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Klein-Garden versus relativistic Schrodinger equations in pion-nucleus scattering
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The relativistic Schrodinger equation and the Klein-Gordon equation for an optical potential
for pion scattering are investigated in the resonance energy region and at higher energies. Previous
calculations showed that the two equations give nearly the same results with the difFerence decreasing
with increasing energy. We 6nd a substantial difFerence between the two approaches for sr+ on

Ca at 180 MeV. This difference persists even at 500 MeV. The difference is partly due to the
difFerent ofF-shell behaviors and partly due to the difFerent propagators used. At small angles in
the resonance region, the difference can be understood as an energy shift at which the two-body t
matrix is evaluated or as a difFerent range of the two-body interaction.

PACS number(s): 24.10.3v, 25.80.Dj, 24.10.Ht

Relativistic pion-nucleus scattering has been cal-
culated by using an optical potential in both the
Klein-Gordon equation (KGE) [1] and the relativistic
Schrodinger equation (RSE) [2]. Previously, the results
of using these two different approaches have been nearly
the same when using a factorized approximation to the
optical potential for pion energies in the resonance region
[3,4]. We show that when the Fermi integral is performed
the two approaches give a diferent result, not only in the
resonance region, but for energies as high as 500 MeU. At
180 MeV, the diferent oE-shell behaviors and the difFer-

ent propagators used give rise to the observed differences
found in the differential cross sections. At small angles
at resonance energies, this diBerence can be understood
as a shift in the energy at which one evaluates the vr-Nt
matrix or as a change in the effective range of the vr-N

interaction in the P33 channel. At 500 MeU, the dif-
ferent ofF-shell behavior is primarily responsible for the
observed difference.

We examine the scattering of sr+ on Ca at 180, 292.5,
and 500 MeV. These calculations are made by using a
first order optical potential that is generated by perform-
ing the Fermi integral. This is the main diH'erence to
earlier calculations. This optical potential is then used
in solving the RSE and the KGE. The impulse approxi-
mations is used for consistency with previous results.

To see the connection between the KGE and the RSE
we follow 3ohnson and Ernst [3]. In their notation, the
KGE for an optical potential can be written as
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into Eq. (1) we find
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This is the RSE for an optical potential.
We can see that the two equations are the same ex-

cept for the second term in Eq. (2). The RSE has only
intermediate pions that propagate forward in time while
the KGE has in addition pions propagating backward in
time. The second term in Eq. (2) gives rise to these pi-
ons and thus to crossing in the KGE. In the static limit,
this crossing symmetry is maintained in the KGE if it is
in the two-body input [5].

The second element that is changed between the two
equations is the off-shell behavior. For the KGE we use
a Chew-I ow behavior which is consistent with the field
theoretic nature of the KGE. For the RSE we use the sep-
arable potential behavior which is consistent with the po-
tential approach used in the RSE. These are the preferred
options for the respective equations [6,7] being the con-
sistent o8'-shell behavior for the propagators used. The
separable potential form factors are given by
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By dropping the second term and making the substitu-
tions

where the Green's function operates between the optical
potential U and the wave function @. The propagator
can be decomposed by rewriting it as

(6)

vci. (k) = ~ i (k)vsp (k).

The optical potential is written as [8]

(7)

The Chew-Low vertex functions are related to the sepa-
rable potential form factors by [6,11]
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Equation (8) is written in a three-body formalism where
particles 1, 2, and 3, are the pion, the nucleon in the
A-nucleon target, and the residual A —1 nucleon core,
respectfully. t(E) is the two-body pion-nucleon t matrix
and 4' and 4' are the nucleon wave function before and
after the nucleon interacts with the pion. The nucleons
in the nucleus are summed over and o,3 denotes a set of
quantum numbers that label the nucleons.

