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OfF-shell p-w mixing in +CD sum rules
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The q dependence of the p-u mixing amplitude is analyzed with the use of +CD sum rules and
dispersion relations. Going off shell the mixing decreases, changes sign at q 0.4m~ ) 0, and
is negative in the spacelike region. Implications of this result for the isospin breaking part of the
nuclear force are discussed.
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I. INTRODUCTION

Although charge independence and charge symmetry
are respected approximately by the strong interactions,
these symmetries are both broken by the electromagnetic
interaction and the mass difference of the up and down
quarks. The symmetry breaking remains of considerable
interest both experimentally and theoretically because it
can be studied by perturbation theory. At low energies,
the large scattering length of two nucleons in the ~So
state makes it particularly suitable for investigations of
both charge independence and charge symmetry [1]. At
medium energies, polarization experiments in n-p scat-
tering have been of interest for studies of charge symme-
try [2,3]. In nuclei, the mass difFerence between light-to-
medium conjugate nuclear pairs (with a neutron replaced
by a proton) also shows charge symmetry breaking be-
yond that due to Coulomb forces; this is commonly re-
ferred to as the Nolen-Schiffer or Okamoto-Nolen-Schiffer
anomaly [4,5].

Theoretically, charge-dependent forces have been cast
into four classes [6]. It is the class IV forces, propor-
tional to (rz —rz ) and (vq x rz)& &, where r, is the.
jth component of the Pauli isospin matrix for particle i,
which produce charge-symmetry-breaking effects in the
n psystem. -In meson-theoretic investigations [7], these
forces are due to (in addition to photon exchange) pion
exchange, ~ized p-u and x - g -g' exchanges, combined
vr —p and other complex exchanges. The experimen-
tal asymetries measured at 477 MeV [2] and 183 MeV [3]
are particularly sensitive to pion exchange and p-ur mixed
exchange, respectively. Indeed, both experiments agree
with theoretical predictions based on meson theory [7].

At 183 MeV, the dominant contribution to the polar-
ization asymmetry in the n-y elastic scattering cross sec-
tion is found to arise kom p-u mixing in the exchanged

mesons, as shown in Fig. 1. However, it has been pointed
out by Goldman, Henderson, and Thomas [8] that the fit
makes use of the on-mass-shell mixing of p and ~, as mea-
sured in e+e collisions, whereas it is space-like values of
the four-momentum transfer (qz ( 0) that are required
for the fit to the n pscatt-ering data. Furthermore, they
point out that in a model which uses free quark-antiquark
intermediate states, there is considerable variation of the
rho-omega mixing parameter with qz; indeed, it changes
sign at q —(400 MeV)z and is small for negative
(spacelike) values of q2. This casts doubt on the the-
oretical calculations [7]. More recently, Piekarewicz and
Williams [9] have used an intermediate NN to calculate
the mixing and obtain qualitatively similar conclusions
to Goldman et O,I.

The Nolen-SchifFer anomaly has also seen a revival of
interest. In a meson-theoretic investigation, the type-
III forces proportional to (rz + wz ), in particular the
p-u mixing contribution, is claimed to be an essential
ingredient to explain the anomaly [10]. However, the on-
mass-shell value of the p-w mixing is also used in this
analysis. The partial restoration of chiral symmetry in
nuclei and the associated change of the n pmass differ--
ence in medi~1rn is another explanation of the anomaly
without recourse to rho-omega mixing [11]. The effec-
tive theory of /CD [11]and /CD sum rules in a nuclear
medium [12] seem to support this explanation. Further
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~ Internet address: gkreinift. uesp. ansp. br FIG. 1. Class III and IV nuclear force from the p-u mixing.
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extension of the approach in Ref. [12] is also made by
taking into account the mixing in the vector channel [13].
Thus it is important to find out the relative importance
of p-cu mixing among other explanations by analyzing the
q variation of the mixing.

Of the various nonperturbative approaches in QCD,
QCD sum rules have been found to be a powerful tool for
analyzing the properties and decays of hadrons [14,15].
They can give a plausible explanation of the Nolen-
SchifFer anomaly [12] as we mentioned above. One of
the earliest applications of the sum rules was actually to
a calculation of the on-mass-shell p-(d mixing [16].

