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Color transparency in the deuteron
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Quasielastic wide-angle ep scattering on the deuteron, the simplest reaction where color trans-
parency can be investigated, is analyzed on the basis of multiple scattering theory. Color trans-
parency reveals itself as a cancellation of elastic and inelastic shadowing. We calculate the energy
dependence on the color transparency factor and the effects related to the Fermi motion. Extension
of the results on other nuclei is also discussed.

PACS number(s): 13.60.—r, 12.38.+k, 25.30.—c

I. INTRODUCTION

Color transparency means a disappearance of the ini-
tial and final state interactions of hadrons undertaking
hard processes in nuclei, thus being a direct test of /CD
[1,2]. This phenomenon gave rise to a lively discussion
[3—5] which was mainly generated by the data of the BNL
experiment [6] where wide-angle quasielastic pp scatter-
ing on nuclei (Li, C, Al, Cu, Pb) has been measured in the
energy range p = 6—12 GeV/c. This experiment showed a
puzzling behavior of the color transparency factor which
increases in the momentum range 6—10, GeV/c and de-
creases at 12 GeV/c. Further investigations proved that
(i) interference effects are important in the color trans-
parency phenomenon, so it must be treated on a quan-
tum mechanical level [7—10], and (ii) if the quasielastic pp
scattering is considered on the quark level, not only sin-
gle hard scattering [11,12] should be taken into account
but the Landshoff multiple scattering as well [13] (see the
discussion in Refs. [5,7,14]).

Wide-angle pp scattering data [6] were described quan-
titatively in Ref. [14] with the use of two mechanisms for
the hard pp scattering: single hard scattering and Land-
shofF multiple one. Soft rescatterings were considered
on the basis of the color screening phenomenon [15—17]:
The gluon structure of the Pomeron [18] and its "small
size" [19,20] allow one to formulate the concept of color
screening in the language of Reggeon exchanges [21,22].

In order to interact weakly with nuclear matter the
struck hadron configuration should have a size r„much
smaller than the hadron one Rh g, „. The estimates of
r„m de ain the analysis of soft hadron interactions [22]
and in wide-angle quasielastic pp scattering [14] prove
that r2, R2h &, „/10. The corresponding momentum
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transfer squared is of the order of Q2 3—5 GeV~. Color
transparency should appear in a single hard scattering
just at such momentum transfers. However, there is one
more parameter which governs the onset of color trans-
parency, namely, the hadron energy before or after the
hard interaction. Color transparency is sw'itched on grad-
ually with the increase of energy, in direct relation with
the growth of inelastic rescatterings of the struck hadron.
The problem of formation of hadron states involved in
inelastic rescatterings is central for the occurrence of
color transparency (for example, see the discussion in
Refs. [23,24]). However, the mechanism of the transition
&om Glauber attenuation to color transparency was not
yet clarified and for this end the language of hadron in-
teractions and Reggeon exchanges, provided that color
screening efFects are taken into account, is expected to
be helpful.

This paper is devoted to the study of color trans-
parency with the use of a deuteron as the simplest ex-
ample. In the process of deuteron electrodisintegration
at large Q, p' + d ~ p + n, all typical features of the
color transparency phenomenon should reveal themselves
in a rather simplified form. On the other hand, the tech-
nique of computation of hadron rescatterings is not too
cnmbersome. Therefore this example allows us to clar-
ify some dark points: In particular, we shall analyze the
role of inelastic shadowing and Fermi motion of nucleons
in the formation of color transparency. To this end spin
variables are not important and we neglect them. (The
inclusion of spin variables needs a relativistic general-
ization of the deuteron wave function: see, for example,
Ref. [25].)

In Sec. II the formulas for the deuteron disintegration
amplitude are written, elastic and inelastic rescatterings
being taken into account. Relying upon the idea of color
transparency, we present the sum rule for this amplitude
which provides a relation between shadowing and anti-
shadowing contributions.

