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The self-energies of quasinucleon states in nuclear matter are investigated using a finite-density
/CD sum-rule approach developed previously. The sum rules are obtained for a general /CD
interpolating field for the nucleon. The key phenomenological inputs are the nucleon 0 term, the
strangeness content of the nucleon, and quark and gluon distribution functions deduced from deep-
inelastic scattering. The emphasis is on testing the sensitivity and stability of sum-rule predictions
to variations of the condensates and other input parameters. At nuclear matter saturation density,
the Lorentz vector self-energy is found to be positive with a magnitude of a few hundred MeV,
which is comparable to that suggested by relativistic nuclear phenomenology. This result is quite
stable. The prediction for the scalar self-energy is very sensitive to the undetermined values of the
in-medium four-quark condensates.
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I. INTRODUCTION

Connecting observed nuclear phenomena to the under-
lying theory of the strong interaction, quantum chromo-
dynamics (QCD), is the ultimate goal of modern nuclear
theory. This is diKcult since most nuclear phenomena
cannot be treated by perturbative methods. In the ab-
sence of a full solution to QCD at large distances, the
QCD sum-rule method is a promising approach to mak-
ing such connections. In a recent series of papers [1—4],
QCD sum rules for nucleons in nuclear matter have been
developed, with an emphasis on testing the predictions of
relativistic nuclear phenomenology for quasinucleon self-
energies. In this paper we extend this development.

The major goal of the QCD sum-rule approach in free'
space [5] is to extract the resonance properties of hadrons
from perturbative QCD and the vacuum matrix elements
of composite quark and gluon operators (condensates).
The condensates parametrize nonperturbative features of
the QCD vacuum and are independent of the hadrons
considered. Applications of QCD sum-rule techniques
over the past 15 years have had significant phenomeno-
logical success and have suggested that the spectral prop-
erties of many hadrons can be determined in terms of a
small number of quark and gluon condensates [5—10].
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Finite-density QCD sum rules for nucleons are based
on the study of a correlation function of the nucleon inter-
polating field, which is constructed from quark fields and
carries the quantum numbers of the nucleon. This corre-
lator is evaluated in the ground state of infinite nuclear
matter (rather than in the QCD vacuum). The nuclear
matter ground state is characterized by p~, the nucleon
density in the rest kame, and u", the four-velocity of
the nuclear matter. For convenience, we choose to work
in the rest frame of nuclear matter, where u" = (1,0).
The analytic properties of the correlator as a function
of the energy in this frame (with the three-momentum
held fixed) can be made manifest by a Lehmann repre-
sentation; the quasinucleon excitations are characterized
by self-energies. By introducing a simple Ansatz for the
spectral densities, one obtains a phenomenological repre-
sentation of the correlation function.

On the other hand, the correlation function can be
evaluated at large spacelike momenta using an operator
product expansion (OPE). In this expansion of the cor-
relator, matrix elements of composite quark and gluon
operators in the nuclear matter ground state (in-medium
condensates) are multiplied by coefFicient functions (Wil-
son coefficients) evaluated using perturbative QCD. By
equating the OPE and phenomenological representations
and applying Borel transforms (see Sec. II), one obtains
QCD sum rules that relate the nucleon self-energies to
QCD Lagrangian parameters and finite-density conden-
sates. Changes in the nucleon spectral properties at finite
density are then related to changes in the condensates.

Isoscalar Lorentz scalar and vector self-energies that
are large and canceling emerge naturally in a truncated
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version of the finite-density nucleon sum rules [1,3], re-

fiecting changes in the quark condensate (qq)~~ and the
quark density (qtq)~~. Such self-energies are consis-
tent with those predicted by relativistic phenomenolog-
ical models (e.g. , Brueckner calculations [11,12] or the
relativistic optical potentials of Dirac phenomenology
[13,14]). In Refs. [3,4] these simple sum rules were ex-

tended by including the contributions of higher-energy
states and higher-order terms in the OPE. The extended
/CD sum-rule analysis indicates that the basic qualita-
tive features of the simple sum rules might hold in the
more complete analysis; whether or not this occurs de-
pends on assumptions made about the density depen-
dence of the four-quark condensates. In this paper we
derive the finite-density nucleon sum rules with a more
general nucleon interpolating Geld and present further
details of the sum-rule analysis. We include a variety
of corrections outlined in Refs. [3,4] and study the sen-
sitivity of our results to various parameters in the sum
rules.

At finite density, the ground state is not Lorentz in-
variant; therefore, expectation values of local operators
with any integer spin can be nonzero in nuclear mat-
ter [4]. As a result, a large number of new terms (i.e.,
terms that vanish in the vacuum) appear in the OPE at
finite density; terms present in the OPE in vacuum also
become density dependent. We construct the OPE so
that all density dependence of the correlator resides in
the condensates. We estimate these condensates to first
order in the nucleon density pN. We assume that ap-
plying this approximation up to nuclear matter satura-
tion density is reasonable for calculating scalar and vec-
tor self-energies. Then the in-medium condensates can
be written as (0)~~ = (0)„,+ (0)~p~, where (0)~~
is the in-medium condensate, (0)„,is the vacuum con-

densate, and (0)~ is the expectation value of the oper-
ator in a nucleon state (at rest) [4]. In this paper we
consider the contributions &om quark and quark-gluon
condensates up to dimension Gve, &om dimension-four
gluon condensates, and from dimension-six $our-quark
condensates. Perturbative corrections to the operators
are taken into account in the leading-logarithmic approx-
imation through anomalous-dimension factors [5].

In nuclear matter, nucleon and antinucleon spectral
properties are not simply related by discrete symme-
tries, since the ground state is no longer invariant under
charge conjugation. Our assumptions about the finite-
density phenomenological spectral functions are moti-
vated from basic features of observed nuclear phenomena.
In particular, the positive-energy nucleon pole becomes
a broadened peak in the medium, which reflects the
spreading of strength into other states. Nevertheless, the
comparatively small imaginary parts of the optical po-
tentials suggested by Dirac phenomenology and meson-
exchange models indicate that the peak remains narrow
on hadronic energy scales [11—14]. Since the sum rule
averages over the spectral function on such scales, a pole
Ansatz for the quasinucleon is justified. A Lorentz co-
variant quasinucleon pole Ansatz automatically includes
a negative-energy nucleon pole, which corresponds to an
antinucleon propagating in nuclear matter. However, we

have much less information about the negative-energy
nucleon pole and we expect that, in nature, the anti-
nucleon pole is broadened significantly due to annihila-
tion processes. Our calculational strategy is to construct
the sum rules so as to suppress contributions &om the
vicinity of the negative-energy pole [3]. Contributions
from higher-energy continuum states are included using
a rough approximation, which starts at an efFective con-
tinuum threshold.

We find that the finite-density /CD snm rules pre-
dict a large and positive (i.e., repulsive) Lorentz vector
self-energy for a nucleon in nuclear matter. This self-
energy is essentially proportional to the nucleon density.
The predicted ratio of the vector self-energy to the zero-
density nucleon mass is found to be relatively insensitive
to the details of the calculations and quite stable against
variations of the condensates and parameters. In con-
trast, the prediction for the Lorentz scalar self-energy is
very sensitive to the assumed density dependence of the
four-quark condensates and to the value of the nucleon
cr term. We find that the ratio of the scalar self-energy
to the free-space nucleon mass is insensitive to the Borel
mass M when the density dependence of these conden-
sates is weak or moderate and is sensitive to the Borel
mass M when these condensates have a strong density
dependence (see Secs. II and III). If we assnme that
the four-quark condensates have a weak density depen-
dence, then we find that sum rules predict a large and
negative scalar self-energy that cancels the vector self-
energy. This result is in good agreement with relativistic
phenomenology. A basic disagreement with the known
empirical situation is found when the four-quark conden-
sates depend strongly on the nucleon density.

