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Algebraic scattering theory is developed and the usual algebraic “potential parameters” are shown
to involve a second approximation to that by which the non-Coulombic interactions modify the exact
S functions found by Euclidean connections of the SO(3,N) group algebras. Elastic scattering data
(cross sections) from heavy ion collisions, typical of most and epitomized by strong absorption, lead
to algebraic potential parameters that can be described by simple exponential forms.

PACS number(s): 11.55.—m, 25.70.Bc

Recent studies [1-4] have considered a group theo-
retic approach to the analysis of scattering of heavy ions.
The groups SO(3,N) for N = 1,2 are particularly inter-
esting in that context since the dynamical symmetries
inherent within them yield S functions that equate to
quantum scattering from (modified) Coulomb potentials.
Quantum scattering that is dominated by Coulomb ef-
fects might then be treated by postulating algebraic “po-
tential parameters”! to modify the arguments of the S-
function forms from those of the exact realizations of the
SO(3,N) groups. The scattering of two heavy nuclear
ions is such a suitable system as, in general, it is strongly
absorptive in character. Indeed for kinetic energies in
excess of 10-20 MeV /nucleon the scattering is usually
so strongly absorptive that the process is quite periph-
eral and the Coulomb interaction dominates any hadronic
term. For lower energies the “classical” turning radius is
well outside the summed nuclear radii and Coulomb scat-
tering again dominates the elastic events. In both cir-
cumstances only large angular momentum channels are
essential to explain observed data.

Algebraic scattering theory for the elastic collision of
two heavy ions having atomic numbers Z; and Z, and
reduced mass p gives algebraic S functions in terms of
algebraic Jost functions A; by

si(k) = (-t (1)

wherein k is the wave number. The realization of the
SO(3,1) group determines a recursion relation for these
elements, namely,

!The terminology, “algebraic potential” is a misnomer. The
quantities so classified are all arguments in an expression
for the S function. But the term has been used so fre-
quently that we retain it herein in the form algebraic “po-
tential parameter.”
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where 7 is the Sommerfeld parameter,
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and z;(k) is the algebraic potential parameter caused by
the hadronic interaction between the two heavy ions. To
within a constant phase (which we take as zero) the S
function is then
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For heavy ion scattering so many partial waves are
involved usually that one may consider the S function to
be a continuous function of angular momentum, whence

ds;
Sy ~S+—. 5
141 1+ dl (5)

Then, with the deflection function defined by

_,dinS)

o) =i (6)

the approximation for the (continuous) function [Eq. (5)]
when used with the recurrence result [Eq. (2)] gives

. e+ 1421+

from which one finds the relation

[+ nequ) .
21 = [T@(l) —ml . (8)

In the limit z; — 0, these two equations reduce to
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the result expected for pure Coulomb scattering. The
asymptotic form for z; [Eq. (8)] should be appropriate
therefore in conditions I > 7 > 1.

However, for pure Coulomb scattering or for any alge-
braic potential parameter that is independent of [, the
product form of the S function [Eq. (4)] reduces to the
conventional form

T+ 1+z+in)
Sk = Fr 12— (10)

where I'(z) represents the gamma function. But to use
this form with an algebraic potential parameter that is
dependent upon [ invokes a second approximation to that
of the insertion of an algebraic potential parameter in
the first place. We identify that second approximation
form for the SO(3,1) case by using Eq. (10) with the
substitution

Z[(k) — ’Ul(k) . (11)

To date that form has been used in applications either
with a Woods-Saxon parametric form for v; [1,2] or by
directly matching the algebraic S function to one that
fits the measured cross section. The latter was usually
of the type defined by McIntyre, Wang, and Becker [5],

viz.,
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and
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For large [ values, the McIntyre phase shift is

— I —1

ZiJl(M)l—;—O)o — e)cp(lgA l) +2iuexp( gA’ ) . (14)
But one may anticipate that the form found for v;(k) by
fitting data will be structurally different to that of z;(k)
when Eq. (4) is used to fit the same data. Herein we
consider just what those differences are for typical cases.
For completeness, we also note that a similar reduction
and double approximation gives the SO(3,2) form for the
S function

