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Relativistic effects on polarization transfer observables for
quasielastic proton-nucleus scattering
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Within the relativistic plane-wave impulse approximation, the sensitivity of complete sets of
quasielastic proton-nucleus spin observables is investigated with respect to relativistic effects, the
importance of exchange contributions to the NN amplitudes, the form of the mN vertex, and spin-
orbit distortions. Calculations are performed at laboratory energies ranging from 135 to 500 MeV
and for target nuclei ranging from C to Pb at a fairly large fixed momentum transfer of
1.97 fm . Of all the spin observables, only A„exhibits a clear relativistic efFect at the highest
energy, as has been previously found. However, at the lower energies (200 MeV and below) the rela-
tivistic eRect shifts to two other polarization transfer observables, mainly D,t, and to a lesser extent
D~t, . In addition, it is found that D„t„is extremely sensitive to the pseudoscalar versus pseudovector
ambiguity of the xN vertex, whereas D, t~ and D~tt are sensitive to exchange contributions to the
NN amplitudes. Compared to the latter, the efFects of spin-orbit distortion are not insignificantly
small and had to be corrected for. This investigation stresses the urgent need for measurements of
the quasielastic spin observables at these low energies.

PACS number(s): 24.10.Jv, 24.70.+s, 25.40.—h

I. INTRODUCTION

The real advantage of Dirac relativistic mechanics lies
in its natural description of a particle's spin as well as
the accommodation of particle-antiparticle excitations in
strong 6elds. Hence, the interaction of a medium energy
nucleon with a nucleus is in the relativistic domain and
the Dirac equation will, via the spin dependence of the
nuclear force, play a vital role in the description of its
polarization observables.

In recent years several elastic and inelastic proton-
nucleus spin observables have been analyzed using rela-
tivistic models based on the Dirac equation. For a recent
review see Ref. [1]. Despite the success of the relativistic
predictions of scattering observables [2—5), present state-
of-the-art Schrodinger-based, nonrelativistic calculations
describe the data just as well [6], if not better.

The clearest relativistic efFect to date is that of the ana-
lyzing power A„ for inclusive (p, g7') scattering from 4oCa
and 2o Pb at 500 MeV [7]. In the case of both nuclei, the
relativistic prediction has been spot on, while all non-
relativistic methods up to the present overestimate the
experimental values by 40% and thus fail completely.
However, most of the other 6ve independent spin transfer
observables allowed by parity and time-reversal invari-
ance, D~ ~, D,t»D~ ~, D,t~, and D~t» seem to favor the
nonrelativistic calculation. (In each D, ~~ the primed and
unprimed subscripts refer to outgoing and incoming spin
directions, respectively [7].)

This inconsistency requires some deeper investigation.

Present address: University of the Western Cape, Bellville
7530, South Africa.

Therefore, one of the aims of this paper is to calculate
complete sets of spin observables in more improved ways.
The question also arises as to how sensitive the observ-
ables are to relativistic effects at energies appreciably
lower than 500 MeV. The reason for this is that, as the en-
ergy is lowered, the magnitudes of the (real part of) the
Dirac scalar and vector optical potentials, which addi-
tively contribute to spin observables, both increase, and
this may enhance the relativistic efFect on spin observ-
ables other than A„. Therefore this investigation also
entails in total the sensitivity to relativity of all the spin
observables for quasielastic proton scattering Rom vari-
ous nuclei at five fixed intermediate energies ranging from
(as low as) 135 to 500 MeV.

Inclusive quasielastic scattering of protons can be
viewed as a fairly elastic collision with a single target nu-
cleon near the nuclear surface [8]. It manifests itself in the
inclusive continuum energy spectrum as a broad peak,
the maximum of which corresponds to an energy trans-
fer of ~ q~/2m (q being the transferred momentum)
and the width of which is due to the momentum distri-
bution of the target nucleons [9]. Quasielastic scattering
at the peak thus approximately simulates free nucleon-
nucleon (NN) scattering and is therefore an ideal testing
ground for the medium-modified NN interaction. For
the present full proton energy range of 135 to 500 MeV,
u ranges from 0 to 100 MeV and the associated [q[ from
1 to 2 fm . These transfers are sufEciently large to ade-
quately separate the quasielastic peak from proton peaks
resulting &om low-lying discrete states and resonances.

Essentially the formalism and analysis employ the rel-
ativistic plane wave impulse approximation (RPWIA)
model (Sec. IIA), developed by Horowitz and Iqbal [10]
and Horowitz and Murdock [7].

We now mention the improvements of the present cal-
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culations. Firstly, ambiguities in the form of the NN
interaction are studied by employing a meson exchange
model for the NN interaction (presently the Horowitz-
Love-Franey model), rather than the Wolfenstein-type
parametrization of the Amdt phase shifts. Secondly, the
relativistic effect is contained in an effective nucleon mass
of both projectile and target nucleons interacting in the
surrounding nuclear medium. Preliminary calculations
indicate the sensitivity of the spin observables with re-
spect to these effective mass values. Our present re-
finement in calculating effective mass values is based on
a self-consistent (Dirac-) Hartree calculation of efFective
masses.

We demonstrate for the first time the enhanced sen-
sitivity of complete sets of spin observables to certain
aspects of the RPWIA at energies as low as 135 MeV.

