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We examine the applicability of a class of relativistic toro-body equations, the quasipotential equa-
tions (/PE's), as a tool for investigating hadronic physics. We show that the /PE's traditionally
used in nuclear physics may be viewed as special cases of a more general +PE written in terms of
three parameters. The behavior of the +PE's is analyzed in terms of these parameters in the small,
intermediate, and large coupling regimes, including 6ts to light and heavy meson spectra. A subset
of QPE's is identified which provide fits to the heavy mesons with rms deviations from experiment
of 32—36 MeV.
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I. INTRODUCTION

The nearly two decades since the discovery of heavy qq
bound states has seen a plethora of tools developed for
the study of mesons as a window on hadronic physics.
One would of course like to investigate hadronic proper-
ties and test quantum chromodynamics (QCD) by solv-

ing QCD directly. However, the non-Abelian nature of
the theory and the consequent well-known complexities
make solutions for nonperturbative calculations of real-
istic systems too dificult at present, and we must turn
to other methods. The methodology that comes closest
in spirit to a direct solution of QCD is lattice QCD com-
putations [1]. Unfortunately, lattice QCD has difflculties
of its own, both in the details of the computational tech-
niques and in the limitations of computer resources. As
a consequence, many alternative methods of examining
hadron physics have arisen which retain connections to
QCD in varying degrees.

Prominent among the examples of these methods have
been the constituent quark potential models. Compara-
tively simple, nonrelativistic representatives of such mod-
els were naturally among the earliest tools employed in
attempting to study the cc bound states as the "hydro-
gen atoms" of the hadrons [2]. Though these early models
achieved some success in reproducing the general features
of heavy quarkonia spectra, it was believed that the con-
stituent quark models would break down when applied
to the lighter mesons. In addition, the connection of the
potential models to QCD was unclear.

More recently, though, a number of constituent quark
potential models which include aspects of relativistic dy-
namics have proven able to describe both heavy and light
meson properties with some success [3—5]. Moreover, evi-
dence has become available &om lattice calculations sup-
porting a connection between the potential models and
QCD [4—6].

Important among the relativistic extensions of the po-
tential models have been those related to the Bethe-
Salpeter wave equation treatment [7]. These Bethe-
Salpeter-inspired techniques have the advantage of a link
to the underlying Geld theory, and even after making ap-
proximations which are necessary to solve these equa-
tions, relativistic and nonperturbative aspects of the
physics survive.

These appealing features have prompted several efForts
in recent years to devise powerful methods of solution
for these wave equations and to apply the formalism to
the study of hadronic physics [8—10]. In this paper, we
examine the applicability of a class of Bethe-Salpeter-
related equations, the quasipotential equations, as a tool
for investigating QCD bound states in the meson sector.
These equations have been used successfully in describing
relativistic aspects of nuclear physics in the past [11],and
we will show that a subclass of these equations provides a
powerful means of investigating hadronic physics as well.

The paper is arranged as follows. In the next section
we introduce the Bethe-Salpeter equation (BSE) and the
quasipotential equations (QPE's) that have been tradi-
tionally used in nuclear physics. Section III will present
a comparison of solutions of various traditional QPE's in
the small coupling regime. In Sec. IV we will show that
the traditional QPE's may be considered to be special
cases of a parametrized QPE which we introduce. We will
show that by manipulation of the parameter values of this
general equation, a new QPE may be constructed which
better reproduces perturbative results at small coupling
than the QPE's traditionally used. In Sec. V we use a
set of QPE's to fit meson spectra, comparing the results
of the various equations in terms of the parameters of the
generalized QPE, and in Sec. VI we flt the light qq states
with one of the QPE's. In Sec. VII we briefly examine
the deep binding limits of the relativistic wave equations.
We summarize in Sec. VIII.
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II. RELATIVISTIC
TWO-BODY WAVE EQUATIONS

The Bethe-Salpeter equation is, in principle, a com-
plete nonperturbative description of the relativistic two-
body problem governed by a quantum field theory. The
BSE is an integral equation having a kernel determined
from the amplitudes of the two-particle diagrams of all
orders in the coupling which is integrated over the four-
momenta of the internal two-body propagator. The BSE
for a bound state may be written in the form

d4 '
G (P,p)g(P, p) = V(P, p —p')g(P, p') (1)

In this equation, P is the four-momentum of the bound
state, p is the relative four-momentum of the con-
stituents, V is the interaction kernel, and G is the two-
particle propagator.

In practice, an approximation is made to the BSE by
truncating its interaction kernel to some fixed order in
the coupling. Typically, only the lowest order one-boson-
exchange term in the interaction is kept in the kernel,
resulting in what are called ladder equations. A common
additional approximation is the reduction of Eq. (1) to
three dimensions. Numerous methods for accomplishing
the reduction to three dimensions have been proposed
which involve fixing, in some way, the zeroth component
of the relative momentum. An early such procedure is
that of Salpeter [12] wherein the zeroth component of
the relative momentum is set equal to zero in the ker-
nel, resulting in the replacement V(p —p') + V(p —p').
This replacement then allows analytic integration of the
zeroth components of the momentum in the propagator,
completing the reduction to three dimensions.