In this paper, we follow the path forged by Shifman,
Vainshtein, and Zakharov (SVZ) [16], but we extend it
to spacelike values of q2 which is the relevant region of
the charge-dependent nuclear forces. Purthermore, we
reevaluate the various semiphenomenological constants
required by the sum rules. Whereas SVZ used a value
of P (see below) obtained from a "speculation" based on
"the experience with sum rules, " or as a &ee parameter,
we obtain )9 from the sum rules themselves. In Sec. II,
we will summarize the effect of the p-(d mixing on the
nuclear force and give an essential idea about the impor-
tance of the q2 dependence of the mixing. In Sec. III, we
will determine the parameters which control the q varia-

tion from QCD sum rules. The combined use of the Borel
sam rules and the finite energy sum rules together with
the current knowledge of the quark mass difFerence and
the quark condensates give us an unambiguous determi-
nation of these parameters without further assumptions.
We find that some of the outputs are different in magni-
tude and sign &om the SVZ results. In Sec. IV, the q2

dependence of the p-&u mixing and also its effect on the
nuclear force are discussed by using the parameters deter-
mined in Sec. III. The ~ixing amplitude 8(q ) changes
sign at qz 0.4m2 and gets negative in the space-like
region, which is qualitatively consistent with the previ-
ous analysis [8,9]; however the effect is stronger in our
case. In coordinate space, this corresponds to a node of
the charge-dependent potential around r 0.9 fm which
suppresses the efFect of the p-(d mixing in the nuclear
force. Section V is devoted to a summary and conclud-
ing remarks.

II. p-au MIXING IN THE SPACELIKE REGION

The Feynman graph for the class III and IV forces
originating from p-u mixing is shown in Fig. 1. The cross
in Fig. 1 denotes the p-(d mixing 8(q2) defined in terms
of the mixed propagator

&„.(v') =' f&'«" (T»u(»)». (o))o

q2 $ (q2 m2 + z&) (q2 m2 + ze)
' (2 1)

where we have neglected the width of the resonances for
simplicity.

At q2 = mz, 8(qz) reduces to the ~ixing matrix (p ~

KsB
~

(d) measured in the e+e ~ w+m data [17]

8(q' = m') = (p I
KsB I ~)

= (—4520 6 600) MeV .

Here Hsg is a part of the Hamiltonian which breaks
isospin symmetry and we have used the covariant defi-
nition of the mixing matrix (p„~ KsB

~
(d„) = —(g»—

q, q-/q')(p I K»
I ~) «»wing Ref. [»l.

KsB has both QED and QCD origins. One of the QED
efFects to Eq. (2.1), from p ~ p -+ ar, can be explicitly
calculated and gives a small and positive contribution
[19]:

Q
2

8p~~~ (m ) = 610 MeV,
m gpg~

(2.3)

mg —m„0.28(mq + m„), (2.4)

where e/g~ and e/g denote, respectively, the electro-
magnetic coupling of p and cu with p. We have ass»~ed
g 3g~, as obtained from the fiavor SU(3) symmetry.
Thus the main part of the observed mixing comes &om
the quark mass difference

Ril (')=P
7l 0 S —q

(2.5)

where (my+ m„)/2 = (7+2) MeV at a 1 GeV QCD scale
( [20] and references therein). Note also that, once one
takes into account the p exchange between nucleons with
proper nucleon electromagnetic form factors (Fig. 2), one
has to subtract the p -+ p -+ ur effect from Fig. 1 to avoid
double counting. (The QED mixing is hidden in the form
factors in Fig. 2.)

For isospin mixing in the nuclear force, we are con-
cerned with spacelike momenta qz ( 0, which is far from
the on-shell point qz = ms . Thus it is crucial to study
the q variation of 8(q2) to determine whether one can
naively utilize the on-shell n)ixing value, Eq. (2.2), in the
spacelike region [8]. In the next section, we will analyze
the q2 variation of p-ru ~ixing on the basis of the QCD
sum rules in which the physical quantities are related to
the condensates in the QCD vacuum. Our approach has
less ambiguities compared to other approaches based on
phenomenological models [8,9]. Before entering into de-
tails, let us discuss the primary origin of the q2 variation
to demonstrate the essential idea in a model-independent
way.

We start with the imsubtracted dispersion relation
for the polarization operator II)„„(q2) = (—)(g„„—
9»9»

)ilgwu (q
2
).
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If q2 is not too large and in the spacelike region, the main
contribution to ReIIp„comes &om the lowest poles in the
imaginary part of II~, i.e., the p and ur resonances. It
is important to note that for the mixing, II„„,unlike the
case for IIpp, the integral of the continuum contribution
such as that from an NK loop is finite [9]. If photon
exchange is included in the loop, this is no longer the
case; however, by carrying out the Borel analyses in the

@CD sum rule, we find this contribution to the mixing
is to be small numerically (= 2%), so that it can be
neglected (see Sec. III for more details). Thus we do
not need any subtraction on the right-hand side of Eq.
(2.5) as far as the strong interaction is concerned. In
the pole approximation, Imll~(s) is easily evaluated by
saturating the intermediate states by p and u mesons:

11~„(s)= ~(olp„lp)(pl~„lo)S(s —m,') + ~(olp„l~) {~l~„lo)b(s—m.')
—:(—) l

g~„—
l

7rF 8(8 —m ) —vrF b(s —m )
q, q l- 2

P~ 2 ) P P

It is not difficult to see that the pole residues F~ and F in Eq. (2.6) are proportional to (m~ —m„)/(m2 —m2) in
/CD. Also, they do not have to be equal [16]