For a proper handling of the NN interaction in
quasielastic nucleon scattering, medium effects of the sur-
rounding nucleus have to be corrected for. They are
treated here as distortions of the Dirac &ee particle wave
function by the nuclear potential and, as distortions are
generally larger on low energy particle waves, they de-
serve some special attention in the present analysis. After
dealing with the RPWIA formalism in Sec. II A, Sec. II B
presents the calculation of the effective nucleon masses
which contain the distortion by the central part of the
optical potential. Section II C presents the distortion by
the spin-orbit potential which efFectively rotates both ini-
tial and final state spinors, and in this way directly affects
the spin observables. The Horowitz-Love-Franey NN in-
teraction with its exchange [11] is discussed in Sec. IID
and, finally, all the theoretical aspects are tested in the
calculation of the spin observables in Sec. III. Section
IV summarizes our final conclusions.

II. RELATIVXSTXC PLANE-WAVE
IMPULSE APPROXIMATION (RPWIA)

A. Forma1ism

The RPWIA is described in Ref. [7]. This model allows
one to investigate medium modifications of the NN in-
teraction through the accompanying enhancement of the
lower components of projectile and target nucleon Dirac
wave functions which result from the strong and opposing
scalar and vector potentials. We denote the laboratory
momenta and spin of the incident nucleon by (ki, si j
before, and (ki, si j after its scattering, and similarly for
the target nucleon by (p2, s2j and (p2, s2j before and
after the scattering respectively. Then, for example, the
four-component Dirac spinor for the projectile is (in nat-
ural units, h = c = 1)

with similar expressions for the other nucleons involved
in the collision. m* is the effective nucleon mass (Sec.
II B).

Using the conventions of Bjorken and Drell [12], the
invariant matrix element for quasielastic proton-nucleus
scattering is given by

~=&i( i i)Ui( i »)&(& ) .(P2 2) 2(I2 2)

with E the incident laboratory energy. 7 is the form of
the invariant NN scattering operator used in the orig-
inal relativistic impulse approximation (RIA) [2] and is
expressed as

where the superscripts (1) and (2) refer to the projectile
and target nucleons, respectively, the i 's stand for the five
Dirac matrix types listed in Table I, and the dot product
implies that the Lorentz indices are contracted.

The amplitudes T;(q, E) can be parametrized in terms
of an appropriate model (see Sec. IID) for the NN in-
teraction or can be related to the experimental XN am-
plitudes. They are normalized in the usual way [2, 7, 10,
11] by equating the matrix elements of Eq. (3) for free
Dirac spinors U (spinors with m' = m, the free nucleon
mass) to the Wolfenstein amplitudes.

Once M is fully known, the spin observables can be
calculated from the usual expressions as in Ref. [7]. At
the high excitation energies of interest, shell efFects are
unimportant and hence a Fermi gas should be an appro-
priate model for the target nucleus [9]. Consequently, all
the spin observables need to be averaged over the Fermi
distribution of the momenta of the target nucleons which
range &om a certain minimum value up to the Fermi mo-
mentum (see Sec. IIB). For each value of target nucleon
momentum, the NN amplitudes have to be evaluated at
an effective laboratory kinetic energy T&~ and an effective
center of mass scattering angle. For inclusive quasielastic
(I7, p') scattering, the spin observables need of course to
be calculated as appropriate averages of those for pp and
pn scattering.

Note that by a "relativistic" or "m' effect" we refer to
the value of a spin observable calculated with an effective
mass in Eq. (3) relative to the corresponding calculation
using the free nucleon mass m.

TABLE I. Dirac matrix types used in the text.

7(q, E) = ) Tr, (q, E)A~ i

E' —(k2 + m'2) i/~ (2)

where yq is a two-component Pauli spinor of projection
8y and

S (scalar)
V (vector)

P (psendoscalar)
A (axial vector)

T (tensor)

7g
f5

'75 Yp

&pv
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B. Effective mass

The concept of an effective mass for a Dirac particle in
the field of a medium has been introduced in the mean
Beld theory (MFT) of Serot and Walecka [13]. In this
MFT, the Dirac fields are replaced by their mean values:

S(r) m (S) and V(r) -+ (V),
which lead to a truly &ee particle Dirac equation with,
however, an effective mass:

m' =m+(S) . (5)

In the present analysis of quasielastic scattering, the ef-
fective masses of both the projectile and target nucleon

(mi and m2, respectively) are calculated. S(r) is aver-
aged over the whole nucleus by weighting it with T(b),
the transmission probability through the nucleus at im-
pact parameter b, and with the nuclear density p(r) of
the specific nucleus, analogous to the method of Horowitz
and Iqbal [10,14]. The latter used in their analysis, how-
ever, the functions S(r) and p(r) of Kobos and Cooper
[15] to calculate only mi for the incoming protons; both
functions being restricted to a Woods-Saxon form. For
mz of the target nucleons they employed simply a mean
scalar field for nuclear matter in Eq. (5), which relies on
the reasonable assumption that S(r) = ap(r), but with
constant n applying to infinite nuclear matter.