PEU+2+w+m)] T30 +1 —witin)] i
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(15)

Interest in algebraic potential parameters, and es-
pecially of simple functional forms of them, initially
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FIG. 1. The diverse algebraic potential parameters ob-
tained from fits to the 1449 MeV (left) and 2400 MeV (right)
elastic scattering cross sections of >C from 2°®Pb. The real
and imaginary parts are represented by the solid and dashed
curves, respectively.

stemmed from the expectation that they could be de-
termined from underlying microscopic reaction processes
without recourse to coordinate space interactions [1]. Al-
though the S functions as given in Egs. (10) and (15)
have a compact analytic form, we see from the foregoing
that the S function of Eq. (4) has also that advantage
by being an analytic expression in terms of the deflection
function ©(l). Neverthless, recently, we identified a coor-
dinate space potential corresponding to an algebraic one
by using inverse scattering theory [4]. Only the v;(k) and
wy (k) forms were considered in that study and differences
were found between directly fitted forms (mapped to
Mclntyre functions) and the postulated (Woods-Saxon)
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FIG. 2. The logarithms of the real and imaginary compo-
nents of v; and z; algebraic potential parameters from the
analyses of 12C-2°8Pb scattering. The logarithms of the real
and imaginary components of v, are displayed by the solid
and short dashed curves, respectively, while those of z; are
given by the long dashed and dot-dashed curves, respectively.
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shapes assumed by others. It is worth noting that Amado
and Sparrow [2] studied connections between SO(3,2) al-
gebraic potential parameters w;(k) and coordinate space
ones by means of the eikonal approximation, finding that
if wy(k) — exp (—ul), then V(r) — r~3% exp (—pkr). But
that connection is highly nonlinear save in the periphery,
although Zielke et al. [6] recently have found explicit co-
ordinate realizations of the algebraic Hamiltonians with
general SO(3,2) dynamical symmetry. Likewise, with a
semiclassical approach and the SO(3,1) potential param-
eter v;(k), Hussein, Pato, and Iachello [2] found that an
exponentially decreasing form with ! mapped to an ex-
ponentially decreasing coordinate space interaction.

For the 1449 and 2400 MeV 12C-2%8Pb scattering cross
sections, simple S functions suffice to give excellent fits
to the data. With the MclIntyre form we were able to fit
those cross sections with x? per degree of freedom (x2/F)
of 1.2 — 1.3, signifying a quality fit to the measured val-
ues. Those (McIntyre) S functions and the fits to the
data were given previously [4]. The algebraic potential
parameters obtained by mapping the various forms [Eqs.
(4), (10), and (15)] to the “experimental” S functions
are given in Figs. 1 and 2. [Similar results for z;(k) were
obtained when the total deflection function (nuclear plus
Coulomb) was used in Eq. (8). The imaginary parts are
slightly smaller overall.] Clearly, z(k), vi(k), and w;(k)
for these two cases as shown in Fig. 1 have distinctively
different shapes with I. But one must recall that only

the large ! values (2 200 and 2 250 for 1449 and 2400
MeV, respectively) are of any significance in fitting the
cross-section data. For those angular momentum values
all three algebraic potential parameters are essentially
monotonically decreasing and exponentially so. But each
has a different exponent coefficient. That is evident from
Fig. 2 wherein the logarithms of the separate real and
imaginary parts of the algebraic potential parameters z
and v; are shown. Those results are again smooth and
asymptote to a linear form with large . One may ex-
pect that simple functional forms of these potential pa-
rameters will reproduce the plotted shapes. But it is
to be noted that the large ! values are parallel (real and
imaginary components considered separately) with In(z;)
about twice that of In(w;).

We conclude that algebraic scattering theory, when ap-
plied to the analysis of heavy ion scattering that is char-
acterized by strong absorption, results in smooth expo-
nential forms for the algebraic potential parameters at
the large angular momentum values that are important
so far as fits to the cross-section data are concerned. But
the exponent values are different according to use of the
z1, vy, or w representations. As the latter two result from
a mathematical approximation in addition to the basic
algebraic scattering theory concept, presumably the z
forms should be used and particularly so if an investiga-
tion seeks an underlying theory of the algebraic potential
parameter.
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