There have been several other recent papers that fo-
cus on similar or related topics. Drukarev and Levin
[15] have studied /CD sum rules for nucleons in nuclear
matter using an OPE and dispersion relations that dif-
fer from those considered here and in Refs. [3,4]. They
have focused on the properties of nuclear matter, such as
the saturation curve. We note that /CD sum-rule pre-
dictions for nuclear matter saturation properties require
detailed knowledge of the density dependence of the con-
densates particularly the in-medium quark condensate
(qq)~„and the in-medium four-quark condensates. It is
not obvious that our present knowledge of this density de-
pendence is precise enough to allow a meaningful descrip-
tion of saturation. In Ref. [16] Henley and Pasupathy use
a somewhat difFerent formalism; their approach is based
on nucleon-nucleus scattering as opposed to the propa-
gation of a nucleon in nuclear matter. In Refs. [17,18]
nucleon sum rules were used to estimate the density de-
pendence of the neutron-proton mass difFerence, which
might account for the Nolen-SchifFer anomaly. Sum rules
for vector mesons in nuclear matter were discussed in
Refs. [19,20].

The rest of this paper is organized as follows. In Sec. II
we derive /CD snm rules for nucleons in nuclear matter
with a general interpolating field. In Sec. III typical nu-
merical results are presented. A detailed analysis of the
sensitivity to various inputs is given in Sec. IV; additional
discussion is given in Sec. V.
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II. SUM RULES FOR THE NUCLEON IN
NUCLEAR MATTER

In this section we derive @CD sum rules for nucle-
ons in inGnite nuclear matter with a general interpolat-
ing field, following the method developed in Refs. [1,3,4].
In the operator product expansion (OPE) for the nu-
cleon correlator, we work to leading order in perturba-
tion theory; leading-logarithmic corrections to the sum
rules are included through anomalous-dimension factors.
Contributions proportional to the up and down current
quark masses are neglected as they give numerically small
contributions. We consider quark and quark-gluon con-
densates up to dimension five and pure gluon conden-
sates of dimension four. At dimension six we include
only the four-quark condensates; all other dimension-six
and higher-dimensional condensates are neglected since
we expect their contributions to be small in the region
of optimal Borel mass [4]. If the sum rules are correct,
the inclusion of such contributions should make the "win-
dow" in the Borel mass larger and the "plateaus" in the
predicted quantities as functions of the Borel mass Hat-
ter.

As discussed earlier in Refs. [1,3,4], /CD sum rules
for the nucleon at finite density focus on the nucleon
correlator defined by

&(q) —= *f~'*" (&ol&(n(*)n(o)ll ~0), (2.1)

where rl(z) is a colorless interpolating field made up of
quark fields that has the quantum numbers of a nucleon.
The ground state of nuclear matter l@0) is characterized
by the rest-&arne nucleon density p~ and by the four-
velocity u"; it is assumed to be invariant under parity
and time reversal except for the transformation of u".

We consider nucleon interpolating fields (currents) that
contain no derivatives and couple to spin-2 states only.
There are two linearly independent 6elds with these fea-
tures, corresponding to a scalar or pseudoscalar diquark
coupled to a quark. For the proton these two indepen-
dent interpolating 6elds are

the phenomenological description is represented roughly.
The goals in choosing the interpolating field for @CD
sum-rule applications are to maximize the coupling of
the interpolating Geld to the state of interest relative to
other (continuum) states, while minimizing the contri-
butions of higher-order terms in the OPE. These goals
cannot be simultaneously realized. The optimal choice of
the nucleon interpolating Geld seems to be close to Ioffe's
choice. We refer the reader to Ref. [21] for more discus-
sion about IoKe's interpolating 6eld. Interpolating 6elds
with t around —1.1 have also been used in nucleon sum-
rule studies [22], particularly in studying direct small-
scale instanton effects in the nucleon sum rules [23,24].
To re6ect this range of t, we shall consider the interval
—1.15 & t & —0.95 here. For t & —0.95 the continuum
contributions become large while for t ( —1.15 the con-
tributions &om higher-order terms in the OPE become
important relative to the leading-order terms.

Lorentz covariance, parity, and time reversal allow one
to decompose the correlator into three distinct structures
[1,3,4]:

II(q):—II,(q, q u) + II~(q, q u)]+ II„(q,q u)g . (2.5)

The three invariant functions, II„IIq, and II„,can
be projected out by taking appropriate traces of II(q)
[3,4]. In vacuum, II, and II~ become functions of q2

only and II„vanishes. For convenience, we will work
in the rest &arne of nuclear matter hereafter, which im-
plies u" ~ (1,0); we also take II;(q2, q. u) ~ II;(qo, l«1])

(i = (s, q, uj). To obtain sum rules, we construct a
phenomenological representation for II(q) using a sim-

ple spectral Ansatz and evaluate II(q) at large spacelike
q2 using the OPE.

The analytic properties of II(q) can be studied through
a Lehmann representation, in which all of the singulari-
ties of II(q) in q0 lie on the real q0 axis. For each of the
I orentz structures II; we can write a dispersion relation
of the form [3]

(2.6)

rli(z) = «s, [u (z)C»ds(z)]u, (z),
nz(z) = «-s.[u. (z)&ds(z)]»u. (z)

(2.2)

(2.3)

where T denotes a transpose in Dirac space and C is the
charge conjugation matrix. The analogous 6elds for the
neutron follow by interchanging the up and down quark
Geld s.

In this paper we take a linear combination of these two
fields,

(2.4)

where t is an arbitrary real parameter. The interpolating
field with t = —1, advocated by Ioffe [6], corresponds to
an axial vector diquark coupled to a quark. This interpo-
lating Geld has been used exclusively in previous papers
on finite-density nucleon sum rules [1,3,4]. In principle,
the sum-rule predictions are independent of the choice
of t; in practice, however, the OPE is truncated and

where we have omitted polynomials arising from the con-
tour at infinity [25], which will be eliminated by a sub-
sequent Borel transform. We have also omitted. infinites-
imals, which determine for real qp whether the correla-
tor is retarded, advanced. , or time ordered; they are not
needed since the present formulation of the @CD sum
rules only applies Eq. (2.6) with q0 off the real axis [3].
The discontinuity, defined by

»*(~ l~l) —= lim [11,(~+ i«, l~l) —11,(~ —G«, lgl)], '

(2.7)

contains the spectral information on the quasiparticle,
quasihole, and higher-energy states.

In /CD sum-rule applications, one parametrizes the
spectral density with a small number of spectral param-
eters characterizing the resonances in the channel of in-
terest (e.g. , poles, residues, etc.). At finite density, the
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ground state is no longer invariant under charge conju-
gation; thus the spectral densities for baryons and an-
tibaryons are not simply related. For the nucleon, the
characteristics of the phenomenological Dirac optical po-
tentials for intermediate-energy proton-nucleus scatter-
ing and those obtained &om meson-exchange models sug-
gest that a nucleon in nuclear matter can be regarded as
a quasiparticle with large scalar and vector self-energies.
The imaginary parts of the optical potentials suggest
that the width of the quasinucleon excitation is relatively
small on hadronic scales; thus a pole approximation for
the positive-energy quasinucleon should be justified. In
contrast, an antinucleon propagating in nuclear matter
is expected to be much broader due to annihilation pro-
cesses. The reader is referred to Ref. [3) for more motiva-
tion for using the QCD sum-rule approach and for using
a quasinucleon pole approximation.

