Alpha radioactivity above ¹⁰⁰Sn including the decay of ¹⁰⁸I

R. D. Page,¹ P. J. Woods,¹ R. A. Cunningham,² T. Davinson,¹ N. J. Davis,¹ A. N. James,³ K. Livingston,¹ P. J. Sellin,^{1,*} and A. C. Shotter¹

¹Department of Physics, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom

²SERC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom

³Oliver Lodge Laboratory, University of Liverpool, Liverpool L63 3BX, United Kingdom

(Received 11 March 1994)

¹⁰⁸I is confirmed as a predominant alpha particle emitter with an energy of 3947 ± 5 keV and halflife of 36 ± 6 ms. The first observation of alpha decays of ¹⁰⁶Te nuclei produced directly as evaporation residues is reported with a measured energy of 4128 ± 9 keV and a half-life of 60^{+40}_{-20} µs. Alpha decay branching ratios for ¹¹²Xe and ¹⁰⁸Te have been measured from correlations with preceding proton decays as $0.8^{+1.1}_{-0.5}\%$ and $49\pm4\%$, respectively. Improved measurements for the ¹¹²Xe alpha decay energy of 3216 ± 7 keV and the half-life of ¹⁰⁷Te of 3.1 ± 0.1 ms are also reported.

PACS number(s): 21.10.Dr, 21.10.Tg, 23.60.+e, 27.60.+j

Once proton radioactivity is established for a given element it is expected to become increasingly important moving further away from stability, quickly achieving predominance over other decay modes. However, the tentative observation of the alpha decay of the odd-odd nuclide ¹⁰⁸I [1] contradicts this expectation since the neighboring isotope ¹⁰⁹I is a known dominant proton emitter, $t_{1/2} = 100 \pm 5 \ \mu s \ [2,3]$. The apparent predominance of alpha decay by ¹⁰⁸I was attributed to a marked reduction in its Q_p value relative to that of ¹⁰⁹I caused by strong pairing forces between the odd proton and neutron which probably occupy the same orbitals. In this paper we report on experiments to identify the decays of the odd-odd nuclide ¹⁰⁸I and present improved measurements for a number of alpha emitters in the region above the presumed doubly magic nuclide ¹⁰⁰Sn.

In the present experiments, the nuclides of interest were produced in heavy ion fusion-evaporation reactions and separated in flight according to their mass to charge state ratio using the Daresbury Recoil Mass Separator (RMS) [4]. The selected ions were implanted at the RMS focal plane into a 63 μ m thick double-sided silicon strip detector (DSSSD) comprising 48, 300 μ m wide strips on each face which provided position information in two dimensions. The DSSD was used to measure decay particle energies (resolution ≤ 20 keV FWHM) and to correlate causally related events using the (x, y) position information and a time measurement recorded with each event [5].

The nuclide ¹⁰⁸I was searched for in two separate runs, the first of which lasted 15.5 h using a 5 particle nA beam of 255 MeV ⁵⁸Ni ions while in the second run a 3 particle nA ⁵⁸Ni beam at 240 MeV was used for a period of 21.5 h. The target used in both cases was a 500 μ g cm⁻² thick self-supporting foil of isotopically enriched ⁵⁴Fe, so ¹⁰⁸I nuclei would be produced via the p3n evaporation channel. Figure 1 shows an energy spectrum, from the two runs combined, of decay events occurring in the A = 107-108 region of the RMS focal plane within 150 ms of an ion being implanted into the same DSSSD (x, y)pixel. The peak above the ¹⁰⁷Te alpha decay line corresponds to the higher energy line tentatively assigned to the alpha decay of ¹⁰⁸I in Ref. [1]. The total yield of this decay line is ~ 110 counts, corresponding to a cross section of ~ 500 nb in both reactions, assuming a total RMS efficiency of 3% and a combined implantation and detection efficiency of 50% in this experiment. This cross section is consistent with both the expectations for p3nevaporation channels and the previous value. From the present data it was possible to determine for the first

FIG. 1. Energy spectrum of alpha decay events observed in the A=107-108 region of the RMS focal plane which occurred within 150 ms of the implantation of an ion into the same DSSSD pixel. The low energy tails on the peaks is due to radiation damage of the DSSSD caused by evaporation residue implantation during the experiments.

^{*}Present address: Department of Physics, University of Sheffield, Sheffield S37RH, United Kingdom.

time the half-life of this activity, 36 ± 6 ms, which is consistent with the previously reported lower limit of 10 ms [1]. This value is too short for a beta decay process, confirming that it does indeed represent a direct alpha activity and corroborates the earlier interpretation that this peak represents the alpha decay of 108I.