Earlier works used the factorized approximation to
Eq. (8) above. This can be found by taking the t matrix
in the integral, evaluating it at some energy, and pulling
it out. The remaining integral then gives the density
of the protons and neutrons. This approximation for the
optical potential can be written in the simpler form [9,10]

(P" I&(&)IP ) = s (~)(P'lt- (E)IP )
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where the subscripts p and n refer to the protons and
neutrons. p is the density of the protons and neutrons,
and q is introduced remind us that these densities are in
momentum space.

We use a modi6ed version of the computer code
ROMPIN [7] to make our calculations. The results of 180
MeV x+ scattering &om 40Ca are shown in Fig. 1. In
the 6gure the solid curve is the result for RSE while the
dash-dotted curve is the result for the KGE. The differ-
ences are substantial when compared to the results of
Johnson and Ernst [3] at resonance. These differences
are larger variations in the depths of the minimum and a
change in the location of the minimum. Because the two-
body amplitude is varying rapidly in this energy region, a
shift in the energy at which the vr-Nt matrix is evaluated
can lead to substantial changes in the differential cross
sections. We investigate this difference between the two
approaches by adjusting the energy of the reaction and
looking for the largest 6rst minimum in the differential

cross section. In this way we can determine the energy
at which the two-body t matrix is evaluated at the P33
resonance. This is possible because we are scattering in
the resonance region and the P33 resonance dominates
the scattering [9]. For the KGE the minimum is found
at 119 MeV while for the RSE it is at 135 MeV. This
gives a difference of 16 MeV. We can conclude that in
the calculations of the KGB and the RSE at 180 MeV,
the two-body t matrices were evaluated at energies that
differed by approximately 16 MeV. Such an energy shift
can account for the observed differences in the calculated
cross section.

We can also adjust the range in the two-body form
factor. This can have a large affect on the differential
cross sections [12]. By adjusting the range from the mod-
eled value of 978 MeV [13,6] in the Pss channel, to 350
MeV for the KGE, we get the dashed curve in Fig. 1.
The agreement is almost exact at the 6rst minimum and
gradually becomes worse as the angles increase. Thus,
the KGE calculation has the affect of lengthening the
effective range of the x Nintera-ction (shorter range in
configuration space) when compared to the RSE. This in-
crease in the effective range of the vr-N interaction would
make little difference in the differential cross sections at
this energy when the factorized approximation is used
[14]. It was not possible to adjust the range in the RSE
to reproduce the KGE results. The range was increased
until the point source limit was reached. Even in this
limit, the original KGE results could not be reproduced
by the RSE.

To further investigate the source of the difference be-
tween the two approaches, we ran the KGE with the sep-
arable potential off-shell behavior and the RSE with the
Chew-Low behavior. In Figs. 2 and 3 we see the results
for these calculations compared to the earlier results. No
data were plotted for clarity of the curves. In Fig. 2
we see in the 6rst minimum that the large difference be-
tween the KGE calculation and the RSE calculation was
due, primarily, to the off-shell behavior. The four curves
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FIG. 1. The differential cross section for the
Ca(ss+, m+) Ca reaction at 180 MeV. The solid curve is

the RSE calculation, the dash-dotted curve is the KGE cal-
culation, and the dotted curve is the KGE with the reduced
range of the interaction. The data are from Ref. [16].
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FIG. 2. The differential cross section for the
Ca(ss'+, ss+) Ca reaction at 180 MeV. The solid curve is

the standard KGE calculation (Chew-Low off-shell), the dot-
ted curve is for the RSE with the Chew-Low off-shell behavior,
the dash-dotted curve is the standard RSE calculation (sepa-
rable ofF-shell), and the short dashed curve is the KGE with
the separable off-shell behavior. No data are shown for clarity
of the curves.
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FIG. 3. Same as for Fig. 2 except the scattering angles are
from 120' to 180'.

