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Effective mass of omega meson and W2Vu interaction
at finite temperature and density
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By means of the thermo6eld dynamical theory, the effective mass of omega meson is calculated
by summing the bubble diagrams. It is found that the formula for the effective mass of the p meson
can also be used to describe the u meson in the low density region, but the parameter n and the
critical temperature T, depend on the density. The temperature and density dependence of one
omega exchange potential of nucleon-nucleon interaction are given. The conjecture of Brown and
Rho about the effective masses of mesons is discussed,
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I. INTRODUCTION

It is widely believed that in future experiments nuclear
systems will be investigated under extreme conditions of
high temperature and/or high density. The heavy-ion
collision experiments provide us with an opportunity to
study the chiral phase transition as well as the quark de-
confining phase transition. Much theoretical effort [1—12]
is being devoted to the studies of physics under extreme
conditions.

For studying the phase transition and the thermody-
namical properties of the nuclear system under extreme
conditions, it is essential to determine the temperature
and density dependence of nuclear force. As is well
known, the nuclear force can be understood on the basis
of the exchange of various mesons. In a series of our pre-
vious papers [7—10], by using the Green's-function meth-
ods, we extended the one-pion-exchange potential with
pseudoscalar and pseudovector couplings to finite tem-
perature and Bnite density. At large distances, the ex-
change of the pion meson gives the dominant contribu-
tion to the NN force. However, at small distances, the
dominant contributions of the nucleon-nucleon interac-
tion is believed to be coming from the exchange of u
and p mesons. Therefore, it is of interest to extend our
previous investigations to the NNw interaction. In this
paper, by employing the thermo6eld dynamical theory
[13,14] and summing the bubble diagrams [7—10], which
give the vacuum polarization of the NNu interaction,
we will calculate the effective mass of cu meson and the
temperature and density dependence of nuclear force at
small distances by exchanging one cu meson. This is the
first objective of the present paper.

The second objective of the present paper is to check
the conjecture of Brown and Rho [1,2] from another point
of view. Based on @CD sum rules and the scale property

of the Skyrmion model, Brown and Rho [2] argued that
the effective masses of p, o, and cu mesons and nucleons
satisfy

a N ~ P

M MN Mp M

where the masses with asterisks stand for the finite-
temperature and finite-density values, and the effective
mass of a p meson for a fixed density is

2 Yl

(2)

where T, is the transition temperature at which M is

zero, n is a constant, and 6 & n & 2. Recently, many
workers have checked the Brown-Rho conjecture from
@CD arguments [15,16]. Instead of using @CD argu-
ments, we hope to check Eqs. (1) and (2) from nucleon-
nucleon-meson interactions. Based on the NNu inter-
action, and the 6nite temperature and density quantum
field theory, we can find M'/M and check whether it can
be described by Eq. (2). We will prove that for a fixed
density, M'/M can well be described by Eq. (2) in low-

density regions, i.e., p ( 4po, where po is the saturation
density. However, for high-density regions where p ) 4po,
it deviates from the description of Eq. (2), which means
that the Brown-Rho conjecture in high-density regions
may be incorrect.

II. FORMALISM

A. The Feynman propagator in thermo6eld
dynamics

Our calculations are based on the framework of ther-
mofield dynamics (TFD) [13,14], which has been em-
ployed by many authors for discussing diferent problems.
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Contrary to the Matsubara imaginary time Green's-

function method, TFD is formulated with the real-time

variable &om the beginning. In this theory, the ground

state is identi6ed as the temperature dependent vacuum.

All ensemble averages are calculated as expectation val-

ues in this vacuum, and all operator formalism at zero

temperature can be extended to 6nite temperature in a
straightforward way.