Substituting (2.6) into (2.5), one obtains

F (2.7)

«11„.(q') = (—) I ap — ""
I

' +q'
&

q' —m', q' —m'

( q„q„) (+bm2)(F~+ F )/2 —(q —m )(F~ —E )
(q2 —m2) (q' —m' )

(2.8)

where m2 = (m2 + m )/2 and bm:—m —m~.
Thus we finally get

2

8(q') = 8(m') 1 + A
l

—1
lqm'

(2.9)

with 8(m2) = (+hm2)(F~ + F )/2 and A = (F~ ——
E )m /8(m ). The first term of Eq. (2.8) is nothing
but the usual on-shell mixing matrix (plIIsBla), while
the second term gives a q variation due to F~ g F
Since both the first and second terms are proportional to
mg —m„and are of the same order, there is no a priori
reason to neglect the second term. However, in most phe-
nomenological applications [1,7,10] of p-~ mixing to the
charge-symmetry-breaking nuclear force, F~ = F has
been assumed without any justification. For instance,
a q2 dependence of p-~ mixing was considered in Ref.

[6], but was ultimately "thrown away" because it was as-
sumed that the difFerence of the residues at the poles of
the two mesons could be neglected.

The q variation of 8(q ) is an inevitable consequence
of the isospin symmetry breaking and we have not used
any specific models up to this stage. However, the sign
and the magnitude of F~ F(or A ) —in Eq. (2.8) depends
on the /CD dynamics. In /CD, we have to start with
the quark correlator instead of the hadronic correlator
IIp'pv'

H„„(q ) = ~' f d xe' (TJ„(z)J (0))0, (2.10)

where

J~ = (up„u —dp„d)/2, J„=(up„u+ dp„d)/6. (2.11)

Because the currents JP and J„are conserved, II„„has
to be of transversal structure:

~-(q') = (q~q- g~-q') (q') .— (2.12)

The vector currents Jp and J™coup1e to p and w as weB
as to the higher resonances (p', u', . . .) and the contin-
uum. Thus the imaginary part of II„„is written as the
sum of all the mixed hadron correlators

ImII „(s) = Aoimll„„(s) + Ailmll„„(s) + . , (2.13)

where A„{n = 0, 1, 2, . . .) denotes the overlap of the
quark current with the physical hadrons. For example,

FIG. 2. p-exchange between two nucleons with electromag-
netic form factors.

2 2mpm
Ap ——

Qp9'~
{2.14)
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A = P + 1 c [1.43, 1.85] . (2.i5)

P is close to, but generally larger than the value assumed
in Ref. [16], 0.5. It follows that 8(q2) has significant q2

variation in the spacelike region; indeed, it vanishes at

A —1
q =m (2.16)

Thus the nuclear force is signi6cantly affected by the q2

variation of 8(q2). As an example we consider the leading
term of the class III charge-symmetry-breaking nuclear
force [17] in coordinate space. In the static limit, the
radial dependence of the central N Npotential -Rom p-~
mixing is obtained by the Fourier transform of Eq. (2.1):

g g 8( ) ( 2AI
47' 2m ( mr)

(2.17)

where only the vector coupling of the nucleon to the vec-
tor mesons is taken into account. (We do not include a
form factor for the coupling constants gp( )~ because we
are interested in the longer range part of VN~&. ) When
A = 0, Eq. (2.17) reduces to the leading, i.e., the ex-
ponential term of the class III potential, —AV~, given
in [17,18]. The potential is strongly attenuated by the
presence of A and becomes zero at

where g~ is defined by (0~J~' ~p(u)) = (m2 /g~ )e„
with g 3g~ as given by fiavor SU(3) and g j4vr 2.4.

By using the dispersion relation for II(q2) and the
operator-product expansion (OPE) for ReII(q2) at q2 -+
—oo, one can extract the resonance parameters such as
the mixing matrices for p-u and for higher resonances
on the rhs of Eq. (2.10). The first attempt at such an
analysis was made by Shifman, Vainshtein, and Zakharov
[16]. However, one of the mixing parameters P, which is
related to A as A = P + 1, was not determined well be-
cause of the poor e+e data available at that time and
of the large uncertainty of the current quark masses. In
the next section, armed with the updated information of
these parameters [Eqs. (2.2) and (2.3)], we will deter-
mine the crucial quantity P within the framework of the
QCD sum rules. The combined use of the finite energy
sum rule and the Borel sum rule is a key ingredient there.
From the analysis, we 6nd that A is indeed positive and,
including all uncertainties in the parameters, is found to
lie in an interval:

3 mg m~
i2Q2 (3.i)

is of O(m~) and will be neglected. For the same reason,
the one-gluon exchange diagram [Fig. 3(b)] is of higher
order in mq.