In this paper we will be concerned with QPE's, a class
of relativistic wave equations which achieve reduction to
three dimensions by specifying the relative energy depen-
dence in a covariant way. With the definition y = G
we may rewrite Eq. (1) as

in nuclear physics corresponds to a different choice of the
function g. It has been shown that there are an infi-
nite number of functions g which will produce a covari-
ant three-dimensional equation in the form of Eq. (4)
[13]. Of the possible functions g, we consider those cor-
responding to the Blankenbecler-Sugar equation [14], the
Kadyshevsky equation [15], the Gross equation [16], the
Thompson equations [17], the Todorov equation [18],and
the Erkelenz-Holinde equation [19].For spinless particles
a covariant form for the function g is, specializing to the
case of constituents of equal mass m,

g = 2vri, f (s, s')b+(vi)b+(v2), (5)
4m' 8 8 —Z6

where in the center of mass frame 8 = P, s' = P', and
f(s, s') is an arbitrary function satisfying

(s, s) = 1. (6)

vi ——(-,'P + p')2 —m' (7a)

and

v2 ——(P — P —p ) —m-.1 I 2 2 (7b)

For other QPE's the two particles are specified to be
equally off their mass shell leaving no relative energy de-
pendence. For these QPE's,

This condition on f ensures that the resulting QPE main-
tains elastic unitarity and has the proper Lippmann-
Schwinger equation as its nonrelativistic limit. The b+
functions are defined by b(zz —a2) = b+(z —a2)+b (z2-
a ) where b+(zz —a2) =

2 b(z p a). The reduction to
three dimensions is performed by using the delta func-
tions in Eq. (5) to specify the relative energy of the
interaction. For some QPE s, this is done by restricting
one of the particles to its mass shell which leaves a non-
zero relative energy dependence in the interaction. To
accomplish this, the arguments of the delta functions are
chosen to be

The method of the quasipotential formalisms is to express
this equation as the set of equations

and

v, = (-'P'+ p') —m2

v2 ——( 2
P' —p') 2 —m2. (8b)

W = V+ V(G —g)W.

Here, g is a covariant propagator which reduces Eq. (3a)
to three dimensions, and W is defined by the iterative
equation (3b). Equations (3) are formally equivalent
to Eq. (2). To achieve the simplifications associated
with the ladder approximation, we approximate R by
its zeroth iteration, TV = V, so that a covariant three-
dimensional ladder equation results,

x = Vgx-

Each of the quasipotential equations traditionally used

The integration of Eq. (6) is carried out using one of the
delta functions, and the remaining delta function reduces
the QPE to a three-dimensional equation.

The functions f (s, s') utilized by each of the traditional
QPE's we study are listed in Table I along with the f for
a new equation to be introduced in the following section.
Also indicated in the table is the relative energy depen-
dence characterizing each equation.

For the case of fermion constituents, there is an addi-
tional keedom in the choice of the matrix structure of g.
In this paper, we adopt the method of Ref. [11] whe~e

the function g is written
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ds
g = 2zi, . f(s', s)b+&(vg)b + (v2)(22j'+P' —m)(2$' —P' —m)

8 —8 —$E

when the delta function arguments are those of Eq. (8). For the delta function arguments given in Eq. (7),
OO f

. f(s'~ s}b'+'(»)~'+'(v2)(2f+$~™}(g 2p $ ~).
4~& S

(10)

TABLE I. The functions f(s', s) used in the replacement
propagator g for each of the QPE's. If the /PE restricts
one of the particles to its mass shell, a "yes" appears in the
last column. A "no" indicates the QPE places the particles
equally ofF shell so that there is no relative energy dependence.
The New and New+retardation equations are the a = +I
equations of Sec. IV.

+PE
Blankenbecler-Sugar
Erkelenz-Holinde
Todorov
Thompson I
Kadyshevsky
Thompson II
Gross
New

New+retardation

f(s', s)
1
1

~s'/V s
(V s + ~s')/2~s'
(~s+ v s')/2~s'
(~s+ ~s')/2~s
(v s+ v s')/2~s

vrs/v s'
~s/~s'

Relative energy
dependence'

no
yes
no
no
yes
xlo

yes
no
yes

This treatment results in the appearance of positive en-

ergy projection operators in the functions g, so that the
QPE's retain only positive energy components of their
amplitudes.

This variety of three-dimensional relativistic wave
equations has inspired several attempts to compare and
contrast them in an effort to determine which among
them is the "best" equation to use. Different cri-
teria have been used in comparing the various equa-
tions. Woloshyn and Jackson [20] examined several three-
dimensional scattering equations for spinless "nucleons"
by comparing the first iteration of their kernels at thresh-
old with the analogous term from the four-dimensional
BSE.Gross [21] has made another comparison of various
three-dimensional equations by examining their limiting
behavior as one of the particle masses is taken to infin-
ity. A study by Silvestre-Brac and co-workers [22] com-
pared the small coupling bound state energy predictions
of several spin-0 —spin-0 equations with the predictions of
the Schrodinger equation. The differing behavior of the
equations at larger coupling was also noted. Cooper and
Jennings [23] have examined a variety of equations based
on their ability to reproduce the correct one-body limit
when one of the particle masses tends to infinity. The
conclusions reached regarding the suitability of a given
QPE depended on the criteria applied in these various
works.

In this paper, we will introduce a generalized QPE
written in terms of three parameters, two of which are
independent. Each of the QPE's mentioned above will
correspond to a particular choice of parameters of the
generalized equation. The behavior of the generalized

I

QPE, and hence of the standard QPE's we study, will be
examined in terms of the parameters. Once the behavior
of the equation in terms of the parameters is understood,
the parameters may be adjusted to construct a QPE that
optimally satisfies some specified criterion. In particular,
one of our goals will be to identify those parameter values
which yield QPE's that best describe QCD observables.
In the present investigation, these observables will be me-
son masses.

We will analyze bound states of fermion-antifermion
pairs. We will compare the energy predictions of the
standard QPE's at both the low coupling typical of QED
and at the larger couplings typical of QCD. At low cou-
pling we compare the QPE solutions to the predictions of
perturbation theory. For larger couplings, we will com-
pare the quality of the various QPE's fits to the heavy
meson spectrum as a test of their utility.