FIG. 5. Same as for Fig. 4 except the scattering angles are
from 120' to 180'.
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plotted break into two pairs, one pair for the Chew-Low
option and the other for the separable potential option.
While this can be clearly seen in the first minimum, the
curves do not decompose in the second minimum. Thus,
at small angles, the off-shell behavior is the most impor-
tant factor in determining the differences observed in the
differential cross sections. In Fig. 3, the situation is quite
different. Looking at the last minimum in the differential
cross section, we see that the four curves have split into
two pairs by the equation that was solved, that is, by the
propagator used. The two KGE calculations are closer to-
gether and the two RSE calculations are closer together.
Thus, at large angles, the equation solved would seem to
have more of an inHuence on the differential cross sections
than the off-shell behavior. Since the KGE used contains
crossing, this symmetry has a large enough inHuence that
it should not be ignored. Even at these large angles, the
inHuence of the off-shell option can be seen in the overall
shape of the differential cross sections.

As we increase the energy, above resonance, we would
expect the two calculations to agree. In Fig. 4 we see
that at 292.5 MeV the two calculations still do not agree
although the difference is less than that at 180 MeV. The
interplay of the propagator and the off-shell behavior is
still very complex at this energy. This can be seen in
Fig. 5 where at the minimum near 125' the four curves

group into pairs by which propagator is used while at the
minimum near 169 the four curves split into pairs by
which off-shell behavior is used. In Fig. 5 we can also see
that there is still a rather large difference between the two
calculations that is not so obvious on a semilogarithmic
plot at forward angles. This difference persists to higher
energies. At 500 MeV, we can see a substantial difference
between the two calculations in Fig. 6. The Beld theoretic
calculation is almost a factor of 2 larger at all angles
[15]. Once again we performed calculations using the
separable potential off-shell behavior with the KGE and
using the Chew-Low off-shell behavior with the RSE. It
is found that at this high energy, the difference between
the two curves is dominated by the off-shell behavior with
only a small difference from the propagator used. Very
similar results were found for 400 MeV as well. For this
reason, we may expect this difference between the two
calculations to continue at even higher energies.

We conclude that the field theoretic off-shell behavior
and crossing symmetry found in the KGE are important
in the resonance region when the Fermi integral is per-
formed. This is contrary to earlier results that relied on
the factorized approximation to the Fermi integral and
found close agreement between the two equations near
resonance. The use of the RSE, which does not include
this symmetry and has a separable potential off-shell be-
havior, is inadequate in the resonance region. At small
angles, the off-shell behavior dominates the differences
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FIG. 4. The differential cross section for the
Ca(sr+, 7r+) Ca reaction at 292.5 MeV. The solid curve is

the RSE calculation; the dash-dotted curve is the KGE cal-
culation. The data are from Ref. [16].
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FIG. 6. Same as for Fig. 4 except for 500 MeV.
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between the two approaches. This would be due to cal-
culating the Fermi integral in determining the optical
potential which magni6es the differences in the off-shell
options. For consistency, one should use the Chew-Low
options with the KGE and the separable potential with
the RSE. At small angles, this difference can be under-
stood as an effect energy shift of 16 MeV of the evaluation
of the two-body t matrix. It can also be understood as
an effective increase in the range of the interaction in the
P33 channel, in the KGE, &om 350 to 978 MeV. The RSE
could not be adjusted in a simple way to account for its
difference with the KGE.

At high energies, the difFerence between the two cal-
culations was primarily due to the two difFerent off-shell
behaviors used. At energies as high as 500 MeV the dif-
ference was still almost a factor of 2 at all angles [15). It
would appear &om these calculations that the two dif-

ferent approaches will not agree at high energies, when
the Fermi integral is performed. It would be incorrect to
infer that one could use the field theoretic off-shell behav-
ior with the RSE in order to improve its accuracy since
such a calculation would be inconsistent. One should
be aware of this difference when performing high energy
calculations. The author feels that the difference is large
enough that only the Klein-Gordon equations should be
used even at high energies when the Fermi integral is cal-
culated to 6nd the optical potential.
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