(2) Ir7rducible I-p exchange [Fig. 3(c)]. Because of the
diff'erent coupling of the p to the u and d quarks, the
one-p exchange in Fig. 3(c) contributes as

II(2) = — —lnQ . (3.2)

(3) Reducible I~ exchange [Fig. 3(d)]. As has been
proposed in Ref. [16], it is convenient to separate the
reducible p exchange diagram from the whole analysis
Rom the very beginning. This can be done by neglecting
Fig. 3(d) in the OPE side and subtracting the p -+ p ~ ~
contribution (2.3) from the phenomenological side.

(4) Gluon condensate o., (G2)p [Fig. 3(e)]: It vanishes
for the same reason as (1).

(5) Quark condensate m~{qq)p [Fig. 3(f)]:

2
II(s) = [m„(uu)p —mg(dd)p] . (3.3)

(6) Mixed condensate [Fig. 3(g)]. As has been shown in
Refs. [16,21], even in case of only one quark fiavor, these
condensates contribute at least in O(m ) to the vector
current and are therefore not present in our analysis.

(7) Four quark conde-nsate [Figs. 3(h)—(k)]. There are
contributions &om gluon as well as p exchanges. Typical
diagrams are shown in Figs. 3(h)—(k).

(a) Fig. 3(h):

(7 )(Q') = — '{(up psA u)2 —(dp psA d) )p.

(3 4)

Furthermore, in each term we take contributions which
are of O(m~) (q = u or d) or of O(a), and any terms

O(m~), O(a ), and O(mrna) are neglected. We will check
the validity of these ass»mptions later on. Therefore we
are faced with the diagrams in Fig. 3, which contribute
«11(Q') (Q' = —q') as follows [16].

(1) Free part [Fig. 3(a)]. The leading order term pro-
portional to ln Q2 vanishes, while the next term,

2Ar= — 09 fm,
m

(2.18) (b) Fig. 3(i):

which is, roughly, the region of interest for the symmetry-
breaking effect.

III. p-~ MIXING IN +CD SUM RULES

A. Operator product expansion (OPE)

II(7$) (Q ) = —
s ((up A u) —(d7 A d) )p.

(c) Fig. 3(j):

(3.5)

For the QCD sum rule determination of the p-~ mix-
ing, one should start with the current correlator [16]given
in Eqs. (2.10)—(2.12). Following Ref. [16], we will ana-
lyze suin rules obtained by the OPE for II(q ). In the
OPE series, we keep power corrections up to order 6.

11(.)(Q') = —,{-'(u&-7 u)' —'(d~-~. d)')o . (3 6-)

(d) Fig. 3(k):

11( )(Q') =—,(-'( ~- )' —.'(d~-d)')o . (3.7)—
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(e

(b)

(c)

B. Symmetry-breaking parameters and vacuum
condensates

= 0.28+ 0.03.

There are essentially two quantities which control
the isospin symmetry breaking in OPE: m~/m„and
(dd)p/(Su)p. Although they are related in principle in

QCD, they appear as independent parameters in the
QCD sum rules. As we will see below, the dimension four
operator in the OPE is controlled by the quark mass ratio
while the dimension six operator depends on the ratio of
the condensates. Because the dimension four operator is
the dominant term in the OPE, the p-u mixing is essen-
tially determined by the quark mass ratio and depends
weakly on the ratio of the condensates.

The quark mass ratio is determined by the analysis of
the mass splitting of mesons and barons using the chiral
perturbation theory ( [20] and references therein):

(3.8)
mQ+ m~

The isospin breaking of the quark condensate has been
analyzed by several methods; the chiral perturbation the-
ory [22], the QCD sum rules for scalar and pseudoscalar
mesons [23—25], effective models of QCD incorporating
the dynamical breaking of chiral symmetry [26,27], and
the QCD sum rules for baryons [28]:

' —(6—10) x10 s
[

(&&)o —(10+3) x 10 s
[

(uu)o —(7—9) x 10 s
[

, —(2+1) x10 s
[

22],
23],
26,Z7],
28] .

(g)

~ooooooooo&o

FIG. 3. Diagrams ia the OPE.

(3.9)

Here we have assumed (ss)o/(uu)o —1 = —(15—30)% to
get the first number in the above. The last number is
obtained solely by using the baryon mass splittings in
the QCD sum rule and is quite different from the other
determinations.

Besides the symmetry-breaking parameters, we need
to fix the value of the four-quark condensate. The vac-
uum saturation hypothesis gives a rough estimate of its
magnitude; it gives a satisfactory description of the p-
meson properties [14]. However, there are recent argu-
ments which favor a value larger by a factor 2 or more
than that adopted in [14] (see, e.g. , [15,29] and the refer-
ences therein). Since this condensate is not determined
well in the sum rule, we will take the following two typical
numbers and carry out the Borel analysis using them:

1.81 x 10 GeV vacuum saturation [14]
3.81 x 10 GeV [29] .