III. COMPARISON
OF THE +PE'S AT SMALL COUPLING

The fourth order perturbative prediction for the bind-
ing energy B of a ground state pseudoscalar fermion-
antifermion pair is (in units of the fermion mass) [24]

1 2 21 4 1 2 4B = ——n ——o, ——o. —0.328o. ,4 64 4

where n is the coupling strength. Reference [24] ob-
tains this result from within a momentum space Bethe-
Salpeter treatment where the instantaneous component
of the photon propagator in Feynman gauge is used to
construct the coupled spinor Salpeter's equations. The
corrections to the instantaneous result are handled per-
turbatively, also by a treatment due to Salpeter [12].
Equation (5) may be obtained in other ways. Reference
[25], for example, derives this expression from within a
Hamiltonian formulation in coordinate space.

We have performed an evaluation of the standard lad-
der QPE's for this system based on their ability to phe-
nomenologically reproduce this perturbative result in the
small coupling regime. We employ a B-spline Galerkin
method of solving the integral equations which has been
described elsewhere [10,26], but we wi11 give a brief
overview of the technique in the Appendix.

Taking the fermion mass to be unity, we first solved
each of the traditional (ladder) QPE's as a function of
the coupling strength, letting the coupling vary from 0 to
0.012, a range that straddles the fine structure constant.
We subtracted the second order quantity n /4 from—all
of the results and fit the residual to a curve of the form
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TABLE II. Solutions of the QPE's as a function of coupling
strength n were fit to a curve of the form —0.250. —ko. . The
coefFicient of the fourth order term k given by each of the
QPE's is shown in the second column and is to be compared
with the value 0.328 predicted by perturbation theory. The
last two columns show the values of the parameters of the
generalized f(s', s) corresponding to the QPE's. The New

and New+retardation equations are the a = +1 equations of
Sec. IV. The first five QPE's listed have no relative energy
dependence (no retardation) in their interactions. The last
four QPE's (those listed below the dashed line) have relative
energy dependence (retardation) in their interactions.

QPE
New

Thompson I
Blankenbecler-Sugar
Thompson II
Todorov

Fourth order coefBcient k

0.323
0.450
0.576
0.705
0.834

1
0
0

—1
—1

New+retardation
Kadyshevsky
Erkelenz-Holinde
Gross

0.453
0.581
0.711
0.852

1
0
0

—1

All of the functions f(s', s) employed by the QPE's
listed in Table I may be written in the form

f (s', s) = ~s V s'b
~

(12)

—ko. . We also did a 6t to a curve of the form kqo. +k20;,
but in all cases the coefBcient of the o. term was small
enough to justify comparing only the fourth order coef-
ficients. The QPE's were then ranked according to how
closely the coeKcient of the fourth order fit matched the
fourth order coefficient 0.328 predicted by perturbation
theory. The results are presented in the first two columns
of Table II. The two rightmost columns of the table and
the "New" and "New+retardation" equations appearing
in the list will be explained in the next section. Note that
all the QPE's, with the exception of the "New" equation,
show more binding than that predicted by perturbation
theory.

The fourth order contributions to binding energy as
given in Table II for each of these QPE's are plotted
against the coupling strength in Fig. 1. Figure 1 shows
that, at such small coupling, the differences in binding
energy predicted by each of the QPE's are of the order
of parts per 10 . It is also clear from the figure that the
differences between the various equations become more
pronounced with increasing coupling. How significant
are these differences at large coupling? One answer is
given when we apply these QPE's to fft the heavy meson
spectrum. Before that, however, in the next section we
introduce a generalized QPE in three parameters that
will allow us to understand the difFerent behavior of the
standard equations as given in Table I, and to construct a
new QPE that better satisfies the perturbative criterion
of Eq. (11).

IV. GENERALIZED QPE

The condition of Eq. (6) is then equivalent to the condi-
tion

a+6+c=0. (13)

This condition implies that only two of the parameters a,
6, and c are independent, and in the rightmost columns

of Table II we show the values of the parameters a and c
corresponding to the various QPE's.

The three-dimensional propagator of the QPE which
arises from Eq. (12) will be proportional to

E (E + 2~)'
2c b~—1 b(4~—2 E2) ' (14)

M
N
C$

0
~ &
E4
Q

I I I
I

I I I
I

I I I
I

I I I
I

I I I

I
I I I

0
N

-6—
~~

-8—

0 -10—

0
~ IH

0

-12—

-14—

-16—

18 I I I I I I I I I I I

0 0.002 0.004 0.006 0.008

Coupling Strength. a

r
.i

~l

I

Q.Q1 Q.012

FIG. 1. Plots of the fourth order term in the QPE solu-

tiou fits (see Table II) in units of 10 times the fermion

mass compared with a plot of fourth order perturbative con-

tribution to the binding energy for fermion mass equal to
unity. From top to bottom: Solid curve: fourth order per-
turbative contribution to binding energy (—0.328o. ); dot-

ted curve: Thompson I aud New+retardatiou (—0.45cx );
short dashed curve: Blankenbecler-Sugar and Kadyshevsky

( —0.58o, ); long dashed curve: Thompson II and Erke-

lenz-Holinde (—0.71m ); short dash-dotted curve: Todorov

(—0.83o. ); long dash-dotted curve: Gross (—0.85ce ). The
curve produced by the New equation (with uo retardation) of
Sec. IV lies essentially on top of the solid curve.

where w = gp + m2, and &om (13), Ii is understood to
be equal to —a —c. For the case c = 0,

Ecx
g(a, 0) =

2a~a+1(4~2 g2)

For the case c = 1, Eq. (14) becomes
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QCL

g(a, 1) =
(2ur) ~+2 (2~ —E)

In the nonrelativistic limit, the propagators (15) and (16)
reduce to [4m(mB + p2) j i, where B is the binding en-

ergy, for any value of a. At large momentum, however,
these propagators behave differently with respect to mo-
mentum and energy depending on the value of the pa-
rameter a.