In TFD, each field has double components, and they
lead to a 2x 2 matrix propagator. For example, the Feyn-
man propagator of fermion 6eld in TFD is

& i&ii(k) i&i2(k) l
I ib, 2i (k) ib, 22 (k) ) (3)

where

&ii(k) = (It+ M), , + 2iri[8(ko)ny (k) + 8(-ko)np (k)]h(k' - M')1

~k2 —M2+ is

{4a)= —&22(k)

(4b)

Dp-(q) = D'„.(q) + D„'.~." D-(q),~he~~ g = p"k„, 8(ko) is the step function, n~(k) and
ny (k) are, respectively, the fermion distribution and an-
tifermion distribution given by where

q, q l
M~ 2 —M2-) q -+"

Z

~ (I&=
gP(II oI+~) + 1

(10)

is the free propagator of the cu meson. The self-energy
given by Eq. (8) can be written as

1n(a=

~.""(q o) = g""—,~(q)
q"q"

q2

and P = T i is the inverse of the temperature, where
we have chosen k~ ——1. The chemical potential p is
determined by

From the Dyson equation (9), and &om Eqs. (10) and
(11), we have obtained [5] thatp = d k[n~(k) —n~(k)] .

(2') s

gpgv 1
—M Z().+ (q)

For a nucleon system, p = (2S + 1)(27 + 1) = 4 is the
spin-isospin degeneracy.

(
q2 M2 ) q2 —M2+iB. The efFective mass of ~ meson

Now we proceed to discuss the effective mass of u me-

son at 6nite temperature and finite density. The La-
grangian density for NNu interaction is

We now extend our discussions to finite temperature
and Bnite density. According to the calculation rules
of TFD, the finite-temperature and finite-density self-

energy of the u meson can be obtained by summing the
same diagrams but replacing the Feynman propagator
S(k) by Eiq(k) [13,14]. It can be proved that the diag-
onal matrices b, ii of Eq. (3) alone is sufficient for the
determination of the self-energy. Therefore, we have

~I = gu O'Y

where @ and ~„are the nucleon Beld and ar meson Beld,
respectively, and g is the NNcu coupling constant. At
zero temperature, the self-energy of vacuum polarization
for ~ meson under the bubble diagrams approximation
(Fig. 1) is

PP P P P PP P
d4S

~"."(q o) =ig.' 2,T [~"S(k)~"S(k—q)l (8) )k dk &L ik
~------ +

&k

P P P

~ e e a e
q

where S(k) is the propagator of nucleon field at zero tem-
perature. The Dyson equation for ru meson propagator
can be written as

P PP P

FIG. 1. The bubble diagrams of NN~ interaction.

&iz(k) = 2~i(F+ M)e " '[8{ks)e " " ~z(k) —8{—ko)e~ '"~+" n&(k)]h(k' —M')
= —e ~"b,2g(k),
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1 1

k' —M~~ (k —q)
2 —M~~

d4k
Z""(q,P, p) = ig— Tr[p" Gag(k)p Egg(k —q)]

(27r) 4

d4k

(27r)'

+2xg .& a(k' —M„')
[0(ko)nF (k) + 0(—ko) nF (k)]

(2 ) ((k —q) —M

[0(kp —qp) nF (k —q) + 0{—ko + qo) nF (k —q) ] ~

b((k —q)' —M~)
k —M~

—= ~"."(q, 0) + ~". (q, &, p) (13)

where

r"" = T [~"(t+ M~)~"(~ q+ M—~)]

= 4jk" (k —q)" + k" (k —q)"

—q" [k(k —q) —M~2]) . (14)

2"(q, P, p) = g" +, ~ (q 0 p)
Iql')

The Dyson equation at Gnite temperature and finite
density has the same form as Eq. (9), except with the
substitution of Z" (q, 0) and D „(q) by Z" (q, P, p) and
the (1,1) component of the ~ meson propagator matrix
in TFD [17]. After some calculations, we obtain