The inelastic shadowing amplitude depends on the ef-
fective mass I of the particles produced in the interme-
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diate state. At large M the M dependence of this ampli-
tude can be obtained in the &amework of the dimensional
counting rules [11,12]; however, the contribution of the
low-energy masses is shrouded in uncertainty.

In Sec. III we try the models with a contrast M de-
pendence in the low-mass region aiming to find a scale of
changes in the preasymptotic behavior of the color trans-
parency factor.

In Sec. IV a short summary of our results is given.
All the calculations have been performed using the lan-

guage of hadron rescatterings (multiple scattering the-
ory). Very important is to reformulate the problem, us-
ing the quark language; this subject is discussed in the
Appendix.

II. SCREENING DIAGRAMS AND COLOR
TRANSPARENCY

The investigation of color transparency in the deuteron
electrodisintegration is being performed as follows. We
consider first the case of quasielastic scattering of elec-
trons on the target proton at rest (i.e., neglecting the
Fermi motion), which corresponds to have the Bjorken
variables x~ ——1. The color transparency is discussed in
this kinematical situation and, as a consequence, we for-
mulate a sum rule valid for high Q2 and high energies of
the outgoing proton. Then, using this sum rule, we cal-
culate the energy dependence of the color transparency
factor at all xB.

Three diagrams determine the process of deuteron elec-
trodisintegration (see Fig. 1). The impulse approxima-
tion diagram s.sown in Fig. 1(a) provides the main con-
tribution to the amplitude, while the diagrams with final
state interactions give comparatively small corrections.
We assume the z axis parallel to the momentum p of the
incoming electron. For high p and high momentum trans-
ferred along the z axis the proton is ejected practically at
the same direction as the electron. The struck proton can
rescatter softly oH' the spectator neutron and we approx-
imate this amplitude by means of one Pomeron exchange
[see Fig. 1(b)]. But another process is possible as well:
The photon produces resonances (in general this leads
to a shower of particles) which subsequently are trans-
formed diffractively into the proton [see Fig. 1(c)]. As
was pointed above, the diagrams shown in Figs. 1(b) and
1(c) are screening corrections with respect to the main
contribution of the diagram of Fig. 1(a), but just these
screening corrections are of great importance &om the
point of view of color transparency. They can be easily
calculated in the framework of multiple scattering the-

ory with inelastic rescattering taken into account (e.g. ,
see Ref. [19]).

At large momentum transfer the photon selects a
squeezed proton configuration which is colorless. Because
of that its interaction with the spectator neutron van-
ishes in the limit of large momentum transfers and large
energies of the struck proton. This means that in this
limit the diagrams of Figs. 1(b) and 1(c) should cancel
each other. The eKect is similar to the one observed in
hadron-deuteron scattering where Glauber and inelastic
rescatterings give shadowing for low efFective masses of
the hadron shower [26,27], while the large-mass shower
leads to antishadowing [28,29]. So it is reasonable to
expect that the cancellation of diagrams of Figs. 1(b)
and l(c) is due to antishadowing contribution of not too
small masses of the hadron shower in the process shown
in Fig. 1(c).

I et the momenta of the incoming and outgoing elec-
trons be p, = (p, 0, p) and p', = (E', p~, p'), where the
electron mass has been neglected. In the laboratory
frame which we use below ]p~~ is large but ~p~~ (( p,
and p' is of the order of p. The Bjorken variables
zR=Q /2mv, where m is nucleon mass, is changing
within the interval 0—2. In the impulse approximation
one has the following condition for quasielastic ep scat-
tering (the notations of momenta are shown in Fig. 1):
(q + P~ —k2) = m, or zR = 1 + k2, /m. Here the
nucleons of the deuteron are treated as nonrelativistic
particles, and the lowest order terms are retained.