These differences may be emphasized by writing the
propagators in their large momentum (p» m) limits. In
this limit, the c = 0 propagator (15) becomes

gO
g(a, Q) -+

and the c = 1 propagator (16) becomes

Ea
g(a, 1) m (is)

The more negative the parameter a is, the larger the
propagators are at high momentum. The more positive
a is, the smaller the propagators are at high momentum.

For example, with a = —1, the propagators behave as

1/(Ep ) at large momentum. As a bound state is made
more relativistic and more tightly bound by increasing
the coupling of the interaction, the energy of the state
falls further and further below 2m. Since the energy ap-
pears in the denominator of the propagator for a = —1,
this means the propagator is enhanced for more deeply
bound states. Additionally, the a = —1 propagator falls
off as only p z for large momentum.

For a = +1, as an example of a positive a propaga-
tor, the large momentum behavior is E/p . For deeply
bound, relativistic states, such a propagator will be di-
minished because it is proportional to the energy of the
state, rather than inversely proportional as for the a ( 0
case. In addition, the a = 1 propagator falls off as p 4

at high momentum.
For those propagators with the same value of a, the

c = 1 propagator will be smaller by a factor of 2 than the
c = 0 propagator at high momentum.

In the QPE's, the propagator g multiplies the inter-
action kernel. In general, as the size of the propaga-
tor increases, the binding energy increases. These effects
will be most important for relativistic systems. They are
small but already apparent in the low coupling regime,
however.

We expect that the effect of the propagator will be
largest (smallest), and hence the binding energy greatest
(least), for those QPE's having propagators with nega-
tive (zero or positive) a, and this is confirmed by Ta-
ble II. Those equations corresponding to a = —1 pre-
dict more binding energy than those corresponding to
a = 0. Among those equations having the same value of
a, those equations having c = 0 show slightly more bind-
ing than those with c = 1. In addition, Table II shows
that those equations having relative energy dependence
(retardation) in their interactions predict more binding
energy than the analogous equation with no relative en-

ergy dependence.
Table II indicates that all the traditional QPE's we

study predict more binding energy than fourth order per-
turbation theory. We easily construct a QPE that brings
improved agreement with the perturbation results by ad-

justing the parameters of the generalized propagator. As
explained above, increasing the positive value of the pa-
rameter a will decrease the binding energy predicted by
the QPE. We may therefore "tune" the propagator by
adjusting the value of a upwards until a match with per-
turbation theory is achieved. The best fit is obtained
with a value for a very slightly less than unity. Perform-

ing a fourth order fit as described above on a QPE with
the parameters a = 1 and c = 0 (and with no relative en-

ergy dependence) yields the result B = —i a2 —0.323a4,
very close to the fourth order perturbation prediction.
For convenience, we refer to the QPE with a = 1, e = 0
and no retardation as "New" in the tables and figure

captions. The QPE with a = 1, c = 0 and with relative
energy dependence, referred to as "New+retardation" in
Tables I and II, yields the result B = —~4az —0.453a4 in
a fourth order fit.

V. INTERMEDIATE COUPLING REGIME:
MESON SPECTRUM FITS

In this section, we will be concerned with reproducing
the spectrum of experimentally known charmonium and
bottomonium states. Because we are chiefly interested
in the relative behaviors of the QPE's as a function of
the parameters of the generalized propagator, Eq. (14),
in these fits we will use only those equations having zero
relative energy, i.e., all those equation listed above the
dashed line in Table II. These equations cover a wider

range of parameter values than those QPE's listed below
the dashed line, and they come closer to reproducing the
perturbative energy predictions for small coupling than
the corresponding QPE's which use relative energy de-

pendence.
In the fits we used a one-gluon-exchange interaction

VpGE and a long range linear confining potential V,
Specifically, in momentum space these take the form

a 54 'Y~7~
VpGE = s

( I)2 ) (19)

which results &om setting the relative energy equal to
zero from within the Feynman gauge, and

a 2 r.i'
V, =o lixn

~~o p —p —p +p (20)

o, is the strong coupling which is weighted by the qq color
factor of s, and cr is the string tension, the strength of
confining part of the interaction. The matrices I' I'~ rep-
resent the freedom of choice for the Lorentz structure of
V, which may be scalar, pseudoscalar, vector, or com-
binations of these. The form of the confining interaction
used here, along with the cubic B-spline Galerkin method
of solving the integral equations, allows for the use of a
linear confining potential in a moment»~ space equation.
We give a brief outline of the Galerkin method of solution
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in the Appendix. More complete details of our solution
method may be found in Refs. [8,10,26].

In the nonrelativistic limit, these interactions corre-
spond to the coordinate space potential

4o.,v(r) = ———'+ err.
3 r (21)

TABLE III. Charmonium and bottomonium states with
measured masses in MeV. An asterisk indicates the state is
not known experimentally. The spectral assignments for each
state given in the first column are conjectures based on theo-
retical fits to the spectrum.

~ 2S+1L

1 Sp
2 'Sp
1 S1
2 3S
3 S1

5'S,
6 S1
1 Pp
2 Pp
1 P1
1'P,
2 'P1

P2
2 P2
1 D1
2 D1

D1

cc name

n. (1S)
q, (2S)

~/4(IS)
4'(2S)

@(4040)
@(4S)
@(5S)
g(6S)

x p(1P)
x,p(2P)
L,(1P)
X,x(1P)
X x(2P)
x.p(»)
x 2(2P)
vP(3770)
16(4160)
vP(4415)

cc mass
2979
3594
3097
3686
4040

3415

3526
3511

3770
4159
4415

bb name

gp(1S)
qp(2S)
T(1S)
T(2S)
T(3S)
T(4S)

T(10860)
T(11020)
xpp(»)
xpp(2P)
hp(1P)

Xpx (1P)
Xpx(2P)
xp2(1P)
xpp(2P)
Ti (1D)
Tx (2D)
T g (3D)

bb mass

9460
10023
10355
10580
10865
11019
9860

10232

9892
10255
9913

10268

We do not find a need for a constant term which is often
utilized in other eKorts [5,9]. Lattice results support the
selection of a linear con6ning potential which is predorn-
inantly scalar [6).