We assume a quasiparticle pole for the nucleon, so
that the self-energies are real and depend only on ~q~;

all higher-energy excitations are included in a continuum
contribution. Lorentz covariance then dictates the rep-
resentations of the individual invariant functions [3]:

11.(qo lql) = —&iv'
qp —E& q()

1
lie(qo lql) = —&tv'

qo —E& qo

11 (« I&I) =+@
(« —E.)(qo

E )

E )

E )

(2.8)

(2.9)

(2.io)

MN =MN+~

Z, =—Z. + q2+M„*',

Eq —Z — q +MN,

(2.11)

(2.12)

(2.13)

where Z, and Z are the scalar and vector self-energies

where A~ is the residue at the quasinucleon pole, which
specifies the coupling of the interpolating field to the
physical quasinucleon state, and the ellipses denote the
contributions from higher-energy states, which will be
included later. Here we have defined

"*(q' qs) = ).&.'(q' «)(o-).~ (2.i4)

~h~~~ (O )~„—= (@0~0 ~@o). The Wilson coefficients
C„'(q,qo) depend only on QCD Lagrangian parameters;
all of the density dependence of the correlator is in-
cluded in the matrix elements (O„)~~ (the in-medium
condensates) .i

The calculation of the Wilson coefficients in the OPE
is straightforward using the simple rules and techniques
outlined in Ref. [4]. For convenience we separate the
invariant functions into pieces that are even and odd in
go:

11,(q„lql) = 11;. (q,', lql) + q.ll;. (q,', lql) (2.i5)

Working to leading order in perturbation theory and us-
ing the general nucleon interpolating field [Eq. (2.4)], we
obtain

of the nucleon in nuclear matter, respectively [3].
The quasinucleon (positive-energy) pole is at E . We

observe that a negative-energy pole, occurring at Eq, is
introduced in Eqs. (2.8)—(2.10). This corresponds to an
antinucleon quasiparticle added to the nuclear matter.
Since the narrow-resonance approximation for an anti-
nucleon is not justified and since we wish to focus only on
the positive-energy quasinucleon pole, we construct sum
rules that suppress the contributions &om the region of
the negative-energy excitations.

We proceed now to evaluate II(q) at short distances,
i.e., q m —oo, using the OPE [26,27]. In the present
approach, we use a dispersion relation in qo with the
three-momentum held fixed to specify the quasinucleon
state to be studied [see Eq. (2.6)]; therefore, we need
to apply the OPE in the limit that q() becomes large
and imaginary while ~q~ remains fixed (in the nuclear
matter rest kame). This limit takes q ~ —oo with
~q /qe~ -+ oo, which satisfies the conditions discussed in
Ref. [27] for a short-distance expansion.

Applying the OPE to the time-ordered product in
Eq. (2.1), one can express the invariant functions of the
nucleon correlator in the form [4,3]

2c
,q' n( —q')(qq)~„+ '2»( —q )(g,qo' gq)~ + —((qiDoiD()q)p + s(g, qcr Qq)z ), (2.16)

:= -6, »(-q')(qiD q) —3', (qq) (q'q)

6 2.(q')'»(-q')+ ', l»n(-q') —", i (q"Dsq)..
2

PN„'.»(-q')(q'q). .+
72

', , (g.q'~ aq),.— ", , i
i+

(2.17)

+ ln( —q~) (—'(E~ —B~))

;(q'q)',„, (2.1S)
6q2

2 2

q'),
'

I ((q'iD»Dsq)&~ + i'2(g. q'~ gq), ), (2.»)

The dependence of C' (q, q()) and (0 )~~ on the normalization point p, has been suppressed [28,29j.
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c 2' q'»(-q')(q'q). — ' »( q-')(g. q'~.«). + ' —'((q'iD»Doq). + i'2(g q'o. «).-)
II„=— ln( —q )(qtiDpq)~ — ln( —q ) —'(E + B ) — (qtq)

18~» " 288&» ~ 3q»

(2.20)

(2.21)

where all polynomials in q and qo, which vanish under
the Borel transform, have been omitted. Here we have
adopted the notation of Ref. [4] and have defined

cq ——7t —2t —5,2

c» ——1 —t
c3 = 2t —t —1 )

c4 ——Gt + 2t+ 5,
c5 ——7t + 10t + 7 .

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

Contributions &om four-quark condensates are included
in factorized form [4]. (See Sec. III for discussion of the
factorization approximation. )

QCD sum rules for the nucleon follow by comparing
the phenomenological representation to the OPE repre-
sentation. In vacuum sum rules, the overlap of the two
descriptions is improved by applying a Borel transform.
Here we use a finite-density generalization of the vacuum
sum rules that improves the overlap of the two descrip-
tions, suppresses contributions &om negative-energy ex-
citations, and reduces to the vacuum sum rules in the
zero-density limit (see Ref. [3] for a detailed discussion).
Sum rules for the nucleon are constructed as

for i = (s, q, u), where the left-hand side is obtained from
the OPE, the right-hand side is obtained from the disper-
sion relations using a simple phenomenological spectral
Ansatz, and 8 is the Borel transform operator defined by

&[f(qo lql)]= lim
—q&,n-+oo2

—qo /n=M

( 2) ra+1

I ~, I f(qo lql)

—= f(M' lql) (2.28)

where M is known as the Borel mass. In Eq. (2.27), Eq is
the energy of the negative-energy pole in the quasiparti-
cle Ansatz [see Eqs. (2.8)—(2.10)]. Sum rules constructed
in this manner completely suppress sharp excitations at
Eq and also strongly suppress a broad excitation in this
vicinity.

Perturbative corrections o., can be taken into ac-

~[11,'(qo lql) —Eqli, (qo lql)]o~E
= 8[II'(qp, lql) —E II,. (qo, Iql)] h, , (2.27)

count in the leading-logarithmic approximation. through
anomalous-dimension factors [5]. After the Borel trans-
form, the effect of these corrections is to multiply each
term on the OPE side of the sum rules by the factor [6—8]

2& +r 1n(M/AqcD)
ln(p, /Acl gD )

(2.29)

where I'„is the anomalous dimension of the interpolat-
ing field g, I'~„is the anomalous dimension of the corre-
sponding local operator, p, is the normalization point of
the operator product expansion, and AqcD is the QCD
scale parameter. We take p = 0.5GeV and AggD
100 MeV [8] in our calculations. The anoxnalous dimen-

sions I'„and I'~ depend on Nf, the number of Bavors.
We take Ny ——3 in this paper, as the effect of heavy
virtual quarks turns out to be negligible [5]. For the
interpolating field defined in Eq. (2.4), we have I'„=

p

[30]. The anomalous dimension of qq is
p [5]. Since qp"q

is a conserved current, the anomalous dimension for this
operator is 0.

For dimension-four and -five operators we will adopt
the values of the corresponding condensates at the scale
of 1GeV and ignore the anomalous dimensions of these
operators (i.e. , set I'o = 0), either because the operators
are renormalization-group invariant (so that I'o„=0),
because the anomalous dimension is small, because the
corresponding condensates give small contributions, or
because the accuracy to which the nucleon matrix ele-

ments of the operators are known is such that anomalous-

dimension corrections represent an unwarrantable refine-

ment.
The four-quark operators are not, in general, renormal-

ization covariant, so they mix with one another under the
renormalization group [5]. In vacuum, the anomalous-

dimension effects do not violate the factorization assump-

tion to within 10' [5], and thus one assumes that the
anomalous dimension of a four-quark operator is equal
to the sum of the anomalous dimensions of the factorized
operators [6,7]. In this paper we follow this assumption.