The deuteron blocks of the processes shown in
Figs. 1(a)—1(c) neglecting terms of the order of k2 in
the propagators of the struck proton and the produced
resonances can be written respectively

AIA = 2vmF(Q )4'a(k2),

d k2 2 3 f((k2~ k i) )
e] & 77'

( )3

(2)

d3k'
A;„= —ivm 3@g(k'2)FR(Q ~1M )

fg)D((k2 —k2)2, M )
k' —(M2 —m2)/2(p —p') + i0

Here Ay~, A ~, and A;„refer to the impulse approxima-
tion amplitude [Fig. 1(a)], elastic [Fig. 1(b)], and inelas-
tic [Fig. 1(c)] rescattering amplitudes, correspondingly.
@g(k2 ) is the deuteron wave function which depends on

(0)

kp

k'
1

(b) (C)

FIG. 1. Diagrams for the deuteron electro-

disintegration process: (a) Impulse approxi-

mation diagram, (b) diagram with Glauber

(elastic) rescattering, and (c) diagram with

inelastic reseat tering.
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the square of the relative momentum of the nucleons and
is normalized so that with

[k, —(M' —m )/2(p —p') + i0]

f
d3k

@2(k2) —1
(2vr) s

f is the amplitude for elastic pp scattering, while fDD
stands for the diKractive production of a resonance with
mass M; I' and I'R are the corresponding form factors.
The elastic amplitude at small momentum transfers can
be approximated as f(k&~) = of/exp( —Bk&~/2), where

of~ is the total nucleon-nucleon cross section and B is

the diffraction-cone slope. For the elastic rescattering
of the nucleon, Eq. (2), we should make a substitution:

(k, +i0) -+ —imb(k, ), and for the difFraction resonance
production one must substitute in Eq. (3)

—i7rb'(k, —(M2 —m2)/2(p —p')).

Equation (3) stands for the amplitude of the diffrac-

tive production of a resonance with mass M on a bound
nucleon. In the case of the production of several reso-
nances one should sum up over all the resonances; for a
continuous spectrum one has to integrate

j dM~

where Mo is a threshold value and p(M2) is the density

of the continuous spectrum. Such a procedure gives for
the screening terms of Figs. 1(b) and 1(c) the following

expression:

A.i + A;. = --V~ ', ~~(k2~)F(Q')f((k'„- k,~)') —-i/m

xFR(Q, M )p(M ) friD((k2& —k~~) + (M —m ) /4(p —p'), M ). (4)

In the above equation the contribution of resonances is not shown separately but is included in the density p(M2).
The values of M can be rather large, M (p —p')/me', since the deuteron wave function allows for lk I

the value

of the order of /ms (s is the deuteron binding energy).
The integrand in the inelastic shadowing term given by Eq. (4) can be presented as a discontinuity of the amplitude

A~~ in the M channel: i2m(p —p')F~pf&&=discMaA~N. It is hardly possible to derive the M2 dependence of
discM~A~~ in the region of low and intermediate M; however, it is possible to find out asymptotic behavior of
discM~A~iv at large M2 and Q2 using the language of quarks (see Appendix).

To simplify the following presentation let us neglect in Eq. (4) the momentum transfer dependence in the difFractive
interactions, rz = (k2 —k2)2 ~ 0. It is a good approximation if the range of the final state interaction of nucleons is

much smaller than the deuteron size. (Actually there is no special need in this simplification and in our calculation of
the transparency factor we restore the momentum transfer dependence. ) Then the rule for the asymptotic cancellation
of the screening terms of the amplitude, in the limit of large p —p' and Q2, reads as

Md kz „2 )
™xdM d k~ 2 (M —m ) discM~A~~(Q, M, s~)

(2&)2
" ' " . ~ (2~)2

~
' 4(p-p')2

~
is&

where sN = 2m(p —p'). Equation (5) must be valid
for all large values of Q2 and this means that the ra-
tio A~N/F(Q2) is independent of Q2. Actually such a
cancellation is a direct consequence of the dimensional
counting rules [11,12] and it is valid for all M. The
energy dependence of the elastic scattering amplitude
i s~f (0, s~), and for the amplitude A~~ (M, Q, slav),
must be the same as well: Pomeron exchange in both
amplitudes guarantees it.