We list in Table III the 12 ct" and 12 bb experimentally
known states. The masses given for each state (except
the h, ) are the averages given by the Particle Data Group
[27]. The spectrum of the 24 states of Table III was fit
using the four traditional /PE's of Table I having no
relative energy dependence, as well as the a = 1, c =
0 new equation with no retardation introduced in the
previous section. The 6ts were performed by adjusting
four quantities: the gluon coupling cx„ the string tension
o of the con6ning potential, and the charm and bottom
quark constituent masses.

We list in Table IV the spectra produced by the various
/PE's with scalar linear confinement. We perforxned the
6ts by minimizing the rms deviation between the masses
predicted by the /PE's and the experimental masses.
The masses predicted by the /PE's were matched with
the mesons according to the spectral conjectures listed
in the 6rst column of Table III. The most ambiguous
assignment was for the Q(4415) meson. Both the 4sSx
and 3 Di states of charmonium have masses near 4415
MeV according to each of the /PE's. Interpreting the
g(4415) meson as the fourth 8 state instead of the third
D state degraded the rms deviation of each of the fits by
2 or 3 MeV.

TABLE IV. Charmonium and bottomonium spectra pro-
duced by the best fits for various /PE's. Interactions were
ladder gluon exchange and scalar linear confinement poten-
tial. All meson masses are in MeV. Blankenbecler-Sugar re-
sults are in column BS, Thompson I and II results under Th I
and Th II, Todorov equation results under T, and the a = 1,
c = 0 equation with no retardation introduced in Sec. IV
under New. At the bottom are listed the rms deviation from
experiment for each fit and the "best-fit" values of the pa-
rameters.

Meson

q. (1S)
g, (2S)
x p(1P)
x, x (1P)
h, (1P)
~/0(»)
@(2S)
Q(3770)
Q(4040)
4(4160)
@(4415)
x,p (lP)
xpp(1P)
x~p(2P)
x (»)
xbi (2P)
T(lS)
T(2S)
T(3S)
T(4S)
T(10860)
T(11020)
xp2(1P)
xp&(2P)
rxns (MeV)
as
o. (GeV )
m, (GeV)
mp (GeV)

mexpt.

2979
3595
3415
3511
3526
3097
3686
3770
4040
4159
4415
3556
9860

10232
9892

10255
9460

10023
10355
10580
10865
11019
9913

10268

BS Th I Th II T New
2981 3017 3173 3198 3048
3584 3610 3661 3655 3631
3426 3403 3519 3533 3395
3523 3497 3501 3513 34?5
3525 3506 3479 3491 3488
3174 3148 3183 3203 3136
3688 3681 3668 3659 3678
3778 3758 3739 3741 3737
4033 4052 3995 3959 4066
4091 4100 4039 4011 4102
4345 4381 4283 4229 4404
3601 3594 3526 3535 3582
9823 9826 9816 9809 9828

10190 10191 10207 10210 10195
9867 9879 9814 9805 9881

10232 10236 10205 10207 10235
9467 9451 951? 9499 9444
9991 9992 9995 9993 9995

10340 10337 10355 10359 10336
10622 10614 10655 10661 10610
10866 10855 10917 10921 10850
11085 11072 11152 11153 11066
9944 9965 9861 9852 9973

10296 10305 10250 10251 10306
36 32 77 89 35

0.253 0.319 0.035 0.015 0.374
0.251 0.212 0.370 0.43? 0.188
1.37 1.41 1.20 1.19 1.44
4.67 4.74 4.44 4.39 4.79

We also performed 6ts using linear con6ning potentials
having vector Lorentz structure. We list the results of
these fits in Table V.

Tables IV and V show that we can divide the /PE's
into two groups according to the quality of their heavy
meson fits. The 6rst group consists of those equations
which correspond to a & 0 in terms of the parame-
trized propagator, Eq. (14). These equations are the
Blankenbecler-Sugar, Thompson I, and the new /PE.
The fits produced by each of these /PE's have rxns devi-
ations in the range 32—36 MeV for the case of the scalar
con6nement potential. The second group consists of the
other two /PE's, which correspond to a = —1 in the
parametrized propagator, and their 6ts are of lesser qual-
ity. The di6'erences between the quality of the fits with
these two groups is not as pronounced in the vector linear
confinement case.

The best 6ts with the vector confinement are less com-
petitive than those using the scalar con6nement for the
three /PE's giving the best fits above. Because the best
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TABLE V. Charmonium and bottomonium spectra pro-
duced by the best fits for various /PE's. Interactions were
ladder gluon exchange and vector linear con6nement poten-
tial. All meson masses are in MeV. Blankenbecler-Sugar re-
sults are in column BS, Thompson I and II results under Th I
and Th II, Todorov equation results under T, and the a = 1,
c = 0 equation with no retardation introduced in Sec. IV
under New. At the bottom are listed the rms deviation from
experiment for each fit and the "best-6t" values of the pa-
rameters.