Our aim was also to employ the most recent and re-
fined functions for the Dirac optical potentials and nu-
clear densities. We therefore concentrated on those re-
sulting &om an investigation of Horowitz, Murdock, and
Serot [16] who analyzed the mutual interaction of nu-
cleons in a nucleus by relativistic fields describing the
exchange of mesons as in the Walecka model [13] and
performed selfconsistent (Dirac-) Hartree calculations to
obtain the fields. [They limited it to spherical symmetri-
cal closed shell nuclei, which restricted the meson fields
to the zero component of the vector field Vo(r) and the
scalar field P(r).] The resulting field equation for the
baryons becomes a Dirac equation with —g, P(r) as the
scalar potential, adding to the baryon mass, with g, be-
ing the scalar meson coupling constant. In the present
case we consider —g, P(r) to be the scalar potential for
the struck nucleon and therefore, in the mean field ap-
proximation, its effective mass becomes:

mz = m —g, (P) . (6)

We presently employ the computer code TIMQRA of
Horowitz et al [17] to calcu. late, in the self-consistent
(Dirac-) Hartree formulation, the potential P(r) for a
specific nucleus, as well as the scalar and baryon den-
sity functions p, (r) and p~(r). After averaging P(r) over
the nucleus as described above, we could calculate m2
from Eq. (6).

The calculation of mi from Eq. (5) requires a scalar
optical potential S(r) for the projectile nucleon. This
potential has been obtained by folding, according to the
MA formalism, the components of a NN interaction t
matrix with the scalar and baryon densities p, (r) and
pii(r) of the specific nucleus. In this t matrix we apply

for consistency the same Horowitz-Love-Franey NN in-
teraction which is to be used in the transfer matrix [7
of Eqs. (3) and (4)] for the spin observables and include
pseudovector coupling, which formerly [2] yielded by far
the best agreement with phenomenological Dirac optical
potentials. We used the code FOLDER of Ref. [17] for
the folding procedure to obtain the optical potentials, the
scalar potential of which has been averaged to obtain the
appropriate m& values.

Table II lists the effective nucleon mass values (as
M' = m'/m, with m being the free nucleon mass)
presently calculated for the (p, p') scattering from the
nuclei C 0 Ca, Fe, and Pb, each at proton
laboratory energies of 135, 200, 300, 400, and 500 MeV.
These' are listed as Misc and M2sc for the projectile and
target nucleons respectively, where the subscript SC de-
notes the self consistent optical potentials. The last three
coluinns list, respectively, (b), the mean impact parame-
ter, kF = (zz' (pg)) ~, the Fermi momentum, and A,a,
the effective number of struck nucleons, the latter be-
ing of course in the nuclear surface. For comparison, the
corresponding effective masses have also been calculated
with a more recent phenomenological optical potential,
a global Dirac optical potential formula, developed by
Cooper [5] from fits to empirical data. These M' values,
subscripted by CP (Cooper potentials), are also included
in Table II. The reasonable agreement between the sets of
M&& and M&& values is expected since the correspond-
ing optical potentials are fairly similar. Table II also
contains the formerly calculated M' values, mentioned
above and reported in Ref. [7], and are subscripted by
HM (Horowitz and Murdock).

We now analyze the general trends exhibited by both
the SC and CP sets of e8'ective mass values. Firstly, for
scattering in a specific nucleus, the effective masses of
both projectile and target nucleons increase with projec-
tile laboratory energy Ti b, the increase of that of the
projectile being larger. This can be explained as fol-
lows: As Tj b increases, more channels generally open for
projectile absorption inside the nucleus, which manifests
itself as an increase of the imaginary part of the optical
potential. This decreases the projectile's transmission
T(b) through the inner nucleus and shifts the region of
proton scattering more to the nuclear surface, where the
magnitudes of all nuclear potentials start to decline sub-
stantially. Therefore, as Ti b increases, both (P) and the
magnitude of the real part of (S) decrease and, with S
being negative, this leads to an increase of both m~ and
m2, according to Eqs. (5) and (6), respectively. In addi-
tion, it is known that, as Tj b increases, the magnitude of
the real part of the Dirac optical potential function S(r)
decreases at all r [2]. This leads to a further reduction in
(S) and thus a further increase in mi, as Table II shows.

Secondly, m~ and m2 do not vary significantly with the
mass number of the scattering nucleus. Note, however,
that the effective number of (surface) nucleons acting as
scatterers, A, ir (Table II), does not increase as much with
nuclear size. This means that for heavier scattering nu-
clei, the scattering becomes more surface peaked, and
there is more of a &ee nucleon interaction in which the
remaining (heavy) nucleus plays a minor role. This is
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also re8ected by the m& values very near to the &ee mass
value, as was found for Pb. On the other hand, the
lightest nucleus, C, is more penetrated by the incident
beam and, on average, a third of all the nucleons par-
take in the scattering. Thus, using quasielastic scatter-
ing, medium eKects are, contrary to initial intuition, bet-
ter studied with scattering by light nuclei. This is also
reHected by the relatively low effective mass values for
12'

The real effect of these M* values will be discussed in
Sec. III, where they have been employed in calculating
spin observables.