The energy of the ¹⁰⁸I alpha decay line was measured as 3947 ± 5 keV, corresponding to a Q value of 4099 ± 5 keV, based on the energies of the 109 I proton decay line [6,7] and the ^{107,108,109} Te alpha decay lines [7]. Corrections to account for the pulse height defect for alpha particles in silicon [8], the contribution of the recoiling daughter nucleus to the energy signal [9], and the nonlinear response of silicon detectors for low-Z ions [10]have been applied, providing a consistent energy calibration for both protons and alpha particles. The energy determined in the present work is somewhat higher than the value of 3885 ± 25 keV determined previously, which was based on earlier measurements of the energies of the ^{107,109}Te alpha lines by Schardt et al. [11]. However, the energy of these and other alpha decay lines in this region have recently been remeasured with better precision by Heine et al. [7] and a number of discrepancies removed. The remeasurement of the tellurium isotopes' alpha energies accounts for 28 keV of the difference between the two ¹⁰⁸I energy measurements, which are therefore mutually consistent.

A second, weaker peak tentatively identified in the previous experiment at an energy of 3730 ± 25 keV [1] was not observed in either of the present runs. Analysis of the appropriate energy region indicates that the intensity of any lower energy line would be $\leq 13\%$ of that of the higher lying line, approximately a factor of 6 less than previously reported. In the earlier measurement, $\sim 500 \ \mu m$ thick conventional two dimensionally position sensitive detectors were used [12] which were sensitive to background from beta delayed proton activities. These backgrounds are suppressed by the much thinner, highly segmented DSSSDs. Furthermore, energy spectra gated on ~ 100 ms implantation-decay time intervals, such as Fig. 1, could not be generated owing to the inferior position resolution of the detector used in the previous experiment. Hence direct alpha and long-lived beta delayed proton activities could not easily be distinguished and it is likely that the lower lying peak structure arose from a longer-lived beta delayed proton activity, a possibility which was acknowledged in Ref. [1].

In an analysis seeking correlations with ¹⁰⁷Te daughter alpha decays no proton decay branch of ¹⁰⁸I was identified, yielding an upper limit of ~1% for the proton decay branching ratio of ¹⁰⁸I relative to alpha decay. This limit, combined with proton decay half-life calculations, indicates that the proton decay Q value for ¹⁰⁸I is ≤ 600 keV, compared with 820 keV for ¹⁰⁹I. A similar Q_p -value reversal of 153±11 keV has been measured directly for ¹¹²Cs relative to ¹¹³Cs [13].

The alpha decay of ¹⁰⁶Te was identified in the data obtained at the beam energy of 240 MeV. An energy of 4128±9 keV and a half-life of $60^{+40}_{-20}\mu$ s were measured for this activity, both values being consistent with the only other measurement [14]. This represents the first obser-

vation of the decay of this nuclide produced directly as an evaporation residue. From the combined data of both runs an improved half-life of 3.1 ± 0.1 ms was measured for ¹⁰⁷Te alpha decays which is in good agreement with previously reported values [1,11]. Also, correlations of ¹⁰⁹I proton decays with subsequent alpha decays yielded an alpha decay branching ratio of $49\pm4\%$ for ¹⁰⁸Te, which compares with the previous value of $68\pm12\%$ [11].

In a separate experiment, a 3.6 particlenA beam of 259 MeV ⁵⁸Ni ions was used to bombard a 520 $\mu g \, \mathrm{cm}^{-2}$ thick isotopically enriched ⁵⁸Ni target over a period of 27 h. Correlations of ¹¹³Cs proton decays from these data with subsequent alpha decays of ¹¹²Xe and ¹⁰⁸Te yielded an alpha decay branching ratio of $0.8^{+1.1}_{-0.5}$ % for ¹¹²Xe. A corresponding correlation analysis for ¹¹²Cs proton decays and subsequent alpha decays yielded a combined branching ratio for the two ¹¹¹Xe alpha decay lines of 8^{+8}_{-5} %. A more precise energy value of 3216 ± 7 keV was obtained for the ¹¹²Xe decay line. Combining this measurement with the known Q_p -values of ¹¹³Cs and ¹⁰⁹I [6] yields a Q_{α} value of 3483±15 keV for ¹¹³Cs, assuming all decays proceed between nuclear ground states. A limit of $Q_{\alpha} \lesssim 3.94$ MeV is obtained for ¹¹²Cs from its Q_p value [13], the upper Q_p value limit determined for ¹⁰⁸I and the Q_{α} value for the ¹¹¹Xe higher energy line [7], again assuming ground state decays.