Meson

q, (1S)
q, (2S)
Xco (1P)
X.i(1P)
A, (1P)
JIM(»)
Q(2S)
@(3??0)
Q(4040)
y(4160)
Q(4415)
X.g(1P)
Xbo(IP)
X~o(2P)
Xgi (1P)
X~&(2P)
T(1S)
T(2S)
T(3S)
T(4S)
T(10S60)
T(11020)
X»(»)
X»(2P)
Ims
as
cr(GeV )
m, (GeV)
ma (GeV)

m, „~~ BS Th I Th II T New

2979 3003 2989 3098 3150 3006
3595 3566 3563 3630 3635 3576
3415 3356 3333 3402 3438 3330
3511 3486 3477 3471 3495 3471
3526 3502 3500 3475 3498 3500
3097 3169 3151 3181 3225 3141
3686 3676 3668 3676 3674 3659
3770 3742 3741 3711 3715 3736
4040 4072 4088 4056 4004 4083
4159 4115 4135 4079 4031 4130
4415 4439 4491 4391 4293 4495
3556 3624 3630 3583 3592 3634
9860 9840 9861 9814 9803 9855

10232 10183 10185 10182 10184 10191
9892 9878 9912 9829 9818 9930

10255 10218 10228 10193 10195 10243
9460 9536 9531 9570 9551 9477

10023 9998 10008 10000 9998 10017
10355 10325 10318 10339 10346 10324
10580 10599 10573 10631 10641 10568
10865 10842 10800 10892 10902 10784
11019 11065 11008 11131 11138 10981
9913 9956 9995 9889 9881 10030

10268 10284 10296 10248 10251 10318
39 45 58 74 49

0.229 0.313 0.047 0.024 0.434
0.204 0.159 0.278 0.326 0.130
1.28 1.37 1.14 1.16 1.46
4.68 4.78 4.50 4.46 4.88

fits were produced with the scalar form of the confine-

ment, and because confinement is expected to be largely
scalar in nature &om lattice computations, we win re-
strict the following discussion to the fits with the scalar
con6nement potential.

The 6tted value of the gluon coupling was controlled
largely by the S states which have large probability den-

sity at the origin in coordinate space where the Coulomb-
like potential is the strongest. The a = 1 new equation,
which has the weakest propagator at large momentum,
required the strongest gluon coupling. The two a = 0
equations produced fits with lower gluon coupling. How-

ever, the two a = —1 equations, having the largest prop-
agators at high momentum, required very weak couplings
to obtain reasonable S states. These a = —1 equations
drag the 8-state energies down at a coupling strength too
small to give a competitive 6t for the P and D states.

The value of the string tension for each equation was
determined largely by the P and D states which have
most of their probability density in the long range lin-
ear part of the potential. The high momentum behavior

of the equations is less important for these states, and,
consequently, the string tensions produced by the vari-
ous equations are much closer to each other than are the
gluon couplings.

Those equations giving the largest gluon coupling gave
the largest quark masses and the smallest string tension,
and vice versa.

The parameter values (strong coupling, string tension,
and quark masses) produced by the fits may also be com-
pared with results of other model fits. For example Ref.
[27] (the Particle Data Tables) lists what it calls "con-
servative" estimates for charm and bottom quark masses
based on potential models. Because these mass estimates
are from potential models, there is some logic in com-
paring them to the constituent quark masses produced
by the /PE fits. Reference [27] lists the charm quark
mass as 1.3—1.7 GeV and the bottom quark mass as 4.7—
5.3 GeV. As Table IV shows, the two /PE's that gave
the best fits in terms of rms deviation, the Thompson I
and new equation, yielded both charm and bottom quark
masses in accord with the ranges given by Ref. [27],
though the Blankenbecler-Sugar equation's bottom mass
prediction is only very slightly out of alignment with the
Particle Data Table 6gures. We also note that the two
equations having the worst rms deviations (the Thomp-
son II and Todorov equations) produced best-fit strong
couplings that seem unphysically low for the energy scales
associated with charmonium and bottomonium.

Finally, we may compare the string tensions produced
by each of the /PE fits with previous model fits and with
expectations &om lattice computations. Compilations
of potential model results list string tensions generally
falling in the range 0.18—0.2 GeV, e.g. , [5,28]. Refer-
ence [5] lists the lattice computation estimates of string
tension as 0.33+o zs GeV . Although each of the /PE's
yielded best-fit values for string tension within the large
limits supplied by this estimate, the a & 0 equations
(Blankenbecler-Sugar, Thompson I, and new equations)
produced numbers more in line with previous potential
model work.

The purpose of the above 6ts to the heavy mesons was
to test the qualitative intermediate coupling behavior of
the Coulombic interaction in the equations being used
to perform the fits. Fits based on minimizing the rms
deviation from experiment were sufficient for this pur-
pose. Therefore, no attempt was made to optimize a X
6t by, for example, adjusting the parameters a and c of
the generalized /PE or by trying more than two difFerent
Lorentz structures for the pheaomenological linear con-
6ning potential. Nevertheless, it is interesting to com-
pare the quality of these Gts with others that have been
reported.

Reference [29] presents X2 fits to 53 observed mesons
including light, open-8avor, and heavy mesons using two-
body Dirac equations. Of the 53 states, 23 were charmo-
nium and bottomonium. The rms deviations for these
heavy states were 23 MeV when using a vacuum-modi6ed
Richarson potential (RVP), 31 MeV when using an Adler-
Peran potential (APP), and 46 MeV when using an un-
modified Richardson model (RP). The Richardson po-
tentials contained one parameter, and the Adler-Peran
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potential two. The quality of these fits is especially note-
worthy given the large number of meson states included
in the fit.

Reference [10] lists results of fits to mesons composed
of spinor quarks using Salpeter's equations and a form
of the Blankenbecler-Sugar equation, all in momentum
space. Scalar, scalar-plus-pseudoscalar, scalar-minus-
pseudoscalar, and scalar-plus-vector Lorentz structures
for the linear confinement potential were considered. Ver-
sions of Salpeter's equations which include coupling be-
tween positive and negative &equency states were used.
A Breit interaction of the form

A+A~ Vjy„A+A~ + A A~ Vjy„A A~ (22)

where

&a '(P P )&b (P P )

( l)4 (23)

TABLE VI. Mass predictions using the Thompson I and
New equations for those charmonium and bottomonium states
not yet measured experimentally (indicated by asterisks in
Table III). All masses are in MeV.