C. Spin-orbit distortion

In calculating the nucleon transmission probability
T(b) in Sec. IIB, only the central part of the (effective
Schrodinger) optical potential has been employed. The
inclusion of a spin-orbit part leads only to an additional
space rotation of both initial and final state vectors. Av-

eraging this effect over the whole nucleus leads to a net
rotation along an axis perpendicular to the scattering
plane only [10]. This rotation directly affects the even-
tual spin observables.

Figure 1 presents graphically the amount of spin-
orbit distortion on all six the spin observables

A&, D,D, D) ), Da ), and Dl's as a function of the
five chosen laboratory energies; these have all been cal-
culated at the centroid of the quasielastic peak for proton
scattering by Ca (~g~= 1.97 fm ). The graphs show

that the spin-orbit; distortion is indeed not a negligible
factor; although being fairly constant with laboratory en-

ergy T~ b, its relative values increase as T~ b decreases. At
low energies (T~ b & 200 MeV) the spin-orbit effect be-
comes comparable with the presently investigated phe-
nomenological effects (relativity and the form of the vrN

vertex), therefore all spin observables presented in Sec.
III have been corrected for spin-orbit distortion.

Figure 2 presents the spin-orbit distortion of the six
spin observables as a function of nuclear mass. These are
calculated again at the centroid of the quasielastic peak,
but at a fixed laboratory energy T~ b

——200 MeV. Its
general increase with nuclear size agrees with the natural
expectation.

The very small distortion effect on the D„~„values de-

serves some physical explanation: If the spin rotation an-

gle R, with its axis perpendicular to the scattering plane,
would be completely real, this rotation would have no ef-

fect on D„I„,which relates polarization components that
a,re also perpendicular to the scattering plane. However,
due to the small absorptive part of the optical potential,
R has a small imaginary part (typically R = +0.15+0.05i

TABLE II. Average effective masses, impact parameters, Fermi momenta, and efFective number

of struck nucleons for various nuclei and laboratory kinetic energies.

Target
nucleus

12C
12C
12C
12C
12C

T1&b

(MeV)

135
200
300
400
500

M, s

0.762
0.795
0.832
0.862
0.890

M2s g

0.762
0.768
0.772
0.786
0.799

0.836
0.853
0.868
0.883
0.892

M2cP

0.754
0.775
0.792
0.807
0.814

M1HM M2HM

0.860
0.910

0.840
0.870

0.850 0.840

(b)
(fm)

2.109
2.136
2.162
2.243
2.331

k~
(fm ')
1.059
1.050
1.042
1.020
0.996

4.210
4.443
4.482
4.156
3.636

16O
16O
16O
160
16()

135
200
300
400
500

0.847
0.839
0.855
0.870
0.893

0.779
0.781
0.786
0.796
0.809

0.828
0.846
0.862
0.8?1
0.885

0.765
0.782
0.798
0.809
0.815

2.409
2.421
2.458
2.529
2.631

1.029
1.026
1.017
1.000
0.976

4.875
5.311
5.302
5.016
4.330

40'
40'
40C
40'
40'

135
200
300
400
500

0.836
0.832
0.847
0.864
0.892

0.778
0.784
0.787
0.798
0.817

0.810
0.832
0.851
0.865
0.879

0.749
0.771
0.789
0.799
0.810

0.82

0.83
0.90

0.81

0.80
0.85

3.434
3.484
3.510
3.599
3.759

1.024
1.014
1.008
0.989
0.955

6.736
7.277
7.496
?.133
5.973

54F

'4Fe
54F
54F

135
200
300
400
500

0.819
0.817
0.833
0.853
0.885

0.757
0.766
0.770
0.783
0.805

0.796
0.819
0.840
0.855
0.874

0.722
0.748
0.769
0.781
0.794

0.86 0.85

3.753
3.822
3.850
3.948
4.123

1.055
1.041
1.034
1.012
0.974

6.494
7.066
?.378
7.044
5.811

208pb
208pb
208pb
208pb
208pb

135
200
300
400
500

0.828
0.845
0.860
0.885
0.916

0.835
0.831
0.825
0.836
0.857

0.807
0.842
0.866
0.885
0.896

0.767
0.801
0.822
0.839
0.850

0.82

0.86
0.88

0.82

0.83
0.85

6.929
6.880
6.808
6.913
7.114

0.986
0.922
0.934
0.911
0.868

7.670
9.572
11.140
11.033
9.146
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forms of the relativistic NN amplitude on the spin ob-
servables at various incident energies. Furthermore, this
model can be used to generate the scalar and vector opti-
cal potentials by folding the components of NN t matrix
with the scalar and baryon densities as discussed in Sec.
IIB.

Essentially this model is a parametrization of the NN
t matrix as a sum of Yukawa terms such that both direct
and exchange contributions are considered separately.
The real and imaginary amplitudes of the direct part
of the full t matrix in Table I, expressed as a function of
the momentum transfer and effective laboratory kinetic
energy TL, are parametrized in the form

FIG. 1. The spin-orbit distortion of the polarization
transfer observables D;~~ is illustrated as function of the lab-
oratory energy T& b. For each observable the open circles and
crosses display the respective undistorted and spin-orbit dis-
torted values at specific laboratory energies. The solid and
dashed lines serve merely to guide the eye.