(3.10)
The definition of p in Eq. (3.9) and the vacuum satu-

ration hypothesis allow us to rewrite the isospin breaking
in the four-quark condensate as

( )o (dd)o = 2'7(&&)o (3.11)

a(uu)o2= a(dd)o ——a(qq)o (3.12)

Using the above symmetry-breaking parameters and
the vacuum condensates together with the Gell-Mann-
Oakes —Renner relation [30]

(m„+ mq) (uu + dd) o
———2f m, (3.13)

Eq. (3.3) and the sum of (3.4)—(3.7) are written as
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TABLE I. The sets I—IV of input parameters for the OPE.

Set I
Set II
Set III
Set IV

10 g

11.3 + 1.3
11.3 + 1.3
11.3 + 1.3
11.3 + 1.3

f1Lgg TTL 2S

mg+m, ss

0.28 + 0.03
0.28 + 0.03
0.28 + 0.03
0.28 + 0.03

10 p
-9.0 + 3.0
-9.0 + 3.0
-2.0 + 1.0
-2.0 +1.0

a, (qq)p(10 GeV )
1.81
3.81
1.81
3.81

II„)(q') = 1 mg m"2 2 2 1
~+2j m 1+

12q4 mg +m„mg —m„2 + p
(3.i4)

and

II(g)(q ) =—224 2 - 2- o.

S»2q '(qq)' '
S , ( )

(3.15)

Summing up all contributions, we obtain

12II(q ) = —cplnq + + +2

with

(3.i6)

To take into account the large uncertainties of p and
a, (qq)p2, we perform our analysis for the four difFerent
sets of input parameters specified in Table I with the
corresponding OPE coefFicients c; (i = 0, . . . , 3) shown
in Table II. Borel stability analyses will be made for
these four different sets in Sec. III E.

A

16+3 '

3
c, = (m, —m„)-2 2

27r2
0,

(3.17)

(3.1S) C. Spectral function and sum rule

"2f m
my+ m~

224
cs ——— m a, (qq)p

my+ m„1+
mg —m 2+p

Sa, (p, )

(3.i9)

(3.20)

For the renormalization point p,2, we take a typical scale
of the Borel mass 1 GeV2, so that

a, =a, (1GeV ) 0.5 . (3.21)

12/ m» —g = (» e3+1.3) X 10
Spy~ m

It is obvious from Eqs. (3.19) and (3.20) that the mg/m„
controls the magnitude of the dimension four matrix ele-
ment and (dd)p/(6u)p controls the dimension six matrix
element.

The aim of our s»m rule analysis is to determine the
parameter P (or A); we will use the experimental p-p/

mixing at q = m as an input. For later use, let us
de6ne here the dimensionless mixing of hadronic origin
as 12ImII(a)= mob(a —m ) —mf„b(a —m )

+sr fp b(a —m, ) —n f b(a —m, )

8(a —ap).
16m 2 (3.23)

The general expression for the spectral function, i.e.,
the imaginary part of II„„(q ) is given in Ecl. (2.13). As
has been pointed out in Refs. [16,15], it is absolutely nec-
essary to keep at least one higher resonance (p', p/') in
(2.13) in order to obtain stability in the /CD s»m rule.
We will treat the related mass m' = 2(m, + m2, ) as
well as the corresponding coupling constants g~~ and g ~

as efFective parameters to be determined from the Borel
stability analysis. Furthermore, in order to account for
the electromagnetic logarith~ in Eq. (3.2) in the space-
like region, we have to introduce a continuum threshold
so. The corresponding part in the spectral function is
"suppressed" by the electromagnetic coupling a and in-
deed it will turn out that the infiuence of this term on
the sum rule analysis is very small. Assnniing sharp res-
onances for p, p/, p', and ii/' as well as a step function for
the continuum one can write, analogous to Eq. (2.6),

The general form of the Borel sum rule reads [16]:
(3 22!

TABLE II. The OPE coefficients c; (i = 0, . . . , 3) in units
of m - 10 calculated with the parameter sets I—IV from
Table I.

OO

0
dae ™Imli(a)= II~(M ), (3.24)

Set I
Set II
Set III
Set IV

Cp

0.147
0.147
0.147
0.147

CI

0
0
0
0

C2

2.66 + 0.30
2.66 + 0.30
2.70 + 0.30
2.70 + 0.30

C3
— 0.83 + 0.23
— 1.75 + 0.48
- 0.29 + 0.08
— 0.61 + 0.17

where the Borel transform II~(M2) is defined by

d2

M~ =@~/n fixed
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Let us define the following parameters:

bm2 fp+ f
m4 2

bm' fp +f
m" 2

(3.26)

f and (' are directly related to the on-mass-shell mix-
ing in the p-w and p'-u' channels, respectively. P and P'
are related. to the isospin symmetry breaking at the res-
onance poles and control the q dependence of the p-~
and p'-u' mixing. The relation between P and A defined
in Sec. II is easily obtained by comparing (2.13), (2.14),
(2.6), with (2.12) and (3.23), which gives