An alpha decay branch of 109 I was searched for in all three data sets but no clear evidence for a new peak above 3.32 MeV with a 100 μ s half-life was obtained, leading to an upper limit on the branching ratio of 0.5% which is consistent with the measurements of Berthes [15]. In-

FIG. 2. A comparison of measured alpha decay Q values for neutron deficient tellurium, iodine, xenon, and caesium isotopes with values predicted by Möller and Nix [16] (dashed line), Liran and Zeldes [17] (dotted line), Comay, Kelson, and Zidon [18] (dot-dashed line), and Audi and Wapstra [19] (solid line). Measured Q_{α} values are taken from the present work (filled squares), from Heine *et al.* [7] (open circles), and from Schardt and co-workers [11,14] (open inverted triangles). The open square represents the upper limit on the Q_{α} value of ¹¹²Cs discussed in the text. Error bars are shown for measured Q_{α} values where they are larger than the symbol size.

TABLE I. Summary of alpha decay measurements from this work with additional measurements from references [14,7,11]. Reduced alpha decay widths have been calculated assuming *s*-wave alpha particle emission using the method of Rasmussen [21] and normalized relative to the alpha decay of 212 Po.

Nuclide	Q_{α} value (keV)	Half-life (ms)	Branching ratio (%)	Reduced width
¹⁰⁶ Te	4290±9	0.06 -0.01 a	~100	$\overset{+3.1}{\scriptstyle 6.1\ -1.1}$
¹⁰⁷ Te	4011±5 ^b	$3.1{\pm}0.1$	70±30 °	$1.7{\pm}0.7$
¹⁰⁸ Te	3445 ± 4 ^b	$2100{\pm}100$ ^a	49 ±4	$2.7{\pm}0.3$
¹⁰⁹ Te	$3225{\pm}4$ b	$4100{\pm}200$ ^a	3.9±1.3 °	$3.1{\pm}1.1$
¹⁰⁸ I	4099 ± 5	$36{\pm}6$	$91{\pm}15$ d	$0.25{\pm}0.05$
¹¹⁰ I	3586 ± 5 b	$650{\pm}20$ °	17±4 ª	$1.6{\pm}0.4$
¹¹² Xe	$3335{\pm}7$	$2700{\pm}800$ °	$0.8 \stackrel{+1.1}{_{-0.5}}$	$\overset{+4.7}{3.4}_{-2.5}$

^aReference [14].

^bReference [7].

^cReference [11].

^dThe branching ratio estimated for ¹⁰⁸I assumes a partial beta decay half-life of 400 ms [20].

terpolating between the measured Q_{α} values of 108,110 I suggests $Q_{\alpha}(^{109}$ I) \approx 3.84 MeV, which would correspond to a partial half-life of \sim 200 ms. This would imply a branching ratio \sim 0.05%, which is consistent with the limit deduced above.

The alpha decay Q-value measurements from the present work fit in well with established trends for alpha emitting tellurium, iodine, xenon, and caesium isotopes, which are compared in Fig. 2 with atomic mass predictions. Although the macroscopic-microscopic model of Möller and Nix [16] provides reasonable agreement with measurements for the heavier region of alpha emitters, it overestimates the Q_{α} -values of tellurium isotopes by more than 1 MeV and predicts a faster increase in Q_{α} for iodine, xenon and caesium isotopes moving away from stability than is observed experimentally. The semiempirical shell model mass formula of Liran and Zeldes [17], which also reproduces well the Q_{α} values of heavier alpha emitters, obtains good overall agreement for tellurium isotopes but consistently underpredicts the Q_{α} values of iodine and xenon isotopes by ~ 320 keV. The Garvey-Kelson mass relation based predictions of Comay, Kelson, and Zidon [18] fail to reproduce the measured Qvalue systematics, reflecting the poor extrapolation performance of this type of model. The Q_{α} -value estimates of Audi and Wapstra [19] are based on previous measurements from this region.

Reduced alpha decay widths determined using the new and improved energy, half-life, and branching ratio measurements of this work and the energies of Heine *et al.* [7] are shown in Table I. It is particularly noticeable that the reduced width of 108 I is significantly lower than the other values, perhaps indicating that the alpha particles are not emitted with zero angular momentum. The remaining values are broadly consistent with reduced widths determined for alpha emitters above the N = 82 shell closure.

In conclusion, ¹⁰⁸I has been confirmed as a dominant alpha particle emitter and its half-life has been measured for the first time. This represents the only known instance of a nuclide beyond the threshold for dominant proton radioactivity decaying mainly by alpha particle emission. The energies of ¹⁰⁸I and other activities have been measured with greater precision using a procedure which provides a consistent calibration for both protons and alpha particles. The alpha decay of ¹⁰⁶Te has been confirmed by the first observation of the decays of this nuclide produced directly as an evaporation residue. Alpha branching ratios have been determined for the proton decay daughters ¹⁰⁸Te and, for the first time, ¹¹²Xe and the half-life of ¹⁰⁷Te has been measured with improved precision.