D. The Horowitz-Love-Franey (HLF) t matrix

The nucleon-nucleon (NN) t matrix employed in this
work is based on a relativistic Love-Franey formalism
that is described in detail in Refs. [11,17] and will be
referred to as the HLF (Horowitz-Love-Franey) model.
We use the HLF model to investigate the importance
of exchange and also to study the infiuence of different

I
'

I
'

I

0 4
(D

0.2

0.0
03

p4
U

0.2
03
N

0.0
0

p4 o.

0.2

0.0

-p O

0 50 100
Nuclear

D,n'n

p

I i I

150 200
mass (A)

p &
I I

p D

D,
I I I I I

—D,I's

s I i I i I i I

0 50 100 150 200
Nuclear mass (A)

FIG. 2. The same as for Fig. 1, but here the spin-orbit
distortion of the polarization transfer observables D;r~ is illus-
trated as function of the mass number of the scatterer nucleus
and at a fixed laboratory energy T&~b ——200 MeV.

rad), which leads to a generally nonunitary rotation op-
eration on the state vectors, in which case D„t„might
be slightly affected. The explicit expression for the spin-
orbit distortion of D„i„(Eqs. (40) and (41) in Ref. [10])
also displays this dependence on only the imaginary part
of B.

This insensitivity of D„~„ to spin-orbit distortion en-

hances, however, its value as a probe for important NN
interaction effects (see Sec. III).

2

( ff) ~' (TL ) A,'(TL )

The exchange contributions to the NN t matrix are simi-
lar in form to Eq. (7) with the exception that q is replaced
by the exchange momentum transfer Q. The real and
imaginary meson coupling constants g~ and the meson-
nucleon cutofF parameters A2 are fixed by fitting to the
relativistic representation of the NN Amdt phase shifts
at each value of TL, .

In the past, concern has been expressed about ambi-
guities in the form of the relativistic NN amplitude [7,
1]. The form shown in Table I is sufficient to parametrize
the &ee NN amplitudes. However, there is no direct ex-
perimental information to determine how M in Eq. (3)
will change as the Dirac spinors change &om U to U'.
One can make other choices for 7 of Eq. (4) which will
have the same &ee spinor matrix elements but different
medium modi6ed matrix elements and hence different
quasielastic spin observables. One of the major ambigu-
ities concerns the choice of the xN vertex in the ampli-
tudes [7, 17]. One could use either a pseudoscalar vertex
which simply uses the 6ve amplitudes in Table I, or a
pseudovector vertex. Elastic proton-nucleus spin observ-
ables at energies higher than 400 MeV show no difference
between pseudoscalar and pseudovector couplings of the
pion [18]. At lower energies, however, the difFerences be-
come larger and the pseudovector coupling is more com-
patible with the strength and energy dependence of the
real scalar and vector optical potentials. Crude calcu-
lations [7] of quasielastic (p, n) spin observables at 500
MeV, as well as various theoretical arguments [13] sup-
port the pseudovector form . At this stage, however, no
overwhelming experimental evidence seems to clearly re-
solve this ambiguity and hence it is one of the aims of this
paper to use the HLF model to investigate this through
quasielastic proton-nucleus scattering.

Previously [7] the transition from a pseudoscalar to a
pseudovector mN coupling was made by making the fol-
lowing substitutions (referred to as method A) in Table I:

qg '7 '75
Ap, ——P5mA„

2m

where q~ is the four-momentum transfer. For free Dirac
spinors this implies that matrix elements implicitly con-
tained in Eq. (3) yield
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(Ui ~po Ui) (U2~ o U2) (Ui pa Ui) (U2~pg U2) ) (9)

thus giving the same &ee NN data. In a nuclear medium,
the corresponding equality is

(U, A„'„U,")(U2A„„U2 )

= M,*M2 (U, A, Ui ) (U2A„, U2 ), (10)

such that the pseudoscalar and pseudovector forms dif-
fer by a factor Mi M2 (recall that M' = m'/m). This
procedure does not explicitly incorporate the meson me-
diators of the NN force, such as the long range pions,
for example, and hence method A is a fairly crude way
of treating the different "pion" couplings. In this case,
however, the relativistic NN amplitudes are calculated
via a relation to a Wolfenstein-type parametrization of
the Amdt phase shifts.

A more appropriate way would be to use the HLF
model where the direct invariants in Eqs. (7) can be ex-
pressed as linear combinations of the five exchange invari-
ants via the Fierz matrix, such that the exchange terms
&om "pion" can contribute to each type of invariant. For
the HLF model the transition &om a pseudoscalar to a
pseudovector xN vertex is made by performing the fol-
lowing substitution (referred to as method B) in all direct
and exchange terms in Eq. (4) containing the "pion":

g ~g M~M2.

In Sec. III the sensitivity of the spin observables is investi-
gated and compared with respect to the use of methods
A and B for implementing the pseudoscalar and pseu-
dovector forms of the AN coupling.