out the scale of changes in the preasymptotic behavior
of the color transparency factor. Two factors determine
the asymptotics of discM2 A~~. the M dependence of the
amplitude p+nucleon+nucleon+Pomeron which behaves
as M (see Appendix) and Pomeron exchange ampli-
tude for inelastic rescattering, is~/M2. Thus, at large
MdiscM2A~~ M . We approximate discM2A~~ as

discM~A~~(M, Q, sN) = F(Q )as~&p(M ),

where

III. ENERGY DEPENDENCE OF THE COLOR
TRANSPARENCY FACTOR

Our knowledge of the Glauber screening and large-
M behavior of the Gnal state interaction block allows
us to construct models which make it possible to hand

rp(M ) = 8(M —Mp) 8(Mi —M) 4 (M )

+8(M —Mi) 4(Mi ) (M, /M) .

Here 4(M ) is a function which describes the M depen-
dence in the resonance region (Mo & M ( M, ), while the
asymptotic decrease, M, starts at M = M~. To make
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clear the inQuence of this resonance region on the trans-
parency onset as well as to estimate uncertainties which
come &om it, we consider two extreme cases: (I) Res-
onance domain is large, Mo 2—3 GeV, Mz 10—12
GeV2, and its contribution is not small. (II) Asymp-
totic decrease of discM~A~N starts at small M, thus
M2 ~ M2 2 3 GeV2

In our calculation f(0, sN) = 0., t = 39 mb and

„=m~gs~. The results for inelastic shadowing at
large v do not depend practically on the value of M
because the main contribution comes &om not too high
M2.

Up to now we considered the case x~ ——1 which cor-
responds in the quasielastic kinematics to the target nu-
cleon with k, = 0. It is easy to rewrite the amplitude for
z+ g 1 ~

~NN
(2~mF(Q )) A = 4g(kz + m (1 —zg) ) — dkz4d(kz + m (1 —xB) )

0

l
~ Mrnax dM2 f

e& k~+m'~ *B—1+
i

v(M')
1670 p Mz 7c ( E sN ) j

(8)

The case with k, = m(z~ —1) ( 0 corresponds to the
target nucleon moving in the direction opposite to the
incoming electron.

For reaction with deuteron as a target we should bet-
ter consider for the color transparency factor a slightly
diferent definition as compared to the usual one for in-

termediate and heavy nuclei. We write

owing contributions. We have also studied the case where
the production of a resonance was of a shadow type and
then the contribution of higher masses was antishadow-
ing. For this case the calculation results are presented
in Figs. 2(c) and 2(d) for the shadowing resonance with
mass M2„= 2 GeV2 and with reasonable cross-section
value (about 1/3—1/2 of the elastic one). Color trans-

f d'kited(zB, v, Q ~ k~)

jd2k~criA(xB, v, Q2, k~2)
' (9)

09-

where o'~ is the cross section ed m epn [i.e., with the am-

plitude defined by Eq. (8)] and 0'ip is the cross section
in the impulse approximation only. Td depends on x@
and v, the Q dependence being canceled at Q & 3—5

GeV (corrections of the order of lnQ2 have been ne-

glected here). The values of Td for different zn and v are
shown in Fig. 2. The results have been obtained using

the Reid soft core wave function (we define 4g as either

f42& + 42& or 4's) and remain practically unchanged if
the Paris potential is used.