Meson

@(4S)
&(»)
y(6S)
X o(2P)
y, g (2P)
X 2(2P)
qg(1S)
r1g(2s)
hg(1P)
&~(»)
Ts(2D)
Ta(3D)

Th I
4345
4593
4811
3847
3906
3955
9297
9927
9889

10131
10428
10683

New
43?7
4642
4880
3859
3904
3985
9338
9950
9892

10134
10426
10678

was used in addition to interactions of the forms given
in Eqs. (19) and (20) above. The best rms deviation for
charmonium and bottomonium spectra fits was 42 MeV.
These fits were performed by adjusting the same four
quantities used in the fits of the present investigation.

Long [8] has produced a heavy meson spectrum also
using spinor Salpeter's equations with coupling to nega-
tive energy components. Though no attempt was made
to optimize the fit, Long reports an average difference
of 36 MeV between experiment and calculation for 21
charmonium and bottomonium states.

We now use the Thompson I equation and the a = 1,
c = 0 new equation, both with a scalar linear confining
potential and OGE potential, to predict masses for those
charmonium and bottomonium states which have not yet
been measured experimentally (those states indicated by
an asterisk in Table III). For both equations, we use the
"best-fit" values for the quark masses, gluon coupling,
and string tension as listed in Table IV. The predictions
of the two equations are given in Table VI. The rms de-
viation between the predictions of these two models is 31
MeV for the 12 states, comparable to the rms deviations
&om experiment produced by these two equations when
fitting the experimentally known states.

VI. FITS TO THE LIGHT MESONS

TABLE VII. Thompson I /PE fit to ten light quark
mesons. All masses are in MeV. At the bottom are listed
the rms deviations from experiment and the best-fit values
of parameters. The string tension was 0.212 CeV from the
heavy meson 6t.

Meson
sr~

7r(1300)
7rg (1670)
ai(1260)
bi(1235)
p(770)
ag(1320)
$(1020)
Q'(1680)
f2
rms deviation

ms

+2s+1L

1 So
2 Sp
1'D
1 Pg
1 P
1 Sg
1'P2
1 Si
2 Sx
1 P2

mexpt
140

1300
1670
1260
1232
768

1318
1019
1680
1525

Th I
139

1053
1460
1201
1214
926

1348
1067
1577
1516

124
0.52
334
407

We extend the above treatment to the lighter mesons
having up, down, and strange valence quarks. In this
case, however, the justification for using only the valence
quarks in a two-body potential formalism such as the
QPE's to describe the mesons is not as well founded.
Another difBculty is that it is questionable whether the
valence structure of some of the light mesons is qq. For
example, Ref. [27] cites evidence that the uo(980) and
fo(975) mesons are possibly non-qq in nature.

Our approach to the light meson spectroscopy is to
assume Bavor independence of the confining interaction
and to fit the constituent quark masses (with m„= mg)
and the gluon coupling constant. We selected ten light
mesons for the fit and employed the Thompson I equation
using the best value of the string tension of 0.212 GeV
kom the heavy meson fit. We present the results in Table
VII where the second column gives the spectral assign-
ment used for each meson in the fit. These assignments
are less certain than those for the heavy mesons. The
fits were performed by minimizing the percent difference
between each calculated energy and the corresponding
experimentally measured mass. This strategy forces a
better fit to the pion at the expense of degrading the rms
deviations for the other nine mesons.

The rms deviation of this fit is 124 MeV. This may
also be compared with the results reported in Refs. [29]
and [10]. In the same y fit that produced the heavy
meson results reported in the previous section, Ref. [29]
obtained fits to nine light mesons with rms deviations of
65 MeV using RVP, 177 MeV using APP, and 87 MeV
using RP. Reference [10], again using positive and nega-
tive frequency coupled Salpeter's equations, reports a fit
to 13 light qq states with a rms deviation of 159 MeV.

Our approach has been to present reasonable fits with
these QPE's rather than to carefully search for the best
possible fits by, for example, allowing mixtures of other
Lorentz structures in the confinement potential. The
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qualitative results for the light mesons which emerge
are encouraging in that the constituent quark masses
are in line with other models and the gluon coupling is
about 60'Fo stronger than the Thompson I fit to the heavy
mesons. It is also interesting to note that the o., obtained
in the light meson fit is close to the assumed saturation
value of a, employed in Ref. [3].

VII. DEEP BINDING LIMIT

2.0

0
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8
g 1.5

0

I I I I

I

I I I I
I

I t I I
I

I I I I

I
I I I I

Several studies have been performed recently on the
large coupling (deep binding) regime of bound state sys-
tems. Some of these investigations have been done in the
context of bound states of very massive fermions where
the binding effect of Higgs boson exchange is very large
[30]. Others have been concerned with the attempt to
bootstrap the Higgs boson (e.g. , Ref. [31]). The equa-
tions that have been used as approximations to the full

BSE in these studies have the property that they drive
the total energy of the two-particle bound state to zero
as the coupling strength of the binding interaction is in-

creased.
Some authors interpret the vanishing meson mass as

unphysical and they construct some relativistic equations
which do not drive the bound state mass to zero at large

coupling, e.g. , Ref. [32]. Here we note that any ladder

QPE arising from use of the generalized propagator in

which a & 0 will not produce zero energy bound states
at large coupling. As Eq. (14) shows, such a propagator
will have a powers of the energy in the numerator. A

solution with the bound state mass equal to zero would

make the propagator vanish, and the QPE would then
have no nontrivial solution.