The HLF also allows one to consider corrections to the
RPWIA due to explicit treatments of exchange. It has
been reported [2] that calculations of elastic scattering
spin observables at laboratory energies of 500 MeV and
higher seem to indicate that exchange contributions are
not significant. However, Ref. [18] claims that a proper
treatment of exchange is crucial for predicting elastic
scattering spin observables at large angles and/or low
energies. Hence the effect of exchange needs to be stud-
ied for quasielastic proton-nucleus scattering, and hence
is investigated in Sec. III for laboratory energies in the
135 to 500 MeV range. Due to the complexity of ex-
pressions for the spin observables, it is not obvious as to
how they are affected by the inclusion of exchange affects.
However, at least one can comment on the behavior of
individual exchange terms in Eq. (7). The direct and ex-
change four-momentum transfers, q and Q, are related
by [11]

q +Q =T~ m/2,

which means that, for q fixedas Tg+, is lowered, Q2 de-
creases resulting in an increase in the individual exchange
terms in Eq. (7) (with q replaced by Q). Similarly, as Tl
increases, Q increases such that the individual exchange
terms become negligible relative to the corresponding di-
rect terms. The manifestation of these effects in the spin
observables will be considered in Sec. III.

As published HLF parameters exist unfortunately only
at the few Tj b values of 135, 200, 300, and 400 MeV [11],
we employed for the present calculations the HLF param-
eter set associated with the values of T& closest to the
present incident laboratory energy values. For compar-
ative reasons, the same procedure has been followed for
calculations based on method A.

Section III presents calculations based on methods A
and B for pseudoscalar and pseudovector forms of the
mN vertex.

III. RESULTS

In this section results are presented for quasielastic
spin observables using the RPWIA of Sec. II. Calcu-
lations are performed for inclusive (p, p') scattering from
nuclei in the range C to Fe and at incident laboratory
energies ranging &om 135 to 420 MeV. At each energy,
the scattering angle was chosen to correspond to a labo-
ratory momentum transfer of 1.97 fm in the &ee NN
frame, such that the quasielastic peak is centered at ~ =
80 MeV for all incident energies (these angles range from
20' to 50'). The momentum transfer and incident en-
ergies were chosen so as to correspond to complete sets
of quasielastic spin observable data on 0 and C at
420 MeV and i2C at 290 MeV [18] and also due to the
availability of HLF parameters at approximately these
incident energies.

The first four subsections are devoted to sensitivity
studies of the spin observables with respect to different
effective masses, different forms of the relativistic NN
amplitudes, relativistic effects, and exchange effects. The
results of the spin observables will be presented in graph-
ical form to highlight the specific tendency in each of the
subsections. Each figure will be a set of six graphs for
the six independent spin observables D; z, respectively,
all on the same scale. Note that in Figs. 1 to 5 the plot
characters refer to our calculated values and the solid and
dashed lines serve only to guide the eye along a particu-
lar calculated data set. Although these graphs speak for
themselves, a few comments will be made in each subsec-
tion.

A. Sensitivity to different efFective masses

According to Table II, the largest differences between
the new effective masses (Msc and Mcp) and the original
effective masses (M&M) appear for Fe at 290 MeV [19].
Consequently, the sensitivity of the spin observables was
investigated for this extreme case, for which ~q~ =1.36
fm (scattering angle —20'). The results, in terms of
the spin observables calculated for the centroid of the
quasielastic peak, are shown in Table III. Although not
displayed, the similar values for Ms& and M&p in Table II
yield practically identical spin observables. The spin ob-
servables based on Ms& show differences of up to 30'Fo

compared to calculations using M&M, the most sensitive
observables being D, , and A„and the least sensitive
D~, . These large variations illustrate the importance of
using more refined calculations of the effective masses.
Consequently, from now on all calculations will use the
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EfFective
masses

M
MHM

Msc
Mcp

0.418
0.317
0.278
0.280

D„„
0.602
0.582
0.550
0.546

0.105
0.366
0.459
0.454

0.140
0.232
0.249
0.244

0.207
0.347
0.319
0.310

0.194
0.394
0.392
0.383

TABLE III. Values of the spin observables at the centroid
of the qussielsstic peak (u = q /2M), for inclusive Fe(p, p')
Tj b ——290 MeV at momentum transfer of 1.36 fm, for dif-
ferent values of the effective masses in Table I.
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new, more refined, Ms& values (now denoted by only M')
in Table II.

B. Sensitivity to difFerent forms
of the NN amplitudes

In this subsection we use and compare both methods
A and B, discussed in Sec. IID, to investigate the sen-
sitivity of the spin observables at the centroid of the
quasielastic peak to both pseudoscalar and pseudovec-
tor choices of the "pion". Here and in Secs. IIIC and
III D, we employ Ca as the scatterer nucleus, being the
nucleus formerly best studied, for investigating overall
trends in spin observables. We introduce DP (M') and
DPv(M') to refer to spin observables calculated by using
respectively a pseudoscalar (PS) or a pseudovector (PV)
coupling for the "pion", both calculated with an effective
mass M'. lt is obvious from Eq. (10) for method A and
Eq. (11) for method B that calculations based on PS(M)
and PV(M) treatments of the pion yield identical spin
observables. Hence only D,-, (M)-based results will be
quoted when necessary.

