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A recent article by us [Phys. Rev. C 47, 2604 (1993)] has received criticism by Hamamoto and
Nazarewicz (HN). In what follows we reply to points (a) to (f) raised in their work.

PACS number(s): 21.10.Re, 21.60.Ev

(a), (b) The authors of Ref. [2] say that from their
model in Ref. [3] they get

SHF(M1 '
) ) Sr,E(MI ' ),

in contrast to the conclusion that follows from our model
in Ref. [1]

SHE(M1" ) = Sr,E(M1" ) . (2)

It is not so surprising that both conclusions are diH'er-

ent since they result from diff'erent models. In Ref. [1]
a self-consistent deformed mean Geld is considered, while
in Refs. [2,3] HN study the role of residual (particularly
isovector quadrupole —quadrupole) interactions. As long
as decay strengths into the ground state of high energy
Ml excitations remain an open question, Eqs. (1) and

(2) are nothing more (nor less) than outcomes from differ-
ent models that call for experimental verification. How-
ever, it should be pointed out that (i) recent microscopic
(QRPA) calculations [4] that take into account residual
interactions and that implement the self-consistency of
the mean field support our result in Eq. (2), (ii) the HN
model gives much larger values for Sr,E [see Eqs. (3) and

(4) in Ref. [2]] than the experimental ones, even for small

values of deformation [see Table I of Ref. [1]].
Residual interactions are important to get the details

of individual M 1 excitations in agreement with experi-
ment, but the choice of the residual interactions and of
the valence space is not free from ambiguities and the
magnitude of the LEWSR for magnetic excitations de-
pends much on this choice. For the evaluation of the
LE ]A'SR this dependence can in principle be avoided on
the basis of Thouless theorem [5], according to which only
knowledge of the Hartree-Fock ground state is needed to
compute LEWSR's for RPA excitations. This is the es-
sential assumption underlying the approach taken in Ref.
[1], and particularly in Secs. III and IV, where we ex-

separates into a collective and an intrinsic operator. The
collective operator must be

plQQi g~ L (4)

with L = P, l;, the total orbital angular momentum op-
erator that contributes only to static magnetic moments
of the band, not to excitations. Therefore the intrinsic
operator must be

orb orb orb
Pint —P l col

= ) (gi —gii)l, = (1 —gJt)L —ggL„,

ploited the properties following from the self-consistency
of the mean Geld and the well-known phenomenology of
rotational ground-state bands to derive a semiempirical
equation [Eq. (37)] relating low-lying Ml and E2 exci-
tations.

(c) The reason why gR should appear in Eq (14. ) of
Ref. [1] comes from the separation between intrinsic and
collective degrees of freedom (see, for instance, Ref [6]). .
In the model considered in Secs. III and IV there is no
separation into valence and core particles; in principle,
all particles are allowed to contribute to orbital MI ex-
citations and to the collective rotation, but there is sep-
aration between collective and intrinsic wave functions
(D matrix and Slater determinant) and the correspond-
ing separation for operators. This is why we have to use
the intrinsic orbital Ml operator given in Eq. (14) to re-
move ihe spurious rotation. This was already explained
in Ref. [1] where we discussed the analogy with the ef-
fective charges for electric dipole excitations.

That Eq. (14) is the proper operator to be used in our
model can be shown in any microscopic theory of the col-
lective modes such as projected Hartree-Pock or variation
after projection [6]. The simplest intuitive argument to
derive Eq. (14) is that the orbital Ml operator

) gal~

We note that there is a misprint in the list of experimental
references under Table I in Ref. [1]: In "d," Ref. [3] should
read Ref. [23].

which gives back Eq. (14) of Ref. [1] (bare gi values are
used). Within the projected Hartree-Fock approxima-
tion one can show that using this operator is equivalent
to orthogonalization of the M 1 excitations to the spu-
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rious rotational mode, with the collective gyromagnetic
ratio given by a microscopic expression (g~ = P /J'
(L2)/(Lz}) [6,7]. This equation has the right limit when

g~——0, and only becomes purely isovector when g~ ——2,
as it should. The limit g~ = 0 corresponds to no collec-
tive rotational mode (no ground-state rotational band)
and therefore Eq. (5) goes into Eq. (3) as it should. The
reason why y, '" is often replaced by 2 (L —L„) is that
in the scheme of residual interactions, as that discussed
in Sec. II of Ref. [1] (see also Ref. [11]), the residual
interaction commutes with the isoscalar part of gs, and
therefore only the isovector part of p, ' contributes to
the LEWSR.