(3.28)
Ps~

- —1

pl (f f )
r2

b
r2 fp' + fw'

2
(3.27)

and therefore

(3.29)

By using the above definitions, one obtains from Eq. (3.16) up to O(6'm ) and O(hm' ) the Borel sum rule (BSR):

M2 M2 M2 M2 16+3

(m2 ) (m2 ) f m2 &=co+ciI 2 /+'c2/ 2 I +cs/ 2 I ~ (330)qM2) qM2) (M2)

where co—c3 are in units of 10
Starting from this expression, one can carry out the

Borel analysis (stability analysis with respect to M2) or
analysis of the finite energy sum rule (expansion in 1/M2
on both sides). Let us summarize our strategy before
entering into the details. On the right-hand side of Eq.
(3.30), we have seven resonance parameters: P, P', (, (',
m, m', and so. Among them, m is the average mass of
p and u, and f is directly related to the measured p-u
mixing, so they are known inputs. m' should be chosen
to be a number close to m~ = 1390 MeV or m = 1450
MeV; thus it is not arbitrary. The sum rule depends on
sp very weakly because of the suppression by a; thus the
choice of so does not materially affect the result. Hence
we are left with essentially three unknown parameters P,
P', and (' to be determined by the sum rule.

In the finite energy sum rule (FESR), by expanding
Eq. (3.30) in powers of 1/M, we get three independent
equations. They are enough to solve for the three un-
knowns. One can also change m' and so slightly to check
the sensitivity of the result to that change. One of the
problems of the FESR when compared to the Borel sum
rule is that it is generally sensitive to the parameters of
the higher resonances. Therefore, after getting a rough
idea for the magnitude and sign of the three unknowns,
we will move on to the Borel sum rule.

By taking a derivative of Eq. (3.30) with respect to
M, one generates another independent sum rule. To
carry out the stability analysis for each unknown param-
eter (P, P', and f'), we need one more constraint„and
we take a first sum rule of the FESR to supply this con-
straint. The Grst sum rule is known to be a local duality
relation and is least sensitive to the higher resonances.
By this procedure, we can draw independent Borel curves

D. Finite energy sum rule (FESR)

The FESR can be formally obtained by expanding the
BSR Eq. (3.30) in powers of Mi, and comparing the
coefEcients of each power on both sides. In doing so one
obtains three FESR's:

/2
/ / m sp

P6 —/3 ( ——com2 m2 (3.31)

(+(p+(', +rir', + -~0
l, , )

(3.32)1,m' 1, , m' 1 so—( ——(P —(' ——('P' ——cp = C3m6 2 m 6 m

(3.33)

Using various values for m' and so as input parameters
we can therefore solve Eqs. (3.31)—(3.33) which gives
us the three unknown paraineters P, $', and P'. Table
III shows their values for the OPE set I. As we can see,
the result is sensitive to the choice of the resonance mass
m', whereas the inHuence of the electromagnetically sup-

for each unknown and carry out the stability analysis by
varying m' and sp, i.e. , m' and sp are chosen such that P,
P', and (' are least sensitive to the variation of the Borel
mass M2. In this way, we can completely determine the
resonance parameters within the /CD sum rules. Our
procedure is different from the original SVZ analysis [16]
where P was assumed to be 1/2 as an input and also poor
experimental data of ( was used.
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(m', sp)
(1.4,
(1.6,
(1.8,
(2.0,
(1.8,
(1.8,
(1.8,

(GeV )
2.0)
2.0)
2.0)
2.O)

1.4)
2.O)

2.4)

0.91
0.75
0.64
0.55
0.64
0.64
0.64

1.03
0.87
0.74
0.62
0.73
0.74
0.73

-4.41
-3.79
-3.44
-3.20
-3.38
-3.44
-3.52

pressed threshold sp is small.
It is important to notice that P( and P'(' have to be

opposite in sign due to the first FESR (3.31) or equiva-
lently the local duality relation,

dslmll(s) = O(o.) = 0
p

(3.34)

TABLE III. P, (', and (9' from the FESR for difFerent val-

ues of m' and sp (parameter set I).
This is the reason why one should keep the resonance
explicitly [16],otherwise the term P( cannot be canceled.

E. Borel analysis

Finally we perform the Borel stability analysis of
(3.30). Again we take for ( the experimental input (3.22).
m' and sp are used as variable parameters which are
fixed in order to obtain maximal stability of the Borel
curves. In order to choose a stability window for M2, we
demand that, for each parameter set (I—IV), the contri-
bution of the sixth order power correction in the OPE. is
less than 25%%up of the fourth order one. This gives a lower
limit M; for the Borel mass M .