We now proceed to show the importance of using the
HLF model (method B), as opposed to method A, when
investigating the sensitivity of the observables to difFerent
forms of the pseudoscalar amplitude, especially at low en-
ergies. Figure 3 compares for all spin observables D; z the
values of ~D;, (M*) —DP (M')~ calculated by method
A (dashed lines) and method B (solid lines). Values
of the statistical experimental errors are typically about
6 0.03 [18], therefore a spin observable can be classified
as being sensitive to the form of the xN vertex only if
~DPv(M') —DPs(M')

~

is significantly larger th n 0.06.
At energies lower than 200 MeV, D„~ is the most sen-

sitive observable to the ~D;, . (M') —D;, (M*)~ values,
as calculated by method B. However, for method A this
observable shows minimum sensitivity to this value. A
similar tendency, although to a smaller extent, is exhib-
ited by D~, . This illustrates the importance of using the
more appropriate HLF model (method B), instead of the
crude method A. However, at these low energies the re-
maining spin observables show hardly any sensitivity to
the PS versus PV ambiguity for both methods A and B,
which justifies the use of only the more crude method A
for these spin observables.

At energies higher than 200 MeV, the spin observables
D „and Di i are sensitive to the values of ~D, , - (M')—

FIG. 3. The difFerence, ~D i (M') —D;i (M')~, between
the spin transfer observables D,i~ calculated with a pseu-
dovector (PV) snd s pseudoscslsr (PS) term in the NN in-
teraction, respectively, as a function of laboratory energy and
at the quasielastic peak. The crosses represent calculations
based on method A (relativistic psrsmetrizstion of Amdt
phases) whereas the open circles sre calculated using method
B (HLF model). The solid snd dashed lines serve merely to
guide the eye.

DP (M') ~, as predicted by both methods A and B, al-
though the sensitivity of D„~„becomes less enhanced.
All the other observables are, however, insensitive to this
PS(M') versus PV(M') ambiguity.

C. Sensitivity to relativistic efFects

In this investigation, we keep the form of the m N ver-
tex fixed, say PS(M'), and study the difference between
efFective mass and free mass calculations. Figure 4 dis-

plays the energy variation of ~D;, (M') —DPs(M)
~

values
which serves at present as a measure of the sensitivity
to relativity of the specific spin observable D; z. These
~DP, (M*) —DP. (M) ~

values have been calculated using

only method B. (In principle method A should yield
identical results for pseudoscalar calculations. ) At all
energies, the observable D,i, exhibits clearly the high-
est sensitivity to relativity and this effect even increases
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FIG. 4. The same as for Fig. 3, except that here the value
of ID; (M') —D, , (M)~ is plotted, using only method B
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towards the lower energies. At low energies D~i, also
shows a considerable relativistic sensitivity but, surpris-
ingly, the analyzing power shows hardly any effect, de-
spite its significant relativistic effects at high energies.
All the other spin observables are fairly insensitive to
relativistic effects.

D. The effects of exchange

As already mentioned in Sec. II D, at lower energies ex-
change contributions could become important to the NN
amplitudes. To illustrate the effect of exchange at var-
ious incident energies, calculations using the full direct
plus exchange amplitudes of the HLF model are com-
pared to those where the exchange contribution is com-
pletely ignored. Figure 5 illustrates the absolute differ-
ences between the latter calculations. Note that for this
exercise we chose the PS(M') form of the aN vertex; a
PV(M*) choice leads to similar differences. We see that
at lower energies the exchange contributions to the am-
plitudes generally become important; in particular, D, ~

and D~ ~ start showing extreme sensitivity to exchange
effects. This illustrates the importance of using the HLF
model at low energies, as opposed to the Wolfenstein-type
parametrizations which cannot separate the NN ampli-
tudes into direct and exchange parts.

= 420 and 290 MeV respectively, and include spin-orbit
distortions. The solid lines represent the free mass cal-
culation whereas the dotted and dashed lines represent
respectively the relativistic PS(M*) and PV(M*) results
using effective masses &om Table II. Note ft..om Fig. 3
that, at these high energies, relativistic results of the HLF
model (method B) and those related to Wolfenstein-type
parametrizations (method A) are very similar. For this
reason and also due to the lack of HLF parameter sets at
most effective laboratory kinetic energies, the use of the
HLF model is not justified; instead we perform calcula-
tions in a manner similar to Ref. [2], i.e. , using method
A and calculating the amplitudes at every value of the
effective laboratory kinetic energy. At 420 MeV (Fig. 6),
D„~„is the most sensitive observable to the PS(M") ver-
sus PV(M') ambiguity. Although the PS(M*)-based cal-
culation seems to be closer to the data, the free mass
prediction definitely favors the data. %ithin the statis-
tical error bars, all the other observables are insensitive
to the form of the xN coupling. None of the predictions
agree with the D, , data. D~ ~ is slightly more favorable
towards relativity. However, D, ~ and D~, are insensi-
tive to any differences between effective mass and &ee
mass predictions. In general one can conclude that, ex-
cept for A„, both relativistic and Bee mass calculations

E. Predictions to data
C(P, p')E, =-42P MeV, 9„,=23

After studying the behavior of the quasielastic spin ob-
servables to the above-mentioned effects at the quasielas-
tic peak, we are in a position to compare calculations to
data and to realize the limitations of the methods used.
Results are compared to data on C at Tj b ——290 and
420 MeV at angles which correspond to a lab momentum
transfer of 1.97 fm in the &ee NN system, in order
to center the quasielastic peak at ~ —80 MeV for both
laboratory energies [19]. The results (using Ms&ceffec-
tive mass values) are displayed in Figs. 6 and 7 for TI b
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FIG. 5. Same as for Fig. 4, except that here the value

,",(M )Full D...(M )Direct
~

is plotted as a closed cir-
cle. The subscript "Direct" refers to calculations where the
exchange terms have been neglected, whereas the subscript
"Full" indicates inclusion of exchange.