Z""(q, 0) is the contribution at zero temperature and
density, which can be renormalized as usual in quantum
Geld theory. Since we are interested in the temperature
and density effects, from now on we only discuss the
temperature- and density-dependent part Z""{q,P, p).
For the low-energy NNcu nuclear interaction, under the
nonrelativistic limit lql (( M~ [8—10], we have

~"(q P p) =o,

goo
D (q) =

q2 —M2 '

U
D*'(q) =

q' —M.'+ ~-(q, P p)

in the nonrelativistic limit, where M is the renormalized
mass of the u meson at zero temperature and density, and
Z (q, P, p) is given by

~.(q, 13, p) = ', g', ~".(q, P, p-)

= 7rg g,,7-*'
2 [0(kp)nA, + 0(—kp)ng]27r4 ( k —q2 —M~2

+, , [0(ko —qo)nr. —,+ 0(—ko + qo)na —,]
6((k —q)

2 —M~2) (19)

where

g, r'~ = 4[k (k —q) —3kp(kp —qp) + 3M~] . (2o)

Due to the conservation of baryon current, we have [8]

q„D""(q) = q /M

By using Eq. (21), we can prove that

D"(q) = D'(q) = o

in the nonrelativistic limit. Straightforward calculations using Eqs. (19) and (20) can give

(21)

(22)

where

2 2

Z (q, P, p) = 2I2 —M~Is(2 — Is)2—
2vr2 ( 4 )

(23)



49 EFFECTIVE MASS OF OMEGA MESON AND NNco. . . 43

1 x' 1 1
I2 ——

2 dx +
P p Qz2 + P2Mi2v ~exp(gz2 + P2Mi2v + /3p) + 1 exp(gz2 + /32M~~ —Pp) + 1)

(24a)

OO x2 1 1
I3/2 dx

2 +
p (z +/3 Mrc) (exp(/z2+P2M~+Py) +1 exp(Qz +P M —/3p) + 1)

(24b)

Substituting Eqs. (23) and (24) into Eq. (18), we finally obtain

UD" (q) = H
q2 —M*2 ' (25)

where

( )
—i/2

4+2 (26)

and

M~ = H M~ —
2 (2I2 —M~I3/2)

27I )
(27)

is the effective mass of the u meson at Gnite temperature and Gnite density. We will use it to check the Brown-Rho
conjecture in Sec. III.

C. One-omega-exchange potential

Following similar treatments to those of our previous works [7—10], the finite-temperature and finite-density effective
one-omega-exchange potential (OOEP) can now be found as

g ( M l, M 1 dY(z')V(r)= —M 1+ 2 Y(z')+ 2S L —,

1 M'2
l1

M'2
2 [Z(z)Si2+ Y(z)(cri cr2)] + —

2 Y(z)(cri cr2)
12 M~2 4 M~2

(28)

where

z'=M r, z=M'r, Y(z) =e */z,

3 3&
Z(z) = 1+ —+ —Y(z),x x2 (29)

3(cri r)(cr2 r)
12 r2

—CF 1 CF2

III. RESULTS AND DISCUSSIONS

The 6nite-temperature and Gnite-density effective
OOEP and the effective mass of ~ meson can be cal-
culated numerically from Eqs. (23) and (24), (26) and

Obviously, Eq. (28) has a similar form as in the naive
nuclear theory [18]. The numerical results for OOEP will
be shown in the next section.

- 1/2

) (M, —M,p) (30)

where N is the number of match points, M; and M;0
are the values of M'/M given by our formulas and by
Eq. (2), respectively. We choose N = 24 and adjust
the parameter n in Eq. (2) to get a best fit with the
restriction that A, 10 . The dashed curve in Fig. 2
shows the results given by Eq. (2) where n = 0.21 and

(27), and (28) and (29). Our results from numerical com-
putation are shown in Figs. 2—6.