As we mentioned before, we adopt the first sum rule
of the FESR (3.31) or equivalently the local duality re-
lation (3.34) as an additional constraint. Also, we gen-
erate another sum rule from (3.30) by operating with

M, ~

—
s(&,M„~ M2 on both sides. In doing so one can

uniquely calculate the three unknown parameters (9, (',
and P' as function of M2:

2 m so m2 2
—P(M )( 2

—cp 2
—cg

y zp(M j+ zg(M ) (1—,)P(M)=-
& w, (M') (

", —z) —w, (nP)
2

('(M ) =
~

e i P(M )(PWg(M )+Zg(M )~m2~

I 2 1

f'(M2)

(3.35)

(3.37)

with

Zq(M)=cp 1 —e
m2

rm2q'
+ca

I gM2)

Wg(M ) =
M2

Z2(M2) = 1

W2(M ) =2 — 1

—m~ /M~

0
8(1/M2)

8
(9(1/M2)

—m' /M
i

M'Z, (M')

M2 W~ (M2) (3.38)

The general procedure for determining m' and sp is
now the following: For each of the parameter sets I—
IV from Table I we first take the corresponding central
value (i.e., without error bars) of the OPE coefficients
c; (i = 1, . . . , 3) from Table II and calculate the Borel
curves P(M2), f'(M ), and P'(M2) due to Eqs. (3.36),
(3.37), and (3.37), respectively, for various values of m'
and sp. The final result is the one with the least depen-
dence on M within the Borel window M & M,.„with
M; determined above. The results for P and f' using
parameter set I are shown in Figs. 4 and 5, respectively.
One recognizes a wide stable region, which even can be

extended up to M 10 GeV . The maximal stability
occurs for m' = 1.6 GeV, where sp can be increased up
to about 2.4 GeV without any significant change. This
insensitivity of the result to the variation of the contin-
uum threshold are found for all other parameter sets as
well and re8ects the fact that the dependence on sp is sup-

pressed by the electromagnetic coupling o.. With m' and
sp obtained in this way, we now consider the change in
the Borel curves for P, (', and P' for the upper and lower

limits of c; &om Table II and extract &om this the upper
and lower limits for P, (', and P'. For P (set I) the limits
are shown in Fig. 6. The final values are given in Table
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FIG. 4. Borel curve for P with three difFerent values of
(m', sp) (parameter set I.)

FIG. 7. Borel curve for P with three difFerent values of
(m', sp) (parameter set II).

IV. It turns out that the variation of P, (', and P' is com-
pletely determined by the variation of the coefficient c2,
which itself is based on the uncertainty of the quark mass
difference (m~ —m„)/(m~ + m„) = 0.28 + 0.03. The un-
certainty of p, which creeps into the coefficient c3 of the
dimension six condensate can be neglected. It should be
noted that a full readjustment of m' and 80 for the up-
per and lower limits of the c s &om Table II which are
obtained by performing a new stability analysis for each
case would result in much bigger error bars for P, (', and
pl

Similar considerations hold for parameter sets III and
IV. In the case of set II we find that the Borel curves are
rather unstable in the window M2 & M,„=1.5 GeV
(Figs. 7 and 8), especially the one for (', and therefore
this uncertainty, which is bigger than the variation due
to the c s, has to be included in the corresponding error
bars of Table IV.

Finally we have convinced ourselves that in none of
these cases does the result change noticeably if one either
switches ofF the electromagnetic interaction completely,
i.e. , puts a equal to zero, or includes the O(mp2) diagram
[Fig. 3(a)] with the corresponding coefficient cq in the
Borel analysis; this analysis justifies the neglect of these
terms in higher orders.

We also want to stress that the value of P obtained by
this method de'ers significantly &om that used in Ref.
[16], P = 0.5, which was based on an SU(3) symmetry
argument and served as input parameter. Also the in-
dividual signs of (' and P' come out different than in

1.4—

1 2 p o 0
0

0 o 0 0 0 0 0 o 0 0
op pop oooopoooo0 0 0 0 0 o 0 0 0 0 0 0 0 p ('

0.8

0.6

m' = 1.8GeV'
m" = 2.0G«' '"

Q 4

0.2—

0 I

0,5 1 1.5 2 2.5 3 3.5 4 4.5

M [GeV2]

FIG. 5. Borel curve for Ie' with three different values of
(m', sp) (parameter set I).

l.2

0.8 -i iiililiiilililiii&iiiliiifiii&iiiiiii~

0,6—

0.4—

0,2—

I I

1.5 2
0 I

0.5 1 2.5 3 3.5 4 4.5
M2 [GeV2]

FIG. 6. Variation of P(M ) due to the errorbars in Table I
and Table II adhere m' = 1.6 GeV and sp = 1.8 GeV are
fixed and taken from Fig. 4 as the values vrith maximal Borel
stability in the ~jndo~ M ) M~j~ 1 0 GeV .