Calculated values of Td for cases I and II are shown in
Figs. 2(a) and 2(b). We denote the transparency factor
for this model as Tq(Mo2, Mi2) [see Eq. (7)]. In case I,
when the resonance region with antishadow contribution
is rather broad (Mo ——2 GeV, Mi ——12 GeV ), Td
increases rather slowly with energy: at v = 10 GeV the
screening terms cancel each other in 20—25% only, while
for a 50% cancellation the en=.rgy transfer must be of
the order of 20—70 GeV. Fermi motion, which reveals
itself at x~ g 1, changes the rate of increase of Tg a
little: at 2;~ ——0.9 the increase in the region of v 5—

10 GeV is slightly quicker than at others x~, but for
v & 15 GeV the rate of increase is almost the same for
all z~. The values of Td with ~z~ —l~ 0.3—0.5 behave
similarly, being weakly dependent on the sign of x~ —1,
see Fig. 2(b). In case II, when the resonance region is
narrow (Mo2 = Mi2 = 3 GeV ), the transparency factor
Tg is sensitive to the Fermi motion: the 50% decrease of
shadowing occurs for x~ & 0.9 at v = 8—10 GeV while
for x~ & 1 it happens at v = 20—30 GeV only.

Up to now we were dealing with rather specific case
(while being the most favorable for the onset of the color
transparency): all the inelastic production gave antishad-

07-

05 -0

03-

09-

, 3)
~ ~ ~ ~ i I

0.7-

O.5-

0.3-

0$ -. . . , . )

0.9-

,3}a
I ~ L ~ I ~

07-

0.5-
'0.9

0.3 I ~ ~ ~ a I

30 300 10
p- p' (GeV/c}

)00

FIG. 2. (a),{b) Transparency factor given by Eq. (9),
Td(M02, Mi~), as a function of v for Reid soft core wave func-

tion. Mo and Mz define the region of the nonasymptotic be-

havior of y{M ) which enters Eq. (7); 4(M ) =const. Solid

curves correspond to x~=0.5, 0.7, 0.9, and 1; dashed curves

stand for xs = 1.1 and 1.3 (c),(d). The same as in (a),(b) but

with additional shadowing resonance contribution (M„, = 2

GeV ). (e),(f) The same as in (a),(b) but for the nuclear

transparency factor, Tz (Mo, Mi ), defined by the diagrams

of Figs. 3(a), 3(b), 3(c). Two-nucleon correlation factor is

taken from Ref. [30].
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Parency factor for this model is denoted as T&(Moz, Mi )~.
One can see that the shadowing contribution of reso-
nances does not change the whole picture —the approach
to the transparency limit is very similar to that consid-
ered previously.

Our results can be extended to a nucleus target with
A ) 10. In the approximation where the nucleus is con-
sidered as a dilute system of nucleons (it is standard ap-
proxiination of the Glauber theory) the amplitude on a
nucleus is given by a set of diagrams of Fig. 3 type: the
diagrams of Figs. 3(a)—3(c) are the same as in the case
of the deuteron target while Fig. 3(d) describes the sub-
sequent rescatterings of the struck proton or the proton-
induced shower. It seems reasonable to assume that the
rate of growth of the transparency factor T~ is qualita-
tively the same both in the diagrams of Figs. 3(b) and
3(c) (one-rescattering process) and in diagrams with mul-
tiscatterings [Fig. 3(d) type]. The influence of Fermi
motion can be also checked in the example of the one-
rescattering diagrains of Figs. 3(b) and 3(c). In Figs. 2(e)
and 2(f) one can see the results of the calculation of the
nuclear transparency factor with one rescattering, T&

in this case the value T& is de6ned by the same for-
mulas but with gg substituted by the two-nucleon cor-
relation wave function [30]. One can see that at small v

the screening corrections are larger than in the deuteron
case (because of larger nuclear density). However, the
decrease of shadowing for increasing v and the z~ depen-

dence of T&( ) are practically the same as in the deuteron
case.