With the spectral Ansatze of Eqs. (2.8)—(2.10) and the
OPE results of Eqs. (2.16)—(2.21), we obtain three sum

rules —one for each invariant function:

p~2~* —(E —q )/M 3c»

167t »
M Ep(g, qofq) p„L..

(2.30)

2 M Ei (qq) p~
— ' EqM'Eo (qiDoq), ~ L

q ((qiDpiDpq)z + s(g, qoQq)~ )L ~ —'. Eq(qq)z~ (qtq)~~—

The factor 1/b (b = 11 —-Ny) is included in the definition of I'„and I'o„(seeRefs. [6,7,30]).
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8 2
A'e ~ ~ ~l/ = MEL /+ EME(t) L / — M ~5E — j(tiD ) L 4/P

256~4 ' 24~2 ' ' '" 72~2

ME —'(E —B) L — M ~zp —
l

—'(E +B)
128vr 7r p~ 1152m ( M &

2 2

+
7
', E,(a.q'~ &q.), L '/' —,2', Eq l

—
M, l

((q'iDpiDpq), + ,', (—a.q'~ &q.), )L "'

+ ~&
(
—)2 L4/9 + c4

( t )2 L-4/9 (2.31)

" M'Z (qtq) L '/'-+ ' E M'E (q 'D.q) I,

E M'Z —'(E'+ B') L "'— ' M'Ep(~. q'~ &q)~ L "'
288 2 PN 48+2

+ ' q'((q'iDpiDpq)~N +,'~(~ q'& «)~~)L "'+—E.(q'qC~ (2.32)

Here we have de6ned the following quantities, which ac-
count for continuum corrections to the sum rules [3]:

E y
— /M

—so /M

—'/M

7

~ M'+''( s',

( sp2 sp

(2.33)

(2.34)

(2.35)

where we define the continuum threshold sp = up2 —q2 (up
is the energy at the continuum threshold). In principle,
the efFective thresholds are difFerent for positive and neg-
ative energies and for the difFerent sum rules. The former
differences are critical in some sum-rule formulations [31],
but are not numerically important in the present formu-
lation. &n'thermore, the thresholds are relatively poorly
determined by the sum rules and e8ects due to di8er-
ent thresholds in different sum rules may be absorbed by
slight changes in the other parameters. In this paper we
use a universal efFective threshold for simplicity.

III. RESULTS

A. In-medium condensates

To extract the self-energies from the 6nite-density nu-
cleon sum rules, one has to know the in-medium con-
densates appearing in the sum rules. Working to leading
order in the nucleon density pN, one can write

&N
(qq), = (qq)- .+

2fAQ

(q q)~ = 2pN

(3.2)

(3.3)

where m~—:2(m„+ms) is the average of the up and
down current quark masses and o ~ is the nucleon cr term.
The most recent estimate of the 0 term is uN 45 MeV,
with an uncertainty of about 7—10MeV [32). We shall
consider this uncertainty in Sec. IV.

The gluon condensate ((a, /x)(Es —B2))~~ and the
quark condensate (qiDpq) ~~ are evaluated in Refs. [2,15]
and Ref. [4], respectively:

—E —8 = —— —G + 325MeV pN
jr PN 2 K vac

(3.4)

(qq)~~ should be good (higher-order corrections 20'%%uo

of the linear term) up to nuclear matter saturation den-
sity. Here we assume the first-order approximation of oil
condensates to be reasonable for calculating scalar and
vector self-energies up to nuclear matter saturation den-
sity. Verifying the limits of this type of density expansion
is an important problem for future study.

The most important condensates in the Bnite-density
nucleon sum rules are the dimension-three quark con-
densates (qq)~„and (qtq)~~. The former condensate has
been evaluated and discussed in detail in Refs. [2,15]; the
latter condensate is simply proportional to the nucleon
density:

(o),„=(o)„..~ (o)&p~+" (3.1)
(qiDpq)&~ = 2m&p~ 0 . (3.5)

where the ellipsis denotes correction terms that are of
higher order in p~, and (O)~ is the spin-averaged nu-
cleon matrix element. Note that this is not a Taylor
expansion in pN. For a general operator 0 there is
not a systematic way to study contributions to (O)~~
that are of higher order in pN. Model-dependent esti-
mates in Ref. [2] suggest that the linear approximation to

—' E'+B' = iOOMeV pN,
7r pN

(3.6)

The condensates ((n, /n ) (E2 + B2))~~, (qt iDpq) ~~, and
(qtiDpiDpq)~~ + z& (g,qtogq) z~ are'estimated in Ref. [4]
in terms of moments of parton distribution functions [33].
The results are
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(qtiDoq)~ = (180MeV) p~ (3.7)

(q iDoiDoq)~~ + ~z(g, q o.gq)~~ = (176MeV) p~ .

(3.8)

(g.q ~ gq)p = (g.q ~ gq)NpN+ (3 9)

(g.qo gq), = (g.q~ gq) ~ + (g.q~.gq)N pN +

To leading order in the nucleon density, the remaining
condensates in the sum rules can be expanded as

where f is a real parameter. The density depen-
dence of the scalar-scalar four-quark condensate is thus
parametrized by f and the density dependence of (qq)~
[see Eq. (3.2)]. The factorized condensate (qq) appear-

ing in Eq. (2.31) will be replaced by (qq) in the calcu-
lations to follow. We consider values of f in the range
of 0 ( f ( 1; f = 0 corresponds to the assumption
of no density dependence and f = 1 corresponds to the
in-medium factorization assumption.

Several of the in-medium condensates are nonvanish-
ing in the vacuum limit. The quark condensate (qq)
is related to the current quark mass through the Gell-
Mann —Oakes —Renner relation

(3.10) 2m~(qq), = m f— (3.13)

(qiDoiDoq)~ + s(g, qo. gq)q

= ((qiDoiDoq)~ + s (g, qo gq) ~)pN + . (3.11)

The nucleon matrix element (g,qto gq)~ has been esti-
mated previously in Refs. [34,35,4]. The range of the val-
ues from these estimates is —0.33 GeV & (g, qto'. gq)~ &
0.66GeV2; here we use (g,qto gq)~ = —0.33GeV,
which is obtained from an analysis based on QCD sum
rules [35]. In Ref. [4] simple bag-model estimates give
(g, qo . gq)~ 0.62GeV and (qiDoiDoq)~ + s(g, qo' .

gq)~ = 0.08GeV2; other heuristic estimates lead to
(g, qo . gq)~ = 3GeV2 and (qiDoiDoq)~ + s(g, qo .

gq)~~ = 0.3 GeV2. We consider the latter values in this
section. None of the three dimension-five condensates in
Eqs. (3.9)—(3.11) have been determined accurately; the
sensitivity of the sum-rule results to the precise values of
these condensates will be given in Sec. IV.

