated in various levels of HNC approximation: optimal HNC/4
with (n = 5) corrections (solid curve), optimal HNC/0 with

(n = 5) corrections (dashed curve). The present results are
compared to those of Fushiki and Lamb [4] (dotted curve) and
of Cameron [3] (dash-dotted curve).
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tron capture to C, which then is followed by a density
turnover at the interface of the freshly evolved C with
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C. Three-body correlations in the wave function

We have tried to improve our description of the helium
plasma by additionally considering three-particle terms
in the many-body wave function (4). Following Ref. [25]
we made the following ansatz:

(3) ( 1f (r;j, r;k, rjk) = exp
~

— q(r;~,—r;k, rjk)
~

(
FIG. 10. Pycnonuclear evolution of the accreted layer on

the neutron star after hydrogen burning, adopting the model
of Ref. [1]. The diagram shows the mass concentration of the
dominating elements as a function of density calculated with
the present pycnonuclear triple-alpha rate (solid) and the one
of Ref. [4] (dashed).

with

and

q(r'~, r'k rjk) = ).X(r'g)X(r'k)
cyc

(40)

over after the fast triple-n reaction to allow for helium
fusion processes beyond oxygen. The same conclusions
are reached if the rate of Fushiki and Lamb is adopted
(Fig. 10 and Ref. [1]). Thus, our rate supports the star-
quake scenario proposed by Blaes et al. , where the freshly
formed oxygen will eventually undergo a two-stage elec-

I

(
y(r) = a (r —ri) exp (41)

a, rq, and u are interpreted as variational parameters.
Our strategy was to determine these parameters by min-
imizing the energy of the system

d r g(r) ~

— r()' ln f (r) + V„(r) [ + [g(r) —1]V,(r)
E p 3 ( FP

N 2 q 4m
2

3 3 (3)+ p d rij d rikg (rij r ilg& rjk)r)) i q(rij 1 iki rj lg)16m
(42)

subject to the condition that f(r) is given by the optimal two-body wave function determined in HNC/4 approxima-
tion. The three-body correlation function can be expressed as

g4 (r121 r13& r23) g (r12)g (r13)g (r23)f (r121 r13) r23) exp (g44(r12) r131 r23) j(2) (2) (2) (3)

where the Abe diagrams now also contain three-particle contributions [25]. Similarly, the elementary diagrams have
to be extended to account also for three-particle terms; i.e. , there are eight additional diagrams contributing to E4(r)
[25]. Finally, the HNC equations are modified to

g(r) = f'(r) exp (N(r) + D(r) + E(r)),
&(~») = g f Ig(~~a) —

&] (g(~is) —& —&(~is)) g'~s,

D(r12) = p (f ' )'(r12 r13 r23) 1 g(r13)g(r23) d r3

(45)

(46)

Note that the integrals appearing in Eqs. (44)—(46) ex-
hibit more structure than those in E4(r) and Es(r) on
the two-particle level discussed above. Thus, the ana-
lytical. approximation of these integrals by Gaussians is
more involved and probably also less accurate than for
the two-body case.

In Table II we compare the ground-state energy of the
charged Bose liquid, as calculated in the optimal HNC/4
approximation, with the results of a presumably exact
Monte Carlo approach [26]. One observes that the two-

I

body ansatz on the HNC/4 level already reproduces the
exact results within 1% for the densities of interest here.
Thus, we expect that the consideration of three-body
correlations in our description of the helium plasma is
likely to improve on the short-ranged nuclear correla-
tions rather than on the long-ranged Coulomb-induced
correlations. We have therefore restricted our study of
the helium plasma to the parameter space 0 & a & 1,
0 & r& & 50 fm, and 0 & ~ & 50 fm. The density was
first chosen as p9 ——3.2, as it seems more likely that
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TABLE II. Comparison of the ground-state energies (in
keV and per particle) of the charged Bose liquid calculated
in optimal HNC/4 approximation (EHncy4) and in an exact
Monte Carlo approach (E,t [26]).

Ps
0.268
2.147

33.55
268.4

2147.0

@HNC/4
—24.21
—46.12

—105.30
—192.31
—343.58

@CXBCt
—24.50
—46.49

—105.86
—192.96
—344.05

three-body correlations play a role in the phase transi-
tion regime than at those densities at which the helium
plasma is dominated by Coulomb order.

Systematically varying the parameters in the space de-
fined above, we were not able to improve the total en-

ergy of the system beyond the accuracy of our calcula-
tion, which we estimate to be about four digits in E/X.
We find several solutions (different regions in parameter
space) which result in the same total energy, but differ in
their estimates for the partial contributions to the energy
(kinetic, nuclear, Coulomb). Relatedly, these solutions
predict difI'erent two-body and three-body correlations
at nuclear separations. This allows us to estimate the
uncertainty in the triple-a rate by studying its variation
over all solutions with the saine (within our numerical ac-
curacy) total energy. This way, we find that at pg = 3.2
the rate fIuctuates between one-tenth and twice the value
obtained in the optimal HNC/4 approach (Sec. IV B) for
the parameter space defined above. Repeating our study
at p9 ——4.0, we observe similar uncertainties. For pg & 1,
which is the density regime of relevance for the crust evo-
lution of an old neutron star, a similar estimate of the
uncertainties in the rates is prohibited, as the nuclear
contributions to the total energy are too small to be re-
liably controlled within the accuracy of our calculation

(see Table I). As at these densities the helium plasma is

strongly Coulomb dominated, it is likely that three-body
correlations are less important than at densities close to
the phase transition. Thus, the relative uncertainty of
the triple-o. rate, as estimated at p9 ——3.2 and 4.0, might
be taken as a conservative limit for p9 ( 1. With this
assumption, the triple-o. rate in the helium plasma is al-

ways fast enough to support the scenario in the starquake
model of Blaes et aL [I], which leads to the C/ Ti
interface and an energy release comparable to the one
observed in p-ray bursts [I].

Finally, we would like to remark that the short-ranged
correlations in the helium plasma at densities close to the
critical density can be studied in an exact Monte Carlo
approach similar to the one performed by Ceperley for
the charged Bose liquid [26]. In our opinion, such a study
is desirable as it would answer the question raised by the
present HNC calculation whether higher correlations are
important to describe the helium plasma at these densi-

ties. In contrast, an exact Monte Carlo calculation can-
not be used to determine the triple-o, rate at p9 ( 1,
as the relative probability to find three o. particles very
close together in a helium plasma at these densities is too
small to sample the rate with reasonable statistics within
an acceptable computer time. However, for its applica-
tion in the crust evolution of an old, accreting neutron
star, we believe that the rate is probably determined ac-

curately enough from our HNC calculations.
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