The factor T& integrated over k, near z~ —— 1(z)

does not demonstrate a change of the energy-dependent
behavior as compared to the case of x~ —— 1:
(TA)=f dk, T& increases in the region v = 5—15. Such(~) ~

a behavior of (TA) is an argument against the explana-
tion of the BNL puzzle as a result of the Fermi motion

[24]. I et us discuss this point in more detail. In Ref. [6]
two kinds of transparency factors are presented: (i) af-

,
a 'o

iO O

ot

(d)

FIG. 3. Diagrams for quasielastic eA scattering: (a) Im-
pulse approximation diagram, (b), and (c) diagrams corre-
sponding to the one-rescattering process, and (d) diagrams
with multirescatterings.

ter reconstruction of Fermi motion of the target nucleon
(neglecting binding energy and initial or final state in-
teractions), (ii) without it but integrating in the range
—0.2 GeV/c & k, & 0.1 GeV/c. Although the first kind
of representation might be criticized [24], the second one
looks appropriate. The color transparency factor, which
has been found in accordance with the prescription (ii),
increases in the region of p = 6—10 GeV/c and decreases
at p = 12 GeV/c. It looks reasonable to assume that
Fermi motion reveals itself similarly in both wide-angle
quasielastic ep and pp reactions. If so, our calculation
which shows monotonic growth of T&, indicates that
BNL puzzle is of another origin, not a simple influence
of the Fermi motion. Another possibility to explain BNL
puzzle has been discussed in Refs. [5,7,14] where it was
related to a signi6cant contribution of the Landshoff mul-
tiple scattering to the wide-angle elastic pp amplitude at
intermediate energies. This emphasizes the necessity to
investigate electromagnetic hard processes such as the
quasielastic ep scattering on nuclei where the Landshoff
mechanism is absent; on the other hand, further infor-
mation should be obtained &om the analysis of reactions
with multinucleon emission, say (e, e'NN), at high q2
where the pp interaction could be once more important.

IV. CONCLUSION

Color transparency has been considered in the
deuteron electrodisintegration where aB screening cor-
rections have been calculated using standard multiple
scattering techniques. The approach was substantially
based on hadron concepts and dynamics, while a refer-
ence to quarks is implicitly contained in the requirement
that screening correction should vanish at very high en-

ergy momentum transfers. Starting &om this color trans-
parency limit, when shadow (or Glauber) corrections are
canceled by antishadow terms related to the inelastic
scattering of a struck nucleon, we calculated the behavior
of the screening corrections as a function of the energy
transferred to the deuteron, v. The calculations prove
that the rate of the color transparency growth with v
depends on the contribution of resonances in the inelas-
tic antishadow rescattering. Dominant contribution of
the low-mass resonances increases this rate as well as its
sensitivity to the Fermi motion: at x~ & 1 the trans-
parency factor grows faster than at z~ ) 1. Quite op-
posite is the case, when antishadow contributions are re-
lated to highly excited resonances with M 2—3 GeV,
the rate of the color transparency growth is dumped,
and the influence of the Fermi motion is suppressed as
well. But in all the cases the onset of color transparency
is very slow —one-half of the Glauber screening correc-
tion is canceled not earlier than at v = 10—20 GeV.
Thus, the investigation of color transparency by means
of quasielastic electron-nucleon processes —just this re-
action is the best for interpretation —is a task not only
for the intermediate-energy accelerators but also for the
next generation ones as well as for DESY.



3280 V. V. ANISOVICH, L. G. DAKHNO, AND M. M. GIANNINI 49

ACKNOWLEDGMENTS

Thanks are due to D. I. Melikhov and M. G. Ryskin for
fruitful discussions. Two of us (V.V.A and L.G.D.) are
grateful for the hospitality at the National Institute of
Nuclear Physics (INFN) (Sezione di Genova) and at the
Physics Department of the University of Genova. This
work was supported by the Russian Research Grant No.
93-03-3852.

APPENDIX A: QUARK MODEL FOR
INTERACTION AMPLITUDE

(o)

I

Xgl, I

I

1

I

Xg)g I ~

1~ '

I

I

I
Xqlg,

1

I

I

(c)

(b)

Here the interaction amplitude p+ N i N+ P (P is a
Pomeron), which contains principal features of the color
transparency phenomenon, is investigated by means of a
quark language.