Figure 2 shows the temperature dependence of M'/M
for a density p = 0.100 fm, where the solid curve repre-
sents the results given by our formulas. The parameters
M~ ——983.3 MeV, M = 782.6 MeV, and g = 15.85
have been chosen as in Ref. [19]. In order to compare
our results with those given by Eqs. (1) and (2), we
de6ne an error function 4, as
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FIG. 2. The ternemperature dependence of M' ~M f
p = 0.].00 fm hm, where the solid line is given by our formulas
and the dashed line by Eq. (2). The ae parameters chosen are
n = 0.21 and T, = 335.6 MeV.

T/Tc

FIG. 4. Thehe temperature dependence of M' jM for

p = 0.940 fm where th) e solid line is given by our formulas
and the dashed line b E . 2y q. . The parameters chosen are
n = 0.61 and T, = 305.6 MeV.

T = 335.62 MeV. The cases for p = 2po = 0.34 fm
where is the po is the saturation density, are similarly plotted

po — . m )

in ig. 3, in which n = 0.31 and T, = 333.03 MeV. Prom
Fig. 3, we see that we also obtain a best fit between our
formulas and Eqs. (1) and (2) for p = 2po.

To check the Brown-Rho conjectur
' 'd d' c ure in a wi er density

t e value given by Eq. (2) for different densities. The re-
sults are shown in Table I. We see that Eqs. (1) and (2
can satisfactorily describe M'/M in th 1 -din e ow- ensity re-

gion. However, n is a monotonously increasing function

, a w ic * equals to zero is a monotonously
decreasing function of p. As th d 'te ensi y increases, 6,
increases. This means that the fit b E ~2~ b ecomes

p po, e tpoorer as the density increases. When ) 4 the fi

is unsatisfactory. For example, the plot of M*&Mo (~ with

, shown in Fig. 4 where n = 0.61 and T = 305.6C

MeV has 4, = 18.13x 10 given by our formulas and b
the Brown-Rho conjecture for p = 0.94 fm and there
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FIG. 5. The effective OOEP cucurves for different tempera-
ures. : T = 10 MeV.eV;B: T=250MeV; C: T=300MeV.
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FIG. 6. The effective OOEP curves for different densities.
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A: p = 0 006 fm ; B: p = 0 170 f ; C:

he temperature is fixed at T = 10 MeV.
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is a considerable discrepancy between the solid curve and
the dashed curve, especially in the low-temperature re-
gion.

The effective OOEP curves for various temperatures
are shown in Fig. 5 where we have fixed p = 0.17 fm
The curves A, B, and C correspond to T = 10, 250,
and 300 MeV, respectively. We see that the repulsive
cores for nuclear force become harder as the temperature
increases, which is, of course, very reasonable.

The effective OOEP curves for a fixed temperature
T = 10 MeV and for different densities are shown in
Fig. 6, where the curves A, B, and C refer to p = 0.006,
0.170, and 0.600 fm, respectively. We see that the re-
pulsive cores for the nuclear force become harder as the
density increases. In fact, the density plays the same role
as the temperature [7].

In summary, we would like to point out that the influ-
ence of temperature and density are very important on
OOEP as well as on the effective mass of u meson. Based
on the thermofield dynamic theory, and considering vac-
uum polarization, we find that the formula for the effec-
tive mass of the p meson can also be used to describe the

TABLE I. The parameters n, T„and the corresponding
error function 6, for describing M'/M by Eq. (2) at various
densities.

p(fm ')
0.006
0.100
0.170
0.340
0.680

0.194
0.210
0.260
0.310
0.460

T, (MeV)
335.9
335.6
335.2
333.0
323.1

2.38 x 10
2 ~ 56x10
3.55 x 10
5.12x 10
9.50 x 10

This work was supported in part by the National Sci-
ence Foundation of China under Grant No. 19175014,
and by the Foundation of State Education Commission
of China.

u meson in the low-density region (p & 4po), but since
the parameter n and T, all depend on the density, the
Brown-Rho conjecture seems to fail in the high-density
region (p ) 4pp).
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