As an example of the large coupling behavior of such

a QPE, we display in Fig. 2 the total energy predicted

by the fermion-antifermion QPE with a = 1 and c = 0

introduced in Sec. IV for couplings in the range 0—5. We
also present for comparison the fourth order perturba-
tive energies plotted against coupling strength. At small
coupling, the energy predicted by the QPE is indistin-
guishable from the perturbative result on the scale of the
plot. The perturbative result drives the total energy to
zero before the coupling reaches 1.5. However, the QPE
has no nontrivial solution for zero energy. Though it
predicts increased binding as the coupling increases, the
energy is still well above zero even when the coupling is
as large as 5.

VIII. SUMMARY AND OUTLOOK

We have performed an examination of the feasibility
of using the quasipotential equation formalism as a tool
for studying hadronic physics. The equations we inves-
tigated are covariant, employ a full nonlocal one-gluon-
exchange potential, and a linear confining interaction mo-
tivated by lattice QCD calculations. We have used no
explicit regulators in our equations, thus minimizing the
nnmber of parameters, and we have identified a class of
QPE's that provide a good fit to the quarkonia spectra
(32—36 MeV rms deviation from experiment for the best
heavy meson fits) with reasonable potential parameters.
A somewhat lesser quality fit is obtained for the light
mesons, but the rms deviation between model and ex-
periment is reasonably competitive with other relativistic
formalisms.

Much more stringent tests of the various two-body
equations are provided by calculations of other observ-
ables such as decay constants and form factors. The re-
sults and analyses of the present paper demonstrate that
the covariant QPE's can be a powerful means of inves-

tigating strong coupling physics. With this preliminary
investigation completed, the stage is set for the intro-
duction of further physics (running couplings, annihila-
tion graphs, etc.) into the integral equations. Among
our goals are to complete an improved description of the
light and open-flavor mesons, calculate a complete set of
decay constants and widths, and investigate in-medium
eHects of meson observables.
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PIC. 2. The bound state mass predicted by a = 1, c = 0
new +PE (with no retardation) of Sec. IV (solid curve) and
by fourth order perturbation theory (dashed curve) as a func-
tion of coupling strength A. At small coupling the curves are
indistinguishable. At large coupling the perturbative solution
drives the bound state mass to zero while the +PE solution
remains positive.

APPENDIX: BRIEF OUTLINE
OF THE METHOD OF SOLUTION

The methods we employ for solving the QPE's have
been described elsewhere ([8,10] and particularly [26] and
references therein), and the full details will not be re-
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peated here. In this appendix we provide an overview of
the method.

A standard partial wave reduction in a basis of total
angular momentum states is performed on the integrand
of the wave equation:

dO'(p —p') Pg(8') =,Qz(Z),
pp'

(A2)

where the Pg(8) are the Legendre polynomials and the
Qg(Z) are the Legendre functions of the second kind with
argument Z = (p + p' )/2pp', are used to express the
matrix elements of V~GE in the form

) f dp'p"(IMI'S~V(p, p')(IMIS)(IMIS(@(p')),
L

(Al)
where L = I' = J or I = I' = J6 1 depending on which
angular momentum channel is being solved. Integrals
such as

such intervals. Such a span de6ned by four adjacent in-
tervals involves 6ve knots. The B spline is constructed
by joining the four cubic polynomials for these four in-
tervals at the three middle knots in such a way that their
first two derivatives are equal at the knots. At the erst
and last knots, the B spline is constructed to have a value
of zero with vanishing erst and second derivatives. The
finite span of the momentum space axis to be used in
solving the equation is divided into a series of intervals
de6ned by X+ 4 knots, and this span is then covered by
N distinct B splines.

In the integrand there will be functions of p and p',
which we may call E(p, p'), arising from the partial wave
reductions of the interactions and &om the quasipoten-
tial propagators. The speci6c form that I" takes will vary
depending on which /PE is being solved. A second ingre-
dient in the solution method is to approximate E(p, p')
by a cubic polynomial on each B-spline knot interval.
That is, on each knot interval we have

(JML'SIV(p~ p )l JMLS) = ).AJMLL'SQk(Z) (A~). (A7)

The Legendre functions of the second kind have the
form

By then operating on the entire equation &om the left
with f dpB„(p), an equation results which has the form

Qo(Z) = -ln
-Z+ 1-

(A4a) E) f dpB (p)B a(p) „a„
with the recursion relation

2J+1 J
Qg+i(Z) = ZQg(Z) — Q, i(Z) —bJ o.

(A4b)
Similarly, the form of V, „given in Eq. (20) results in

matrix elements of the form

(JML'S]V(p, p')] JMLS)

2
llm BJMI I (A5)

where now Z' = (p' + p'2 + p, ')/2pp'.
The partial wave amplitudes are expressed as a sum of

cubic basis splines (B splines) B„(p),

= ):f dpsa(p)» (p)".
+)'f dpBa(p) f dp'1(p, p )B (p') „'. a

V

(A8)

Here, E is the eigenvalue, T is relativistic kinetic energy
operator, and I(p, p') is the polynomial representation of
F(p, p ) &om Eq. (A7) multiplied by linear combinations
of the Qb(Z). Since I(p, p') consists of only polynomials
and logarithms, the p' integration in Eq. (A8) may be
done analytically. It is important that such an integral
over the logarithms in the Legendre functions be done
analytically since numerical integration over the logarith-
mic singularities in Qb(Z) would be very unstabe. The
remaining p integration in Eq. (A8) is done numerically.
Equation (A8) may be expressed as a matrix equation

(JMLS]g(p)) = ) a„B„(p). (A6) EBddvav = (T(dv + Vddv)av ~ (A9)

Each of the B splines is constructed from cubic polyno-
mials in momentum space. Each polynomial is de6ned
over an interval in momentum space bounded by points
called knots. Each B spline is nonzero over four adjacent

where the banded-diagonal metric B„appears because
of the nonorthogonal spline basis functions. Equation
(A9) is solved for the eigenvalue E and eigenvector a
with standard matrix equation techniques.
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