2.4—
2.2—

2

1.8—
1.6—
1.4—
1.2

8GeV'. -.
0 GeV2
2GeV ooo

TABLE IV. The final values of P, (', and P' as well as the
resonance mass m' for the four difFerent parameter sets of
Table I extracted from the Borel stability analysis. 0 o oooooooooooooo pop0.8—

0,6—
I I I I I I I

1.5 2 2.5 3 3.5 4 4.5 5

M [GeV ]

/2m
O.S8 + 0.17
0.85 + 0.46
0.56 + 0.07
0.76 + O.ll

0.5 11.6
2.0
2.4
1.9

-3.52 + 0.30
-2.71 + 0.60
-2.61 + 0.15
-3.06 + 0.23

0.78 + 0.07
0.65 + 0.13
0.47 + 0.04
0.62 + 0.06

Set I
Set II
Set III
Set IV FIG. 8. Borel curve for (' with three difFerent values of

(m', sp) (parameter set II).
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and A = 0 the (the full line), where we have used P = 0.78
from set I (cf. Table IV) as a typical example. The long
range exponential potential due to the p-ur mixing (the
first term in Eq. (2.17)] is strongly suppressed by the
q dependence of the mixing [second term in Eq. (2.17)].
As a result, in the coordinate space the potential changes
sign at r = 2A/m = 0.9 fm. The large difference between
the solid and the dashed curves of Fig. 10 at short dis-
tances is not ~cally relevant, since the short range part
of the potential V~~~(r) is screened by the strong central
repulsion of the nuclear force and also is reduced by the
the p-N-N and ~-N-N form factors.

Of course it is clear that the q2 dependence of 8 [Eq.
(2.9)] has a similar inHuence on the class IV nuclear po-
tential as well.

Several remarks are in order here on the N-N potential
due to the isospin breaking.

(1) In the conventional application of the p-~ mixing to
the N-N potential, only the mixing of the p-~ propaga-
tors is taken into account, as is shown in Fig. 1. However,
there is another source of isospin breaking due to the
isospin-breaking p(u) N Nco-upi-ing (cf. Fig. 11). The
magnitude of this symmetry breaking is unknown. This
effect does not contribute to the polarization difference in
n-p scattering, but does contribute to the Nolen-Schiffer
anomaly.

(2) The QCD sum rule can give us the mixing in the
p-u channel and that in the p'-u' channel separately.
Therefore we can study the effect of p'-~' mixing to
the N-N force. From the QCD sum rule we have ex-
tracted P' = —2.5, . . . ,

—3.5, so that the corresponding
A' = P' + 1 is clearly negative and therefore the effect
goes into the other direction, i.e., the p'-u' mixing an-
gle 8'(q2) increases in the spacelike region. The eH'ect of
8'(q2) (p'-ur' mixing) to the nuclear force will appear only
at short distances compared to 8(q2) (p-u mixing). Thus
it is not so relevant to the low-energy N Nscatteri-ng.
Since we do not have any information of the p'(ur') N-
N coupling constants, we cannot make any quantitative
estimate to the effect of 8'(q2) at the present stage. In
the one-boson exchange approach to the nuclear force the
higher resonance contributions are not taken into account
explicitly.

(3) In our approach we have taken a sharp resonance
for the p meson spectral function and therefore com-
pletely neglected the width of the p meson. However
we believe that including the p meson width does not
change our result significantly, because only the integral
over the spectral function is important in the sum rule
and furthermore the crucial quantity A = P + 1 ) 1
does not depend so much on the details of the calculation
of

p (~)

FIG. 11. Isospin breaking nuclear force due to p or u ex-
change with isospin breaking p(u) N N-ver-tex.

V. SUMMARY AND CONCLUSIONS

QCD sum rules have been shown to be a powerful tech-
nique for studying meson and baryon properties. In this
paper we have used these sum rules together with the
usual unsubtracted dispersion relation to study p-~ mix-
ing both on- and off-mass shells. We find a rapid vari-
ation of the inixing parameter 8(q2) with q2. Thus, al-
though we fit the value of 8 at q = m m~, its sign
has already changed at q2 = 0. Since it is the space-
like value of q that plays a role in the contribution of
p-u mixing to the nuclear force, our results have impor-
tant implications for fitting experimental results. For
example, the on-shell value of the p-u mixing parameter,
8(m ), has been used to fit the asymmetry observed in
polarized n pscattering [1—-3,7]. Indeed, at = 200 MeV,
this (assumed on-mass-shell) mixing gives the dominant
contribution to the observed asymmetry. Our results, like
those obtained previously by other methods [8,9], thus
place a large question mark on our understanding of the
observed charge asymmetry. In addition p-u mixing con-
tributes to the difference of the p-p and n-n scattering
lengths and to the energy differences of mirror nuclei.
Indeed, there has been a revival of interest [13] in the
contribution of p-u mixing to the Nolen-Schiffer anomaly
[4,5] and our result also puts some of these explanations
[10] into questions.
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