(d) The sum B(M1 '
) value of the low frequency

modes in the deformed H.O. model is linearly propor-
tional to the deformation when pairing is neglected [8,9).
When pairing is taken into account, a b2 dependence of
the Ml strengths at low energy is obtained [9]. However,

this does not enter in contradiction with what we say in
Ref. [1], nor does it invalidate our results there. It only
means that the non-energy-weighted sum rule depends
strongly on pairing, while, as already stated in Ref. [1],
the LEWSR is not modified by explicitly including the
pairing interaction between like particles because this in-

teraction commutes with the orbital Ml operator. There
is no contradiction between our model and experimental
facts, and Table I of Ref. [1] shows, indeed, that the
phenomenological expression we derive for SLE(M1 '

)
[Eq. (37) of Ref. [1], which goes beyond the H. O. model]
describes quite nicely the experimental facts for all de-

formed isotopes for which the relevant experimental in-

formation is available.

(e) Within the scheme of Secs. III and IV of Ref. [1],
removal of spurious contributions is taken care of by the
use of the intrinsic operator. See Ref. [1) and our discus-
sion in point (c) above.

(f) We agree with the two first sentences of this para-
graph in Ref. [2]. This is why, as clearly stated in Ref.

[1], we used the deformed H.O. model as a guideline to
derive new relations between different observables that
allow us to arrive at our final expression in Eq. (37) (see
Sec. IV of Ref. [1]), instead of stopping at Eq. (16)
and using the model in a conventional way. For instance,
we avoided using gR = Z/A, 8 /8 = 1, and other sim-

ilar approximations that are &equently used, which are
in most cases quite unrealistic and do not strictly follow
from our model. As clearly stated in Ref. [1], our ba-
sic approach in this respect is to consider the quantities
Z,-, cu; as effective quantum numbers and H.O. frequen-
cies corresponding to the expectation values of the ob-
servables in the true intrinsic ground state. This allows

us to replace said quantities (or combinations of them) by
the magnitudes corresponding to known properties of the
ground-state band. Most of the remarks made in para-
graph (f) of Ref. [2] are explicitly or implicitly taken into
account in Ref. [1]. It should be understood that we are
not discussing spin excitations in this paper and, indeed,
the experimentalists take pains to isolate the orbital from
the spin strength by exciting the Ml modes with both
electrons and protons. We have discussed spin contribu-
tions in other works [10—12]. As already stated in point

(d) above and in Ref. [1],the pairing interaction between
like nucleons commutes with p, '; it does not affect the
LEWSR, nor is it expected to change drastically the re-
lationship in Eq. (2). Likewise, high j components are
expected to affect the detailed Ml strength distribution
(i.e. , the individual excitations) more than the LEWSR.
In any case pairing, high j components, etc. , affect both
the orbital M1 excitations and the magnitudes appear-
ing in the right-hand side of Eq. (37) of [1]. Hence, to
the extent that the self-consistency of the mean field is

properly implemented, such effects can be expected to be
approximately taken care of by Eq. (37) in [1]. Prom the
above arguments, one may also extract a rationale for
the good agreement of this equation with the experiment
seen in Table I of [1].

In summary, most of the issues raised by HN are an-
swered by looking at Ref. [1] and at previous publica-
tions by us (see, in particular, Refs. [7] and [9]—[11]).
The main physics we are trying to convey in Ref. [1] is
that there exist collective orbital modes in nuclei, whose
identity is not destroyed by the various residual interac-
tions and single particle energy splittings. We believe this
is the central point, that also emerges from microscopic
calculations [9—11], concerning the existence of scissors
modes. We did not intend to imply that the H.O. model
is by itself sufficient to study the richness of Ml strength
functions (which would be quite unrealistic). We close
by noting that the fundamental difference between our
approach and that of Hamamoto and Nazarewicz [2,3]
can be summarized as follows. They emphasize the role
of residual interactions and use schematic interactions to
do detailed calculations of magnetic dipole excitations.
We, on the other hand, emphasize the role of the self-
consistency of the mean field and use a schematic ap-
proach to unearth the nature of collectivity. By show-

ing that the double commutator of the orbital magnetic
dipole operator with the quadrupole operator gives us
back the quadrupole operator, we are able to establish a
clear-cut connection between B(M1) and B(E2).
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