Let us denote the amplitude of the interaction block,
which is a sum of diagrams of Figs. 4(a) and 4(b), as
a(pN -+ NP) The a. mplitude A~~ in Eq. (5) is a
product of this amplitude and the Pomeron propaga-
tor: A&~ = i(s/M )a(pN ~ NP) There. fore, for
the calculation of the cross section we need to know
discMia(pN -+ NP). In the proposed model the am-
plitude a(pN -+ NP) is represented as a quark diagram
shown in Fig. 4(c). H is the hard interaction block which
is a sum of diagrams of the type of Fig. 4(d) (the detailed
consideration of hard exclusive processes may be found
in Ref. [31]): exchanges of hard gluons g give the mo-
menta of outgoing quarks about q/3. The block S, which
describes soft quark Pomeron scattering, is a sum of di-
agrams of Figs. 4(e) and 4(f) type in the leading 1/N,
approximation. The diagram with Pomeron exchange
gives shadowing while three-regeon diagram of Fig. 4(f),
GGP, where G Reggeized gluon, gives antishadowing.
The whole soft scattering amplitude, S = P(P+ GGP),
vanishes, when the transverse interquark distances tend
to zero [32]. After cutting the diagram of Fig. 4(c) be-
tween hard and soft blocks (dashed line), we get the dis-
continuity of the amplitude in the M channel which en-
ters shadowing corrections, Eq. (5).

Ig
(a

Id)

', P

(e) "

FIG. 4. (s),(b) Elastic snd inelastic rescsttering blocks,
presented in the hadron language. (c) Representation of the
sum of (s) snd (b) as s quark interaction diagram: H is s
hard scattering block snd S is s soft scattering one [see Eq.
(Al)]. (d) An example of quark diagram which defines hard
scattering block H: the exchange of hard gluons distributes
the photon momentum among three qusrks. (e), (f) Diagrams
for soft scattering of outgoing qusrks (block S): shadowing
(e) snd sntishsdowing (f) diagrams.

At large Q2 the diagram shown in Fig. 4(c) is similar to
that of the proton form factor. The only difference from
the form factor is that outgoing quarks interact with an-
other nucleon by the Pomeron exchange. Similar to the
form factor process the amplitude of the hard exclusive
reaction pN m NP is obeying the factorization formula
which separates the hard scattering amplitude H from
the bound state dynamics and the soft rescattering pro-
cess. Correspondingly, the discontinuity of the amplitude
in the M2 channel can be written as

m2
discM2 (pN -+ NP) = dC (z",r~)@~(s")H(z",z; Q)dC'(z, rg)b M —) * S(z, r~, z', r~)g~(s')d4(z', r~),

(Al)

where (x",r&) and (x', r&) are the light-cone variables
of the incoming and outgoing quarks, respectively: z" =
k+/k+, x' = k+/ki+, and d4 is the three-quark phase
space,

The nucleon wave function depends on the energy
squared of three quarks. The hard block H decreases
as Q in the leading order in 1/Q selecting small rel-

ative distances between quarks, [r;~~ 1/Q. Soft scat-
tering block S contains two types of terms which are
shown in Figs. 4(e) and 4(f). In the r~ representation
this interaction leads to the factor (3—g,&.exp[—(r,~—
r„~)2/4r2, ]), where the quantity 3 comes from diagrams
of Fig. 4(e) and the second term is the contribution of
three Reggeon diagram. The parameter r, is of the or-
der of 0.6 GeV [14]. Hard interaction and soft scatter-
ing cancel the final state interaction block of Fig. 4(c) at
r,'.Q' » 1.

At small Pomeron momentum, K, the M dependence
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of Eq. (Al) for large M2 is discMsa(pN ~ NP)/Q4
M 4. Actually the asymptotic M2 behavior of the am-
plitude shown in Fig. 4(c) depends on the number of
quarks, and in this sense it is similar to the form factor
behavior: for example, for mesons discM*a(p+ meson -+
P + meson)/Q M . Actually this follows from di-
xnensional counting rules [11,12] as well.

Thus, this model gives the expected by QCD cancel-
lation of screening effects at large Q2 and p~. Now let
us explain how this model is linked with the multiple
scattering theory used in our calculations.