Four-quark condensates are numerically important in
both the vacuum and the finite-density nucleon sum rules
because they contribute in tree diagrams and do not
carry the numerical suppression factors typically asso-
ciated with loops. In the sum rules derived in Sec. II, we
included the contributions from the four-quark conden-
sates in their in-medium factorized forms; however, the
factorization approximation may not be justified in nu-
clear matter. In the case of the the "scalar-vector" and
"vector-vector" four-quark condensates, (qq) ~~ (qtq) ~~
and (qtq)2, such concerns are unimportant, since these
condensates give minimal contributions to the nucleon
sum rules (see Sec. IV). Thus we use their factorized
forms for simplicity. However, the "scalar-scalar" four-
quark condensate (qq)2 does give important contribu-
tions to the nucleon sum rules. In its factorized form,
the scalar-scalar four-quark condensate has a very strong
density dependence; one might suspect that this strong
dependence is an artifact of the factorization approxima-
tion. Thus we choose to parametrize the scalar-scalar
four-quark condensate so that it interpolates between its
factorized form in f'ree space and its factorized form in
nuclear matter:

The product m~(qq), is renormalization-group invari-
ant, so fixing a value for the quark mass at the scale of
interest fixes the value of the quark condensate in vac-
uum at the same scale. We take m = 138MeV and f
93MeV; in this section we take (qq)„, —(245MeV)s
(m~ 5.5MeV), which has been used in Ref. [3]. The
sensitivity of our results to this choice will be tested in
Sec. IV. We take ((n, /vr)G2)„, = (330MeV) [5,4] and
(g,qo gq), = m2o(qq), with mo2 ——0.8 GeV [7,4].

B. Sum-rule analysis

In principle, the predictions based on the sum rules in
Sec. II should be independent of the auxiliary parame-
ter M . In practice, however, we have to truncate the
OPE and use a simple phenomenological Ansatz for the
spectral density; thus one expects the two descriptions
to overlap only in some limited range of M2 (at best).
As a result, one expects to see a "plateau" in the pre-
dicted quantities as functions of M2. Studies of nucleon
sum rules in vacuum truncated at dimension-six conden-
sates do not provide a particularly convincing plateau
[3,8,9]; nevertheless, we will assume that the sum rules
actually have a region of overlap, although imperfect.
We follow Ref. [3] and rely on the cancellation of sys-
tematic discrepancies by normalizing finite-density pre-
dictions for all self-energies to the zero-density prediction
for the mass. One hopes that this might compensate for
general limitations of the sum rules. We fix the quasi-
nucleon three-momentum at ~q~

= 270 MeV; the depen-
dence of the results on ~q~ will be presented in Sec. IV.
All the finite-density results presented are obtained at
nuclear matter saturation density, which is taken to be
p~ = (110MeV) .

To analyze the sum rules and extract the self-energies,
we sample the sum rules in the fiducial region, which
is the overlap between the region where the sum rule is
dominated by the quasinucleon contribution and the re-
gion where the truncated OPE is reliable. In choosing

(«),'„: (qq)'..=— (1 —&)(«).'..+ f(«)',. (3») Including direct-instanton effects in nucleon sum rules in

vacuum leads to a more convincing plateau [23,24].
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the fiducial region, one may introduce a lower bound on
the Borel mass such that the highest-dimensional conden-
sates contribute no more than 10% to the right-hand
sides of Eqs. (2.30)—(2.32) and an upper bound on the
Borel mass such that the continuum contributions are

I

less than 50% of the total phenomenological contribu-
tions to the sum rules (i.e., the s»m of the quasinucleon
pole and the continu»m contributioas). To quantify the
fit of the left- and right-hand sides, we use the logarith-
mic measure

min(Age & ~ 'i l/, IP, /M~, IP) IP„/Z„)
(3.14)

which is averaged over 150 points evenly spaced within
the fiducial region of M . Here II'„ll', and II'„denote
the right-hand sides of Eqs. (2.30)—(2.32), respectively.
The predictions for MN, Z„,so, and Ag are obtained
by minimizing the averaged measure b. This approach
weights the fits in the region where the continuum con-
tribution is minimal and reduces the sensitivity to the
end points of the optimum region [9]. To get a predic-
tion for the nucleon mass in vacuum, we apply the same
procedure to the sum rules evaluated in the zero-density
llXQlt.

We first analyze the sum rules with the Borel window
fixed at O.SGeV & I & 1.4GeV, which is identified
by Ioffe and Smilga [8] as the fiducial regioa for the nu-
cleon sum rules in vacuum (with contributions from con-
densates up to dimension niae included). Here we adopt
these boundaries as the maximal limits of applicability
of our sum rules at finite density. We start &om los's
interpolating field (i.e., t = —1), which has been used in
earlier studies at finite density [1,3,4]. The optimized
results for the ratios M~/Miv, E„/Miv, and Eq/MN
as functions of f are plotted in Fig. 1. (The two ex-
treme cases, f = 0 and 1, have been studied in Ref. [3].)
One can see &om Fig. 1 that M~/M~ and Eq/MN vary
rapidly with f while E„/M~ is relatively insensitive to
f Theref.ore, the sum-rule prediction for the scalar self-
energy depends strongly on the density dependence of the
scalar-scalar four-quark condensate. For small values of
f (0 & f & 0.3), the predictioas are

1.0

.0. .0
0

0.8

0.6 '-

0.0
0.0 0.2 0.4 0.6 0.8 1.0

FIG. l. Optimized sum-rule predictions for M~/M~,
Z„/Mpg, and Eq/M~ as functions of f, with loire's interpolat-
ing field (t = —1). The other input parameters are described
in the text.

M~/M~ 0.63—0.72,

Z„/Miv 0.24—0.30,
(3.15)

(3.16)

which are comparable to typical values from relativistic
phenomenology. On the other hand, for large f (0.7 &

f & 1.0), we find Z„/MN 0.34—0.37, which is still rea-
sonable. In contrast, the predictions for M& and E~ turn
out to be M&/MN 0.84—0.94 and Eq/M~ 1.24—1.36,
which implies E,/ MN 0.06—0.16 and a signiflcant shift
in energy of the quasinucleon pole relative to the nucleon
pole in vacuum (the aet self-energy is repulsive). Thus a
significant density dependence of the scalar-scalar four-
quark condensate leads to an essentially vanishing scalar
self-energy and a strong vector self-energy with a mag-
nitude of a few hundred MeV. The predictions for the
ratios ANs/g and so/so also depend on f For s.mall f,
the continuum threshold so is close to the vacuum value
while the residue AN2 drops about 20% relative to the
corresponding vacuum value. (Note that these quanti-
ties are relatively poorly determined by the s»m rules. )
For large f, the continuum threshold increases by 20—
25% relative to the vacuum value and the residue at the
pole increases by about 20%, implying a significant rear-
rangement of the spectrum. For intermediate values of
f, both the continuum threshold and the residue are very
close to the corresponding vacuum values.

From the sum rules in Eqs. (2.30)—(2.32), it is easy to
see that the ratios II', /II' aad II„'/II' give M~ and Z
as functions of Borel M, and II', /II' in the zero-density
limit yields MN as a function of M . In Fig. 2, the
ratios M~/MN and Z„/MN are plotted as functions of
M for three difFerent values of f, with Eq, Eq and the
continuum threshold fixed at their optimized values. The
curves for f = 0 and f = 0.5 (solid and dashed curves,
respectively) are quite flat in the optimum region, and
thus imply a weak dependence of the predicted ratios on
M2 (though the individual sum-rule predictions before
taking ratios are not flat). For f = 1 (dotted curves), the
ratio Z„/MN is flat, indicating again a weak dependence
on M2; in contrast, MN/M~ changes significantly in the
region of interest.