The authors would like to thank the crews at Daresbury for providing the ⁵⁸Ni beams and the laboratory staff for technical assistance. This work has been funded by the United Kingdom Science and Engineering Research Council and K.L. acknowledges additional financial support from Micron Semiconductor Limited.

- R. D. Page, P. J. Woods, S. J. Bennett, M. Freer, B. R. Fulton, R. A. Cunningham, J. Groves, M. A. C. Hotchkis, and A. N. James, Z. Phys. A **338**, 295 (1991).
- [2] P. J. Sellin, P. J. Woods, T. Davinson, N. J. Davis, K. Livingston, R. D. Page, A. C. Shotter, S. Hofmann, and A. N. James, Phys. Rev. C 47, 1933 (1993).
- [3] A. Gillitzer, T. Faestermann, K. Hartel, P. Kienle, and E. Nolte, Z. Phys. A **326**, 107 (1987).
- [4] A. N. James, T. P. Morrison, K. L. Ying, K. A. Connell, H. G. Price, and J. Simpson, Nucl. Instrum. Methods Phys. Res., Sect. A 267, 144 (1988).
- [5] P. J. Sellin, P. J. Woods, D. Branford, T. Davinson, N. J. Davis, D. G. Ireland, K. Livingston, R. D. Page, A. C. Shotter, S. Hofmann, R. A. Hunt, A. N. James, M. A. C. Hotchkis, M. Freer, and S. L. Thomas, Nucl. Instrum. Methods Phys. Res., Sect. A **311**, 217 (1992).

- [6] S. Hofmann, in *Particle Emission From Nuclei*, edited by D. N. Poenaru and M. Ivascu (CRC Press, Boca Raton, FL, 1989), Vol. 2, Chap. 2.
- [7] F. Heine, T. Faestermann, A. Gillitzer, and H. J. Körner, in Proceedings of the Sixth International Conference on Nuclei Far From Stability and the Ninth International Conference on Atomic Masses and Fundamental Constants, Bernkastel-Kues, 1992, edited by R. Neugart and A. Wöhl (Institute of Physics, Bristol, 1992), p. 331; F. Heine, T. Faestermann, A. Gillitzer, J. Homolka, M. Köpf, and W. Wagner, Z. Phys. A 340, 225 (1991).
- [8] G. Paić, K. Kadija, B. Ilijaš, and K. Kovačević, Nucl. Instrum. Methods 188, 119 (1981).
- [9] S. Hofmann, G. Münzenberg, K. Valli, F. Hessberger, J. R. H. Schneider, P. Armbruster, B. Thuma, and Y. Eyal, GSI Scientific Report No. GSI-82-1, 1982, p. 241.
- [10] W. N. Lennard, H. Geissel, K. B. Winterbon, D. Phillips, T. K. Alexander, and J. S. Forster, Nucl. Instrum. Methods Phys. Res., Sect. A 248, 454 (1986).
- [11] D. Schardt, R. Kirchner, O. Klepper, W. Kurcewicz, E. Roeckl, P. Tidemand-Petersson, G. T. Ewan, E. Hagberg, B. Jonson, S. Mattsson, and G. Nyman, Nucl. Phys. A326, 65 (1979).
- [12] P. J. Woods, S. J. Bennett, M. Freer, B. R. Fulton, R.

Page, K. A. Connell, R. A. Cunningham, J. Groves, J. Simpson, A. N. James, M. A. C. Hotchkis, and W. D. M. Rae, Nucl. Instrum. Methods Phys. Res., Sect. A 276, 195 (1989).

- [13] R. D. Page, P. J. Woods, R. A. Cunningham, T. Davinson, N. J. Davis, A. N. James, K. Livingston, P. J. Sellin, and A. C. Shotter, Phys. Rev. Lett. **72**, 1798 (1994).
- [14] D. Schardt, T. Batsch, R. Kirchner, O. Klepper, W. Kurcewicz, E. Roeckl, and P. Tidemand-Petersson, Nucl. Phys. A368, 153 (1981).
- [15] G. Berthes, GSI Scientific Report No. GSI-87-12, 1987.
- [16] P. Möller and J. R. Nix, At. Data Nucl. Data Tables 39, 213 (1988).
- [17] S. Liran and N. Zeldes, At. Data Nucl. Data Tables 17, 431 (1976).
- [18] E. Comay, I. Kelson, and A. Zidon, At. Data Nucl. Data Tables **39**, 235 (1988).
- [19] G. Audi and A. H. Wapstra, Nucl. Phys. A565, 66 (1993).
- [20] M. Hirsch, A. Staudt, K. Muto, and H. V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 53, 165 (1993).
- [21] J. O. Rasmussen, Phys. Rev. 113, 1593 (1959).