Unitarity condition for the amplitude a(pN ~ NP)
reads

discMs a(|N w NP) = ) A'(pN w hadrons)
hadrons

xA(hadrons ~ NP). (A2)

In the unitarity condition the summation is initially go-
ing over all hadron states, but the constraints imposed to
amplitudes A'(pN ~ hadrons) and A(hadrons ~ NP)
by the conservation laws allows us to restrict the sum-
mation to a limited set of states. For example, the
process pN ~ hadrons allows for hadrons the isotopic
states I = 1/2 and I = 3/2; however, the amplitude
A(hadrons m NP) with I = 3/2 is equal to zero, hence
the states I = 3/2 go away from the final summation.

Consider a model when only three-quark baryon states
are taken into account in the intermediate state of Eq.
(A2) (for example, those which are discussed in the quark
model calculations, see [33,34] and references therein). So
we redraw the sum of diagrams shown in Figs. 4(a) and
4(b) as a diagram of Fig. 5(a), summing over all baryon
resonances, nucleon state included as well. The wave
functions of the three-quark baryons can be presented as
a full set of states in the three-quark state space:

(rJ 1 &1 rJ 2 22 rJ 3 23)

x0„'(rJ.1&*x rJ 2&~2 rJ3&*3) = I-, (A3)

where I is a unity operator. This is how the sum of
diagrams of Fig. 5(a) comes into the diagram of Fig. 4(c).

Two remarks have to be made.
(i) We explore the completeness condition for the

baryon wave functions just; as it could be used in nuclear
physics for three-nucleon states. Generally speaking,
there is an essential difference related to the constraint
due to confinement of quarks. However, we discuss here
small interquark distances, so—one may believe —we may
forget about the confinement constraints.

(ii) The constraint in the summation of the set of states
exists not only in Eq. (A2) but in the quark diagram
of Fig. 4(c) as well. For example, intermediate states
with I = 3/2 are absent in the diagram of Fig. 4(c):

N~ ~~+ R

Wr, E

%vie

FIG. 5. (a) Final state interaction block, a(pN -+ NP),
written as a sum over three-quark resonances, R, in the inter-
mediate state. Diagrams which give the shadow contribution
(b) and antishadow one (c).

conservation law in soft scattering amplitude guarantees
it.

Consider in more detail the diagram of Fig. 5(a). Soft
scattering block 8 includes two types of interactions, so
the diagram of Fig. 5(a) is a sum of diagrams of Figs. 5(b)
(shadowing) and 5(c) (antishadowing). Now it is seen
that color transparency efFect in the final state interac-
tion amplitude appears as a cancellation of contributions
of low-mass nucleon states and highly excited ones. In-
deed, in the case of negligibly small momentum trans-
ferred by Pomeron, e, the only nucleon state (R = N)
gives nonzero contribution in the set of diagrams 5(b):
the soft scattering block RPN is equal to zero for R g N
because of the quark wave function orthogonality. The
diagram of Fig. 5(b) with R = N gives shadowing con-
tribution: it is usual Glauber screening diagram. The
diagrams of Fig. 5(c) provides the contribution of the
opposite sign. However, the diagram on Fig. 5(c) with
B = N is a comparatively small correction to the contri-
bution of the diagram of Fig. 5(b) with R = N and does
not change the shadowing nature of the Glauber scatter-
ing. But the other terms of the diagram of Fig. 5(c) with
R g N are also nonzero: they are negative and the sum
of all these terms exactly cancels the Glauber screening
at large Q. It is also seen that this cancellation happens
only at a large enough v, when the deuteron wave func-
tion does not cut the contribution of nonsmall masses.

In principle it is possible to calculate the final state
interaction block of Fig. 5 if the wave functions of nu-
cleon states B are known. In the last decade consider-
able progress has been made in the baryon spectroscopy
as well as in the consideration of forxn factors (see, cor-
respondingly, Refs. [33,34] and Refs. [35,35]). However,
it is a long-term problem.
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