To see how weil the finite-density sum rules work, we
plot Age l ~ &/, II', /M~, II', and II'„/Z„asfunc-
tions of Mz for f = 0 in Fig. 3(a) using the predicted
values for M~, Z, 80, and AN . If the sum rules work
well, we should expect the four curves to coincide with
each other. We find that their M dependence in the
Borel region of interest turns out to be equal up to 15%.
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FIG. 2. Ratios M&/M~ and Z„/M~ as functions of Borel
M, with optimized predictions for E~, E~ and the continuum
threshold. The solid, dashed, and dotted curves correspond
to f = 0, 0.5, and 1.0, respectively. The other parameters are
the same as in Pig. 1.

The overlap of the corresponding vacuum suin rules (i.e.,
the zero-density limit) is illustrated in Fig. 3(b). We ob-
serve that the quality of the overlap for the Gnite-density
sum rules is similar to that of the corresponding sum
rules in vacuum, and as f increases, the overlap of the
sum rules gets better.

All of the results above use Io8'e's interpolating Geld

(t = —I); we now present the results for the general in-
terpolating field [Eq. (2.4)]. In Fig. 4 we have displayed
the predicted ratios M~/Msj and Z„/M~ as functions
of t for three different values of f Th. e ratio Z„/M~
increases as t increases (over the range of t considered);
the rate of increase is essentially the same for all values
of f For. f = I, the ratio M~/M~ decreases slowly
as t increases; for f = 0.5, M&/M~ is nearly indepen-
dent of t; for f = 0.2, M~/M~ increases slowly as t
increases. We find that the continuum contributions in-
crease and the residue decreases as t increases. On the
other hand, the overlap of the sum rules gets better as t
increases. The prediction for the continuum threshold de-
pends only weakly on t. We also find that for f ( 0.2 and
—1.15 & t & —1.05, the numerical optimizing procedure
converges slowly and the predicted continuum threshold
and residue are much smaller than those for f & 0.2. In
this case, the continuum contributions dominate the sum
rules making the predictions for MN and Z unreliable.

We proceed now to analyze the sum rules by taking an
upper bound of the Borel window such that the contin-
uum contributions to the phenomenological sides do not
exceed 50%, while fixing the lower bound at 0.8Gevz.
The lower bound is fixed since we have not included con-
tributions &om dimension-seven and higher-dimensional
condensates. Studies of nucleon sum rules in vacuum
[8,9,3] suggest that contributions &om these higher-
dimensional condensates are small for M2 & 0.8GeV;
thus we expect that the lower bound at 0.8 GeV~ is rea-
sonable for nucleon sum rules at finite density. The two
solid lines in Fig. 5 are the predicted values of MN /M~
and Z„/M~ for j = 0.5 obtained by choosing the Borel
window (at each t) such that the continuum contribu-
tions are less than 50% (at the upper bound). We have
used the same procedure in extracting the nucleon mass

1.2

1.0 M„/M„

0.0 I I I I I

0.8 0.9 1.0 1.1 1.2 1.3 1.4
M'(Gev')

FIG. 3. (a) The left- and right-hand sides of the fi-

nite-density sum rules as functions of Borel M for t = —1 and2

f = 0, with the optimized values for Mz, Z„,so, and Az.
The other parameters are the same as in Fig. 1. The four
curves correspond to II', /M~ (solid), II~ (dashed), II'„/Z„
(dot-dashed), and A~ e ~ ~ (dotted). (b) The left-

and right-hand sides of the corresponding vacuum sum rules.
The three curves correspond to II', /M~ (solid), II~ (dashed),

and A~e ~~ (dot-dashed) at the zero-density limit, with
2the optimized values for M~, so, and A~.

0..8
IP

0.4 Z„/M„ -e

0.2 '

0.0
—1.15

I I

—1.10 —1.05 —1.00 —0.95
t

FIG. 4. Optimized sum-rule predictions for Mz /M~ and

Z„/M~ as functions of t. The three curves correspond to
f = 0.2 (solid), 0.5 (dashed), and 1.0 (dotted)
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1.2

1.0

0.8
M„/M„

0.6

0.4

0.2 I

in vacuum. The two dashed curves in Fig. 5 correspond
to M&/MN and Z„/Miv obtained using a fixed Borel
window at 0.8GeV & M ( 1.4GeV, with the same
inputs. We see that the two curves for Z /Miv overlap,
implying that changing the upper limit of the optimum
Borel region does not affect the sum-rule prediction for
the ratio Z„/Miv. For MN/MN, the discrepancy between
the two curves is about 5—10% at lower values of t; this
discrepancy eventually disappears as t increases. Thus
our results for the two ratios are quite stable and nearly
unaffected by the choice of the upper bound of the Borel
window. The predicted continuum threshold and residue
depend weakly on the upper limit of the fiducial region.
We also find that the resulting Borel window shrinks as
t increases.

We have seen the important role of the scalar-scalar
four-quark condensate in determining the scalar self-

energy and the dependence of the predictions on the
choice of the nucleon interpolating field. To see the ef-
fects of the other condensates and parameters, we shall
test the sensitivity of our results to changes in these con-
densates and parameters.

0.0 I I I

—1.15 —1.10 —1.05 —1.00 —0.95
t

FIG. 5. Optimized sum-rule predictions for Miv/MN and
Z„/MN as functions of t, with J' = 0.5. The solid curves cor-
respond to the results obtained by requiring the continuum
contributions to be less than 50'%%uo in the fiducial Borel region
and the dashed curves correspond to the results obtained us-
ing a Sxed Borel window at O.SGeV & M & 1.4GeV .

rule approach, ~q~ labels diatirict quasiparticle states with
different self-energies. The three-momentum enters the
sum rules only through Es, the combination E —q,
and in factors of q2 that accompany some of the higher-
dimensional condensates. The three-moment»m depen-
dence of the predicted ratios is illustrated in Fig. 6.
The result for Z /Miv is nearly independent of ~q~ for

~q~ & 1.0GeV; the result for M&/Miv depends only
weakly on (q[ for (q( & 0.5GeV. This, if interpreted in
terms of relativistic nuclear phenomenology, implies that
the real parts of the scalar and vector optical potentials
seen by a scattered nucleon are weakly dependent on en-

ergy. While the ratio Miv/Miv changes significantly over
the range 0.5GeV ( ~q~ ( 1.0GeV, we do not expect
that a sharp quasiparticle Anaotz is reasonable at such
high momenta [13].

As noted in Sec. II, the positive-energy quasinucleon
pole assumption and Lorentz covariance lead to the in-
troduction of a negative-energy quasinucleon pole at
Es = Z„—gq2+ M~~. To suppress contributions to
the sum rules &om negative-energy excitations and fo-
cus only on the positive-energy quasinucleon state, we

apply a transformation that depends explicitly on Es
[see Eq. (2.27)]. This transformation eliminates the con-
tribution Rom a sharp negative-energy pole at Eq and
strongly suppresses a broad excitation in the vicinity of
Ev. Thus, for the present approach to be reliable, we

should find that the extracted quasinucleon self-energies
are fairly insensitive to the precise value of Ev; to test
this, we asaipn a value to Eq in the sum rules. The re-
sulting Z„and Miv do not, in general, satisfy the pole
constraint of Eq. (2.13). In Fig. 7 the predictions for
M /ivM Nand Z„/MN are plotted as functions of Ev over

the region —0.7GeV & Eq & —0.3GeV for three val-

ues of f The va. lues of Es that satisfy Eq. (2.13) are
—0.38GeV, —0.45GeV, and —0.53GeV for f = 0, 0.5,
and 1.0, respectively. We see that M&/M~ is fairly in-

sensitive to Es, and Z„/Miv varies less than 15%%uc in the
given region. This indicates that the predictions are rea-
sonably stable.