FIG. 6. Spin observables for a range of transferred energy
~ over the quasielastic peak for inclusive proton scattering
from C at 420 MeV and Hl b

——23.5 . The centroid of the
quasielastic peak is at u = 80 MeV. Data are from Ref. [18j,
where P and A„refer to induced polarization and analyzing
power, respectively. The solid line represents the free mass
calculation whereas the dotted and dashed lines represent, re-
spectively, the relativistic PS(M') and PV(M') results using
efFective masses from Table II.
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C(p, P')E,=290 MeV, 9„b=29
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FIG. 7. The same as for Fig. 6, except for 290 MeV proton
scattering at 8~ b ——29.5'.

IV. CONCLUSIONS

We finally comment on the sensitivity of the spin ob-
servables to the combination of the above-mentioned ef-
fects. In doing so, spin observables are identified which

do equally well in predicting the data. Both calculations
fail to reproduce D, ,

At 290 MeV (Fig. 7) similar trends exist for A„and
D„„. However, D, , displays a clear free mass efFect
signature, whereas Dpi definitely favors a PS(M')-based
relativistic calculation. For D,Ii both the PS(M)- and
the PS(M')-based relativistic calculations do equally
well in reproducing the data. D~~, seems to be slightly
more favorable to a free mass prediction. We also see
that most spin observables correctly predicted at the cen-
troid of the quasielastic peak for 290 and 420 MeV are
fairly well reproduced over most of the u range of the
broad peak, thus emphasizing the validity of the sim-
ple Fermi gas model approach of the nucleus at these
momenta transfer. Whereas at 420 MeV many of the
observables show no preference to the major effects we
presently investigate, some of these observables become
slightly more enhanced to these effects at lower energies.
However, this enhancement is not very drastic and even
at 290 MeV there are still a few observables that remain
insensitive to certain effects. Recall from the preceding
sections that the most suitable laboratory energies to ex-
ploit the sensitivity of the spin observables are 200 MeV
and below. For this reason data at these low energies are
crucial in investigating questions such as relativistic M'
effects and the difFerent forms of the AN vertex.

show enhanced sensitivity to only one of the effects; the
other effects being negligible.

In general we have seen that one must use a model,
such as the HLF model (method B) for the relativistic
NN amplitudes, in order to calculate spin observables
meaningfully at low energies. At high energies methods
A and B yield similar results. Looking globally at the
presently considered forms of the xN vertex in the NN
interaction, the allowance of relativity in the formalism,
the inclusion of exchange, and the effects of spin-orbit
distortions, the following general trends become clear:

At low energies D„~ is by far the most sensitive to
the relativistic PV versus PS form of the pion coupling.
Spin-orbit distortions have no effect on this observable,
and efFective mass versus free mass predictions (with the
xN vertex fixed) are practically the same.

Also at low energies D, , shows enhanced sensitivity
to relativity, whereas it cannot significantly distinguish
between difFerent forms of the pseudoscalar amplitude,
and the effect of spin-orbit distortion is small.

The above-mentioned trends do persist at higher ener-
gies, but are less enhanced against the statistical errors.
At high energies, however, A„ is very sensitive to rela-
tivistic effects, a fact previously established, whereas at
low energies this observable is insensitive to relativity and
to difFerent forms of the m N vertex.

The sensitivity of the spin observables D, ~ and D~ ~ to
exchange at low energies completely overshadows any of
the above-mentioned efFects and thus indicate the impor-
tance of including exchange.

No observable shows enhanced sensitivity with re-
spect to spin-orbit distortions compared to the above-
mentioned efFects. Typically the efFects of spin-orbit dis-
tortions are of the same size if not smaller than the sta-
tistical errors.

Thus, at energies lower than and equal to 200 MeV, we
have established the importance of the quasielastic spin
observables D„~„,D,~„D,~~, and D~~~ in studying rela-
tivity, the medium modified NN interaction, the form of
the vrN vertex, and the importance of exchange. There-
fore, we stress the urgent need for measurements of any
of these observables at low energies in providing guidance
to the understanding of these effects.

Now that we have established the sensitivity of the
quasielastic spin observables to the various effects, one
needs to calculate them quantitatively at low energies.
In order to accomplish this, one requires HLF parame-
ter sets at small intervals of incident beam energies. At
present these parameter sets are being generated by fit-
ting to &ee NN scattering data.

Recently [20) it has been reported, for quasielastic
(p, n) scattering at 290 and 420 MeV, that Az is bet-
ter described nonrelativistically. It would be interesting
to perform more refined relativistic calculations of the
spin observables for quasielastic (J7, n) charge-exchange
reactions at large momentum transfers. Such reactions
are complementary to quasielastic (p, p') reactions in that
they sample only the isovector part of the NN interac-
tion.
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