1.2

10 M„/M„

IV. SENSITIVITY ANALY'SIS 0.8 IK Q O 0

In this section we first present the three-momentum
dependence of the predictions and test the stability of
the predictions to the choice of Eq. We then examine the
sensitivity and stability of the extracted ratios Miv/Miv
and Z„/Miv to individual condensates and parameters.
When we change a particular condensate or parameter,
the rest are held fixed at the values given in Sec. III.
We also give an estimate of the overall sensitivity of the
predictions to all of the dimension-five condensates. We
use a fixed Borel window) O.SGeV & M ( 1.4GeV,
and choose t = —1.

We start with the three-momentum ~q~ dependence
of the sum-rule predictions. In our finite-density s»m-

~ 4 I I 40
I- —6

I:

0.2

Z /M„

0.0
0.0 0.2 0.4 0.6

lql(«v)
0.8 1.0

FIG. 6. Three-momentum dependence of the predicted
Mi'v/M~ and Z„/Mpr, with t = —1. The three curves cor-

respond to f = 0 (solid), 0.5 (dashed), and 1.0 (dotted). The
other parameters are the same as in Fig. 1.
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Z /M„

0.2 '-

0.0
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FIG. 7. 0 tim
Z M

p 'mixed sum-rule predictions fo M' 'M
„/Miv as functions of E with t = —1. Th curvesq&

= —. e three curves
correspond to f = 0 (solid), 0.5 (dashed), and 1.0 (dotted).
The other parameters are thee same as in Fig. 1.

We now turn to study the sensitivity of the sum-rule
pre ictions to the condensates and th
eters. T

an o er input param-
e ers. The vacuum quark condensate ~sa e &qq&v«appears

p ici y in the finite-density sum rules through the in-
mediumquarkcondensate (q )

h' hq p~, w ic appears at lead-
ing order of the OPE [see Eq. (2.30)] and the
ized four- u kour-quark condensates. Here we consider the range
(qq) «, —(225—250 MeV) (mv 5—7 MeV), which in-
eludes the typical values used

'
@CDln sum-rule applica-

tions. With a smaller value for
&

or &qq~„„the contributions
&om higher-order terms in the OPE be ecome more impor-
an re ative to the leading-order term, and the redicted

we present M*,~Miv/ iv and Z„/Miv as functions of ~

The ratio M' &~MN is insensitive to the vacuum
)qq] vac ~

condndensate; on the other hand, the ratio E &M c
acuum quark

'g '
n y within the interval considered. We note that

1

the nucleon mass increases and Z decreases as the mag-
nitude of the vacuum km quark condensate increases; this
leads to a large variation of Z &M h (N wit (qq

The nucnucleon o term oN also enters the sum rules
t oug the in-medium quark condensate d he qqp an te
our-quark condensates. It also affects the in-medium

gluon condensate [2]. However th ff t '
is e ec is tiny in the

range of oN that is of interest; we ignore the change in
he in-medium gluon condensate when we vary oN. In

Fig. 9 we lot M' Mp o ~t iv and E„/Miv as functions of aiv
for the range 35MeV & 0 & 55M V hie , w ch covers the
uncertainty given in Ref. [32]. The prediction for E„/MN.

N N c angesis fairly insensitive to oN. In contrast M* M h
significantly and varies by about 15%%u

' th
ion wh

0 in e given re-
gion, w ich implies a factor of 2 variat' '

th
self-ener

ion in e sca ar
se -energy. This reHects the important role of the terms
involvin

'
g ~qq~ p~ in determining the scalar self-energy. At

the upper bound oN ——55MeV, the scalar self-energy
appears to be large for f ( 0.5. F

eV & oiv ( 55MeV, one cannot find reliable pre-
ictions.
The ssensitivity of the predictions to the nucleon ma-

trix element (g, qto. gq)N is shown in Fig. 10. We have

inE . 38
oq iv + i2(g, q o Qq)iv at the value givgiven

reliabl in
q, since this combination can be d te e ermine

re ia y in terms of parton distribution functions. The

'o N varies y about
20 0 in the given region. This variation indicates that
the fourth termerm on the right-hand side of Eq. (2.32)
may contribute up to 20% of II . Fo „.or ( 0.2 and

e ( (g, q o gq)N ( 1.0GeV, we do not find
any reliable predictions.

The sensitivity of the sum-rule results to the nucleon
matrix element (qiDot'D q +-
in ig. 11. The predictions for Miv/Miv and E„/Miv are

~ ~

insensitive to the precise val f th'ue o is matrix element,
implying that the contributions &om thom e corresponding
condensate are small relative to those of the leading-order
terms. We do not consider independent variations in the

~ ~ ~ ~

condensate, 0..(p, q .Qq) ~~, which only appears on the right-
hand side of Eq. (2.30) multiplied by c2 ——1 —t, which
vanishes for t = —1.. For other values of t of interest
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FIG. 8. 0 timp 'mized sum-rule predictions f M* /'Mor ~ N and

Z„/M~ as functions of ( ) . TI,'qq&~„,. The three curves correspond
to f = 0 (solid), 0.5 (dashed), and 1.0 (dotted). The other
parameters are the same as in Fig. 1 ~

FIG. 9. 0 ti
Z„M a

p imized sum-rule predictions f M Mol ~ ~ and

„/ iv as functions of the nucleon o t, hn o erm o~, with t = —1.
The three curves correspond to = 0.1o ~ = . 'solid), 0.5 (dashed),
an 1.0 (dotted). The other parameters are the same as in

Fig.
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1.2

1.0

0.8,—

M„/M„

TABLE I. The changes in the predicted ratios MN/M~
and Z„/MN when the individual condensates are changed by
+20% relative to their values given in Sec. III and Ag&D is
changed from 100MeV to 200MeV, with fixed t = —1 and

f = 0.5.
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FIG. 10. Optimized sum-rule predictions for Miv/Mw
and Z„/MN as functions of the nucleon matrix element

(g, q o gq)iv, with t = —1. The three curves correspond

to f = 0.2 (solid), 0.5 (dashed), and 1.0 (dotted). The other

parameters are the same as in Fig. 1.

here, c2 is small and we expect that the predictions are
insensitive to the precise value of (g, qo' Qq)~~.

To test the sensitivity to the remaining condensates
and parameters, we change individual condensates by
+20% relative to their values given in Sec. III and change

AgcD &om 100MeV to 200MeV. The results for the
changes in the predicted ratios are given in Table I. One
can see that the changes in most of the listed conden-
sates cause only tiny changes in the predictions, show-

ing that the contributions from these condensates to the
sum rules are very small. The changes in (qtiDoq) ~~ and
AqcD lead to changes that are small but not completely
negligible.

Finally, we test the overall sensitivity of the predicted
ratios to all of the dimension-Gve condensates appearing
in the OPE. Since these condensates are not well deter-
mined, we consider the ranges

1.2
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Z /M„

0.0 l I I
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&qiD iD q)„+(1/8)&gqcr Gq)„(GeV )

FIG. 11. Optimized sum-rule predictions for M~/M~
and Z„/M~ as functions of the nucleon matrix element
(qiDpiDpq)~ + s (g, qrr gq)~, with t = —1. The three curves
correspond to f = 0 (solid), 0.5 (dashed), and 1.0 (dotted).
The other parameters are the same as in Fig. 1.

—1GeV & (g,qto Qq)iv & 1GeV2, (4 I)

and vary the condensate (qti Dpi Doq) ~~+ iz (g,qt OQq)q„'
by +20'%%up relative to the value used in Sec. III. All re-
maining condensates are held fixed at the values given
in Sec. III. We then randomly choose 200 points in
the combin, ed range of these condensates. The resulting
maxim»m and minimum of MN/MIV and Z, /MiV deter-
mine the overall uncertainty. The results are presented
in Fig. 12, where the shaded areas re8ect the combined
variations of the dimension-five condensates in the above
ranges. For f & 0.2, reliable predictions cannot be ob-
tained in some of the randomly chosen points (in partic-
ular the points with (g, qtcr Qq)N large and positive).

—0.5GeV & (qiDoiDoq)~ + s(g, qo Qq)~ & 0.5GeV

(4.2)

0.2 V. DISCUSSION

0.0
0.2 0.4 0.6

f
0.8 1.0

FIG. 12. Optimized sum-rule predictions for M~/M~ and
Z„/M~ as functions of f, with t = —1. The shaded areas
represent the uncertainties due to the variations of all the
dimension-five condensates in their range of values given in
the text.

The most important and concrete conclusion we can
draw from this work is that /CD sum rules predict a
positive vector self-energy with a magnitude of a few
hundred MeV for a quasinucleon in nuclear matter. This
qualitative feature is, for the most part, independent of
the details of the calculation and is stable against varia-
tions of the condensates and the choice of interpolating



476 JIN, NIELSEN, COHEN, FURNSTAHL, AND GRIEGEL 49

Geld. For Ioffe's interpolating Geld and typical values
of the relevant condensates and other input parameters,
one obtains Z„/Miv 0.24—0.37, which is a range very
similar to that found for vector self-energies in relativis-
tic nuclear physics phenomenology. On the other hand,
the prediction for the scalar self-energy depends strongly
on the value of the in-medium scalar-scalar four-quark
condensate, which is not well established, and on the
value of the nucleon 0. term. This means that our con-
clusions about the quasinucleon scalar self-energy must
still be somewhat indefinite. Nevertheless, we emphasize
that the predictions with diH'erent values of the scalar-
scalar four-quark condensate give diH'erent physical fea-
tures that are not equally compatible with known nuclear
phenomenology.

If the four-quark condensates depend only weakly on
the nucleon density (i.e., if f is small), we find that the
prediction for Miv/M~ is insensitive to the Borel mass.
The predicted scalar self-energy is large and negative,
which is consistent with relativistic phenomenology. In
this case, there is a significant degree of cancellation be-
tween the scalar and vector self-energies. This feature
leads to a quasinucleon energy close to the &ee-space nu-
cleon mass. This result is compatible with the empirical
observation that the quasinucleon. energy is shifted only
slightly in nuclear matter relative to the &ee-space mass.
The prediction for the continuum threshold is close to
the vacuum value and the residue at the quasinucleon
pole drops slightly relative to the corresponding vacuum
value. This is also compatible with experiment; there is
no evidence for a strong rearrangement of the spectrum
at nuclear matter saturation density, merely a spreading
of strength over energy scales too small to be resolved by
the sum rules.

In contrast, if the four-quark condensates have a strong
density dependence (i.e. , if f is large), the predicted ra-
tio M~/MN varies strongly with the Borel mass, and
the magnitude of Miv/M~ is close to unity, implying
that the scalar self-energy is essentially zero. The pre-
dicted vector self-energy, on the other hand, is larger than
it is with small f. Thus the resulting quasinucleon en-

ergy is significantly larger than the nucleon mass. This
result is unrealistic and is totally diferent &om known
nuclear phenomenology. Moreover, both the continuum
threshold and the residue at the quasinucleon pole are
well above their values in vacuum; this suggests a signif-
icant rearrangement of the spectrum in nuclear matter,
which is inconsistent with experiment.

For intermediate values of f, the predicted scalar self-

energy is negative with a sizable magnitude. The vector
self-energy is still strong. The magnitudes of the self-
energies and the degree of cancellation between them de-
pend on the choice of interpolating Geld and the values
of the condensates and input parameters. The quasinuc-
leon energy, the residue at the quasinucleon pole, and
the continuum threshold are close to their corresponding
vacuum values.

The qualitative features discussed above can also be
identiGed through the dominant behavior of the OPE
sides of the sum rules. From Eq. (2.31), we note that II'
is mainly determined by the density-independent leading-

order perturbative term and the scalar-scalar four-quark
condensate. For small f, II' is close to its zero-density
value; this implies that the quasinucleon energy, residue,
and continuum are essentially unchanged &om their val-
ues in vacuum. Since II, is dominated by the leading-
order term proportional to the in-medium quark conden-
sate, the significant reduction of (qq)~ from its vacuum
value (qq)„,implies a significant reduction of M~ from
M~. The vector self-energy simply follows the nucleon
density, as the leading-order term proportional to (qtq) ~„
gives the largest contribution to II„'.For large values of
f, II is significantly reduced from its vacuum value; this
leads to a shift in the quasinucleon energy and a signifi-
cant rearrangement of the spectrum. As II', and II„' are
independent of f, one expects M~ and Z„to increase
due to the reduction of II'. Clearly, further study of the
in-medium four-quark condensates is very important.

The sum-rule predictions are fairly sensitive to the
choice of interpolating field, reflecting the dependence
of the truncated OPE on this choice (see Figs. 4 and 5).
In the region —1.15 & t & —1, we see that the scalar
and vector self-energies (recall Z, = Mi'v —Miv) each
have a magnitude of a few hundred MeV with opposite
signs for f ( 0.5, which is in qualitative agreement with
relativistic phenomenology. As t gets larger, smaller f
values are needed to produce large and canceling scalar
and vector self-energies. In the interval of t considered
here, the contributions of higher-order terms in the OPE
become more important for larger magnitudes of t. For
smaller magnitudes of t, the continuum contributions be-
come larger, and the coupling of the interpolating field
to the quasinucleon states becomes weaker. Since there
is less information about the higher-dimensional conden-
sates and we are only interested in the quasinucleon state,
one should not use t with a magnitude that is too large
or too small. Within the range of t considered in the
present work, the vector self-energy is always large; the
scalar self-energy is mainly controlled by the value of f

The nucleon 0 term oN is a crucial phenomenological
input in the finite-density nucleon sum rules (see Fig. 9);
its value determines the degree of chiral restoration in the
nuclear medium (to first order in the nucleon density).
As noted previously [1,3], the scalar self-energy strongly
depends on oiv through (qq)~~ and the four-quark con-
densates. We observe that the large and canceling self-
energies found with small and moderate f values mainly
depend on the ratio o~/mv [1,3]. How do we understand
this? This subject is under active investigation [36]. An
understanding of the cancellation between scalar and vec-
tor components will be essential in making connections
between @CD and nuclear physics.

Even if we assume that the scalar-scalar four-quark
condensate has weak or moderate density dependence (so
that the sum-rule predictions are consistent with known
relativistic phenomenology), there are still some impor-
tant open questions to confront. The large and canceling
scalar and vector self-energies found in the nucleon case
may not be predicted for other baryons, leading to pos-
sible contradictions with experiment. We must test sum
rules for other baryons as well as for other nucleon prop-
erties. The 4 and the A should be particularly informa-
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tive. There is useful information on the 6 in the nuclear
mediuxn &om both electron and proton scattering &om
nuclei. Since the 4 suxn rule is especially sensitive to
the scalar-scalar four-quark condensate [6,9], we may ob-
tain some additional phenomenological constraints on its
density dependence. Work in this direction is in progress.
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